RF Test for the HERMES Silicon Recoil Detector

Zhenyu Ye DESY Hamburg for the HERMES Experiment

Contents

- The HERMES Experiment
- The HERMES Silicon Recoil Detector
- RF test for the HERMES Silicon Recoil Detector
- Outlook

The HERMES Experiment

• Spin physics at HERA in DESY Hamburg

- The HERMES experiment:
- longitudinal polarized e^+/e^- ;
- internal gaseous target : polarized H, D atoms, unpolarized H₂, D₂, N₂, etc

The HERMES Silicon Recoil Detector

 To detect recoil protons (120-750 MeV/c) from exclusive process:

Deep Virtual Compton Scattering: $ep \to ep \gamma$

• 99 \times 99, mm² 300 μm thickness double-sided silicon microstrip sensors and front-end electronics made by HELIX chips

Placed directly inside the HERA-e vacuum!

RF Interference to the HERMES Silicon Recoil Detector

Old Design

HERA-e bunched beam introducing RF field

• Saturation was observed with the read-out electronics of a similar HERMES silicon detector near the cell

 \Rightarrow Solved by isolating the detector from the target chamber with 75 μm etched copper foil

• Improvement on the RF shielding design of the target cell by:

- Spring fingers: shorter length 35mm \rightarrow 5mm and narrower gap 5mm \rightarrow 0.8mm - Pumping holes (2mm × 10mm): now covered with 20µm etched Nickel foil

⇒ RF leakage reduced by more than 2 orders in magnitude according to calculation

New Design

$$\widetilde{I}(2\pi\nu) = \sum_{n=0}^{+\infty} \widetilde{I}_0 \cdot \delta(\nu - \nu_n) \cdot \exp\left(-\frac{\nu_n^2}{\sigma_\nu^2}\right)$$

High peak current: $I_p = 50A$

Wide line spectrum: $\nu_n = n \cdot 10.4 MHz$, $\sigma_{\nu} = 5.46 \text{GHz}$

⇒ By coupling RF field directly to the electronics, influence to our front-end electronics was observed only below 400MHz

Sensitive Frequency Range of the Silicon Fron-End Electronics

- Electronics saturation was observed with 5-10 MHz

- Observed RF influences - shifts of the pedestal, increase of the noise level (rms) - are limited to low frequencies

• Build a transimission line to simulate the HERA-e current running through the cell, in which an Al. rod acts as the inner conductor and the cell acts as the outer conductor

Optimization of the Transmission Line Design by Microwave Studio

S2, 1: power transmission S1, 1: power reflection

- 5 mm diameter 50 cm Al. rod with two 45° tapers in the ends
- Target cell including the tapered shape, pumping holes and spring fingers are not included in the calculation
- $\Rightarrow~50.4\pm4\Omega,$ less than 5% of power are reflected up to 6 GHz

Measured Local Impedance Distribution by Time Domain Reflection Method

Time Domain Reflection

- Impedance mismatch at the two ends due to the connections
- Impedance mismatch due to the tapered shape of the cell

 Less than 10% loss due to Reflection, sufficient for a good measurement up to 1GHz

- Measuring Power picked up by the antenna Input power on the transmission line
 ⇒ scaled by the HERA-e spectrum
 ⇒ converted to absolute field strength
- The antenna is calibrated up to 100MHz and the calibration curve is extrapolated to 1 GHz since no resonance up to 1GHz

 \Rightarrow Less than 1 mGauss magnetic field up to 1 GHz

Outlook

- Study the E.M. field strength depending on the relative position in the target chamber
- Repeat the measurement with old design of spring fingers
- Measure with the real silicon detector
- Frequency domain: sine wave, up to 500MHz, 10 times HERA-e components
- Time domain: short pulse, simulate the HERA-e spectrum up tp 200MHz with a relative amplitude of 0.2

