URL: https://www.desy.de/aktuelles/news_suche/index_ger.html
Breadcrumb Navigation
[LgDashBoard2@/e409/e116959/e119238][getObjProperty]: key=title[py] Traceback (most recent call last): File "/home/zeoclients/parts/products/zms/_objattrs.py", line 679, in getObjProperty value = metaObjAttr['py'](zmscontext=self) File "/home/zeoclients/parts/zope2/lib/python/Shared/DC/Scripts/Bindings.py", line 313, in __call__ return self._bindAndExec(args, kw, None) File "/home/zeoclients/parts/zope2/lib/python/Shared/DC/Scripts/Bindings.py", line 350, in _bindAndExec return self._exec(bound_data, args, kw) File "/home/zeoclients/parts/zope2/lib/python/Products/PythonScripts/PythonScript.py", line 328, in _exec result = f(*args, **kw) File "Script (Python)", line 6, in LgDashBoard2.title UnicodeDecodeError: 'ascii' codec can't decode byte 0xc3 in position 21: ordinal not in range(128)
News-Suche
Meldungen vom Forschungszentrum DESY
Katalysator-Verschleiß live im Blick
Platin-Nanopartikel in einem Auto-Katalysator wachsen im Betrieb zusammen und verlieren dadurch an Effizienz. Diesen Prozess haben Hamburger Forscher erstmals live auf der Nanoebene beobachtet. Die Untersuchung in einer speziellen Reaktionskammer liefert erstmals experimentelle Daten für derartige Veränderungen von Katalysator-Nanopartikeln unter Reaktionsbedingungen, wie die Forscher um Dr. Uta Hejral und Prof. Andreas Stierle aus dem DESY-NanoLab im Fachblatt „Nature Communications“ berichten.

Gemittelte Form der Platin-Nanopartikel zu Beginn des Experiments (links, unter Kohlenmonoxidfluss) und nach dem Zusammenwachsen (rechts, während der Reaktion von Sauerstoff und Kohlenmonoxid zu Kohlenstoffdioxid). Durch die Aufnahme von 2D-Streubildern (jeweils im Hintergrund) lässt sich diese Partikelformänderung live verfolgen (U. Hejral).
Die Effizienz einer bestimmten Menge Katalysatormaterials steigt mit dessen zur Verfügung stehenden Oberfläche an. „Eine Kugel mit einem Zentimeter Durchmesser hat eine Oberfläche von gut drei Quadratzentimetern“, erklärt Hejral. „Aus derselben Materialmenge ließen sich im Prinzip auch 1,3 Billiarden Kügelchen mit je zehn Nanometern Durchmesser formen, die hätten zusammen eine Oberfläche von 386 Quadratmetern – das entspricht etwa zwei Tennisplätzen.“ Ein Nanometer ist ein millionstel Millimeter. Im Betrieb kann sich jedoch die Größe der Partikel ändern, was die Leistung des Katalysators mindert.

In dieser Probenkammer des DESY-NanoLabs können Katalysatoren live bei ihrer Arbeit untersucht werden. Der Röntgenstrahl und das gestreute Licht durchdringen dabei eine sehr dünne Berylliumkuppel auf der Oberseite der Kammer (Foto: DESY/R. Shayduk).
Die Forscher verwendeten diese Probe, um in der Reaktionskammer bei 280 Grad Celsius Kohlenmonoxid (CO) mit Sauerstoff (O2) in Kohlendioxid (CO2) umzuwandeln. Dabei ließ sich die Effizienz der Reaktion mit einem Massenspektrometer direkt beobachten. Mit einem feinen Röntgenstrahl konnten die Forscher während der Reaktion Veränderungen der Nanopartikel verfolgen. Diese Messungen fanden an der Europäischen Synchrotronstrahlungsquelle ESRF im französischen Grenoble statt.

Während Form und Größe der Rhodiumpartikel (unten) zu Beginn (grün) und nach dem Katalyseprozess (rot) gleich blieb, wuchsen die Platin-Partikel (oben) zusammen (U. Hejral).
„Die Untersuchung zeigt, dass die Platin-Nanopartikel freiwerdende Energie aus der chemischen Reaktion aufnehmen, um sich zusammenzulagern“, erläutert Hejral. „Enthielten die Platinpartikel zu Beginn jeweils etwa 15 000 Atome, waren es am Ende des Versuchs etwa jeweils 23 000. Durch diese Zusammenlagerung schrumpfte die Bedeckung des Trägermaterials durch die Platin-Nanopartikel von anfänglich 50 Prozent auf etwa 35 Prozent.“ Die Forscher gehen davon aus, dass die Platinpartikel danach streben, eine für sie energetisch günstigere, runde Form anzunehmen. Die Herstellung der Partikel in einer Form, die derjenigen dieser Selbstorganisation nahekommt, könnte Umlagerungen und damit einen Rückgang der Effizienz vermindern.
Auto-Katalysatoren sind basierend auf Erfahrungswerten weitgehend optimiert, jedoch gibt es noch viele offene Fragen bzgl. der auf atomarer Ebene ablaufenden Prozesse während Reaktionsbedingungen. Diese müssen verstanden werden um die Lebensdauer und die Effizienz der Katalysatoren weiter zu verbessern. Die neue Methode gewährt hierzu Einblicke und lässt sich dabei nicht nur auf Auto-Katalysatoren anwenden, betont Untersuchungsleiter Prof. Andreas Stierle, der auch Leiter des DESY-NanoLabs ist. „Mit unserem Verfahren können wir die optimalen Mischungsverhältnisse und Partikelgrößen experimentell bestimmen. Das lässt sich für Katalysatoren mit verschiedensten Anwendungen nutzen und kann der chemischen Industrie neue Möglichkeiten eröffnen.“