up previous
Up: QCDINS homepage Previous: Package description

SUBROUTINE QIRDIS(LU,LL,X,WGT,N) - Generate $X$ as $dX/X^{N+1}$, with weight for $dX/X$ distribution returned




In the instanton-induced cross section,

$\displaystyle \sigma_{eP}^{(I)}({\rm Cuts})$ $\textstyle \simeq$ $\displaystyle \frac{2\,\pi\,\alpha^2}{S}\,\sum\limits_{q^\prime} e_{q^\prime}^2...
...^\prime}\,
\,\frac{\sigma^{(I)}_{q^\prime g}(x^\prime ,Q^{\prime 2})}{x^\prime}$  
    $\displaystyle \times
\int\limits_{{\rm max}\left(\frac{Q^{\prime 2}}{Sx^\prime
...
...rm Bj\,max}-\frac{Q^{\prime 2}}{Sx^\prime z}}}
\frac{dx_{\rm Bj}}{x_{\rm Bj}}\,$ (1)
    $\displaystyle \times
\int\limits_{{\rm max}\left(
\frac{Q^{\prime 2}}{Sx^\prime...
..._{\rm min})\,
\frac{1+(1-y_{\rm Bj})^2}{y_{\rm Bj}}\
P_{q^\prime}^{{ (I)}}\
,$  

we encounter various integrals of the type
\begin{displaymath}
I(X_U,X_L)=\int\limits_{X_L}^{X_U} \frac{dx}{x}\,f(x) ,
\end{displaymath} (2)

where the function $f(x)$ steeply grows towards small $x$.

This makes the standard way of the Monte Carlo integration of Eq. (2) inefficient. The latter consists in generating $n$ random points $y_i=\ln x_i$ uniformly in the range from $\ln X_L$ to $\ln X_U$ and evaluating the sum

\begin{displaymath}
I(X_U,X_L)=\int\limits_{X_L}^{X_U} \frac{dx}{x}\,f(x)=
\int\...
...f(x=\exp{y})
\ \approx\ \frac{1}{n}\,\sum\limits_{i=1}^n w_i,
\end{displaymath} (3)

with weights
\begin{displaymath}
w_i=(\ln X_U-\ln X_L)\,f(x_i=\exp{y_i}).
\end{displaymath} (4)

The efficiency is increased by introducing, instead of $y=\ln x$, the integration variable

\begin{displaymath}
z=x^{-N};\hspace{6ex} dz=-N\, x^{-(N+1)} dx,
\end{displaymath} (5)

with $N>1/2$, and generating $n$ random points $z_i=x_i^{-N}$ uniformly in the range from $X_U^{-N}$ to $X_L^{-N}$, such that
\begin{displaymath}
I(X_U,X_L)=\int\limits_{X_L}^{X_U} \frac{dx}{x}\,f(x)=
\frac...
...=z^{-1/N})}{z}\ \approx\ \frac{1}{n}\,\sum\limits_{i=1}^n W_i,
\end{displaymath} (6)

with weights
\begin{displaymath}
W_i=\frac{1}{N}(X_L^{-N}-X_U^{-N})\,\frac{f(x_i=z_i^{-1/N})}{z_i}.
\end{displaymath} (7)

The in- and output variables of the subroutine QIRDIS(LU,LL,X,WGT,N) are described in Tables 1 and 2. The power $N$ used as default typically ranges between 1 and 5. For $N\leq 1/2$ the routine QIRDIF(LU,LL,X,WGT,-N) is called.


Table 1: Input variables of QIRDIS.
Name Description
LU Logarithm of upper integration limit, $\ln X_U$
LL Logarithm of lower integration limit, $\ln X_L$
N Power, $N>1/2$



Table 2: Output variables of QIRDIS.
Name Description
X $x_i$ value calculated from the generated $z_i$ value, $x_i=z_i^{-1/N}$
WGT Monte Carlo weight according to Eq. (7), with $f\equiv 1$, $\frac{1}{N}(X_L^{-N}-X_U^{-N})\,\frac{1}{z_i}$



up previous
Up: QCDINS homepage Previous: Package description

A. Ringwald and F. Schrempp

1999-08-21