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Introduction: kinematic fitting as a part of data processing

> Raw data processing 

> Detector calibrations 

> Track search and reconstruction

> Momentum reconstruction

> Event selection and reconstruction



 

At this stage 3-momenta of all found tracks are reconstructed



 

Combine individual tracks to events



 

Apply certain requirements (cuts) on track correlations to select events of 
interest and reject the background



 

Alternatively use kinematic fitting

> Physics analysis
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Introduction: kinematic fitting as a tool of event selection

> Kinematic fitting –

 

adjustment of measured kinematic parameters 
under certain assumptions (conditions, constraints)

> Aims


 

Test if assumptions are true



 

Improve accuracy of measurements



 

Check if the knowledge of measurement uncertainties is correct



 

Check for possible systematic uncertainties

> Has been used for more than 50 years in particle physics, considered 
as a standard tool of event selection and reconstruction

> But also often considered as too complicated and not really necessary
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Example 1

> Decay of a particle a

 

to 3

 

particles a  1+2+3

> Energy of the primary particle is precisely known and equal to Ea = 30 GeV

> Energies of the secondary particles are equal to                
E1

 

= 5 GeV, E2

 

= 10 GeV

 

and E3

 

= 15 GeV

 
and measured with errors distributed by Gaussian with sigmas

 
σ1

 

= 1 GeV, σ2

 

= 1 GeV

 

and σ3

 

= 1 GeV

> Minimization of least-squares functional

> under condition

> If measurement errors are the same the result is trivial:
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Results of example 1

> Chi square distributed as chi square for one 
degree of freedom

> Probability distribution

> A measure of the probability that a chi square 
from the theoretical distribution is greater than 
chi square obtained from the fit

> Improvement of accuracies of energy 
measurements by factor of √(2/3)
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Background process

> Decay of a particle a

 

to 4

 

particles a  1+2+3+4

> Energy of the primary particle is precisely known 
and equal to Ea

 

=30 GeV

> Energies of the secondary particles are equal to                
E1

 

= 3 GeV, E2

 

= 8 GeV

 

and E3

 

= 13 GeV

 
and measured with errors distributed by Gaussian 
with sigma                                                      
σ1

 

= 1 GeV, σ2

 

= 1 GeV

 

and σ3

 

= 1 GeV

> Particles 4

 

with energy of 6 GeV

 

is unmeasured 
(missed particle)

> Fitting assuming a  1+2+3

 

hypothesis
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Missing energy method vs kinematic fitting

> Process of interest: missing energy is peaked near zero, chi square is 
distributed as chi square for 1 degree of freedom

> Background process: missing energy peak is shifted, chi square distribution is 
completely different
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Missing energy method vs kinematic fitting

> Apply a cut on the missing energy or to chi-square or probability distribution to 
select the process of interest and reject the background
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Kinematic fitting technique

> Minimization of least squares functional

under constraints

… … …

yi

 

–

 

measured kinematic parameters,

 

ηi

 

–

 

fit parameters,                      
σi

 

–

 

measurement errors, n –

 

number of kinematic parameters,           
m

 

–

 

number of constraints

> In case of correlations between kinematic parameters, covariance

 matrix Gy

 

should be used
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Minimization of least-squares functions with constraints

> Method of elements


 

Using q

 

equations of constraints eliminate q

 

of the n kinematic parameters 
as functions of n-q

 

parameters



 

Not always possible, procedure is not automatic

> Method of Lagrange multiplies


 

Automatic procedure, widely used



 

Exact solution if constraints depend linearly on parameters



 

Simple iterative procedure if constraints are non-linear

> Method of orthogonal transformation


 

Mentioned in one textbook, not widely used

> Method of penalty functions


 

Automatic procedure



 

Can be effectively used with constraints of inequality type
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Method of Lagrange multipliers

> Measurements give instead of true 
quantities ηi

 

values yi

> Measurement errors are normally 
distributed about zero with standard 
deviations σi

> m

 

equations of constraints

> If equations are linear write in the 
matrix form

> Define

> Minimization of Lagrange function

> Total derivative should vanish
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Method of Lagrange multipliers

> Solve system of linear equations

> Obtain

> Can be easily solved

> Estimators of the measurement 
errors

> Estimators for fit parameters

> Using abbreviation

> Obtain by applying error propagation 
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Solution of example 1

> In the example 1

> Vector

> Estimation of fit parameters

> Estimation of error matrix of fit parameters
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Example 2

> Decay of a particle a

 

to 3

 

particles a  1+2+3

> Energy of the primary particle is precisely known 
and equal to Ea = 30 GeV

> Energies of the secondary particles are equal to                
E1

 

= 5 GeV, E2

 

= 10 GeV

 

and E3

 

= 15 GeV

 
and measured with errors distributed by 
Gaussian with sigma                                             
σ1

 

= 1 GeV, σ2

 

= 1 GeV

 

and σ3

 

= 5 GeV
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Results of example 2

> Pull distributions defined as

> Should be normally distributed around zero 
with standard deviation equal to unity

> Help to understand if measurement errors are 
known correctly

> Check for possible systematic effects
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Example 3

> Decay of a particle 3

 

particles a  1+2+3

> Energy of the primary particle is precisely known 
and equal to Ea

 

=30 GeV

> Energies of the secondary particles are equal to                
E1

 

= 5 GeV, E2

 

= 10 GeV

 

and E3

 

= 15 GeV

 
and measured with errors distributed by 
Gaussian with sigma                                             
σ1

 

= 1 GeV, σ2

 

= 1 GeV

 

and σ3

 

= 5 GeV

> Measurement of error of E3

 

is not known and 
assumed to be 2 GeV
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Results of example 3

> Pull distributions are wider, indication that something is wrong

 

with the 
knowledge of measurement errors
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Example 4

> Decay of a particle 3

 

particles a  1+2+3

> Energy of the primary particle is precisely known 
and equal to Ea

 

=30 GeV

> Energies of the secondary particles are equal to                
E1

 

= 5 GeV, E2

 

= 10 GeV

 

and E3

 

= 15 GeV

 
and measured with errors distributed by 
Gaussian with sigma                                             
σ1

 

= 1 GeV, σ2

 

= 1 GeV

 

and σ3

 

= 5 GeV

> Bias in the measurement of E3

 

: 17 GeV

 

instead 
of 15 GeV
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Results of example 4

> Pull distributions are shifted
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Applications of kinematic fitting

> Event selection

> Background rejection

> Improvement of resolution

> Better understanding of measurement errors, search for possible sources of 
systematic uncertainties



 

Analysis of chi square (probability) and pull distributions

> Detector calibration



 

If number of constraints is enough, some measurements can be considered as 
unknown parameters, reconstructed by kinematic fitting and then used for calibration
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Possible problems

> Measurement errors are not known precisely

> Systematic uncertainties

> Measurement errors are not Gaussian

> If different particles are measured in different coordinate systems –

 misalignment between these systems

> Multiple scattering and radiative

 

effects usually lead to tails in chi-

 square and pull distributions
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Deeply virtual Compton scattering (DVCS) at HERMES

p p’
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,t)ξGPDs(x,
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p p’

e e’
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γ

p p’

e e’

*γ

γ

> DVCS and Bethe-Heitler: the same initial and final state

> Bethe-Heitler

 

dominates at HERMES kinematics

> Generalized Parton Distributions (GPDs) accessible through cross section 
differences  and azimuthal

 

asymmetries via interference term

Bethe-HeitlerDVCS
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The HERMES experiment
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Gas targets:                              
• Longitudinally polarized H, D
• Unpolarized

 

H, D, 4He, N, Ne, Kr, Xe
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Beam:
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with both helicities
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DVCS/BH measurement with the Recoil Detector

> Pre-Recoil data


 

Scattered lepton and photon were detected in the 
forward spectrometer



 

Recoil proton was not detected



 

Exclusivity achieved via missing mass technique



 

Associated processes (epe∆γ) were not resolved 
(12%

 

contribution in the signal)

> Recoil data



 

Detection of recoil proton



 

Suppression of the 
background to <1%

 

level
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Elastic DVCS/BH and associated background

> Elastic DVCS/BH: ep

 

 epγ



 

Beam 3-momentum is known precisely (in comparison with 3-momenta of 
secondary particles)



 

Target proton is at rest



 

For e, p,

 

and γ,

 

3-momenta are measured with certain precision

> Background from associated process epe∆+γ

 

with ∆+pπ0

> Not possible to separate by missing mass only

> Low efficiency of selection if one-dimensional cuts (coplanarity, 
momentum-momentum correlations) are applied
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Selection of elastic DVCS/BH using simple cuts

> One-dimensional cuts



 

Momentum-momentum 
correlations



 

Coplanarity

 

condition

> Efficiency of 70%

 

at background 
contamination of 5%

> background contamination of 2%

 can be achieved but efficiency 
drops below 50%

> No improvement of resolutions
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Kinematic fitting for elastic DVCS/BH

> Nine

 

kinematic parameters: 
Scattered electron                   Photon                     Proton           

> Four

 

equations of constraints
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Constraints as functions of parameters

> Constraints are non-linear

> Derivatives of constraints can be calculated analytically or numerically
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Fitting procedure

> Minimization of chi square with constraints using penalty term

> If T is large enough constraints are satisfied automatically during the 
fitting procedure

> In order to equalize penalty contributions from different constraints 
errors of constraints are formally calculated using error propagation

> Non-linear constraints of inequality type can be included
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Results for elastic DVCS/BH and associated background

> For elastic DVCS/BH (Monte Carlo)

> For associated background
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Efficiency of elastic event selection
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> Efficiency of event selection of elastic DVCS/BH events is high at a 
reasonable cut on chi-square

> Contamination of associated process is well below 1%

> In addition, improvement of resolutions
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Improvement of kinematic parameter reconstruction
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t resolution

> Mandelstam t=(p-p´)2

 

, important

 
physical

 

observable

> Blue squares
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Pull distributions
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Mean      0.007389± -0.009738 
Sigma     0.006± 1.007 
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Sigma     0.006± 1.001 
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Sigma     0.006± 1.009 
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Selection of elastic DVCS/BH events (HERMES data)

> Kinematic fitting is developed and tested on Monte-Carlo



 

3 particles detected  4 constraints from energy-momentum conservation



 

Allows to suppress the associated processes and semi-inclusive background to 
negligible level

> Applied for data for physics analysis



 

Systematic studies in progress



 

First physics results expected soon

> Missing mass distribution


 

No requirement for Recoil



 

Positively charged Recoil track



 

Kinematic fit probability > 1%



 

Kinematic fit probability < 1%
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Summary

> Kinematic fitting is a powerful tool of event selection and reconstruction

> Many applications



 

Improvement of resolution



 

Better understanding of measurement errors, search for possible sources of 
systematic uncertainties



 

Detector calibration

> Kinematic fitting technique is well developed and described in literature

> Different problems could appear in different experiments, solutions are 
not always straightforward
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