

Measurement of the nuclear-mass dependence of spontaneous (transverse) Λ polarisation in quasi-real photoproduction at HERMES

Yu. Naryshkin (PNPI) On behalf of the HERMES collaboration

SPIN2010 – 19th International Spin Physics Symposium September 27 – October 2, 2010, Jülich, Germany

Introduction

Reaction under study $\gamma^* + A \Rightarrow \Lambda^\uparrow + X$

A: ¹H, ²H, ³He, ⁴He, ¹⁴N, ²⁰Ne, ⁸⁴Kr, ¹³²Xe

Spontaneous (transverse) Λ polarization does not depend on beam or target polarizations and directed along \hat{n} :

HERMES spectrometer

- average beam polarization $P_b \sim \pm 45\%$
- polarized and unpolarized internal gas targets:
 - (¹*H*, ²*H*), ¹*H*, ²*H*, ³*He*, ⁴*He*, ¹⁴*N*, ²⁰*Ne*, ⁸⁴*Kr*, ¹³²*Xe*
- *up/down mirror symmetric (important for extraction of transverse A polarization)*

Formalism of A polarization extraction is based on up/down mirror (geometrical) symmetry of the detector and moment method

No Monte-Carlo simulations of the spectrometer acceptance is involved!

Reconstruction of A events

Quasi-real photoproduction, Q² <0.05 GeV² for 80% of the events (MC) $\langle E_{\gamma} \rangle$ =15.6 GeV

Background suppression cuts:

- Threshold Cherenkov / Ring imaging Cherenkov detector
- $z_2 z_1 > 15 \, cm \, for \, \Lambda$ $z_2 - z_1 > 20 \, cm \, for \overline{\Lambda}$

1996-2000

 $N(\Lambda) = 259 \cdot 10^3, \ N(\overline{\Lambda}) = 51 \cdot 10^3_{6}$

Kinematical dependences of the transverse A polarization, 1996-2000 data

Ignt targets are dominatinn $N_A(^1H+^2H) \sim 85\%$

 $P_{\overline{\Lambda}} = -0.025 \pm 0.015_{stat.} \pm 0.018_{syst.}$

For $\overline{\Lambda}$

False polarization is studied using h^+h^- pairs and K_s data sample

A. Airapetian et al., Phys.Rev.D76:092008,2007

Nuclear effects: A, A/Z-dependence of A polarization

 $\langle p_T \rangle \approx 0.25 \, GeV, \ \langle \zeta \rangle \approx 0.63$

• Spontaneous polarization in quasi-real photoproduction regime (Q2 <0.05 GeV2 for 80% and $\langle E_{\gamma} \rangle =15.6$ GeV) obtained mainly on H,D is found to be: for Λ $P_n = 0.078 \pm 0.006_{stat.} \pm 0.012_{syst.}$ and $\overline{\Lambda}$ -bar $P_n = -0.025 \pm 0.015_{stat.} \pm 0.018_{syst.}$

A (A/Z) - dependence of P_n is observed. Unlike case of hadron collisions for light nuclei P_n is positive while for heavy nuclei P_n is compatible with zero.

Backup slides

A-dependence of the polarization

A/Z-dependence of the polarization

