Kinematic fitting

A powerful tool of event selection and reconstruction

Sergey Yaschenko, DESY Zeuthen

University of Glasgow, 12.01.2011

ﬁ HELMHOLTZ

| ASSOCIATION




> Introduction

> Techniques

> Applications

> Results of use at HERMES
> Summary

> Literature

Sergey Yaschenko | Kinematic fitting | 12.10.2011 | Page 2



Introduction: kinematic fitting as a part of data processing

> Raw data processing
= Detector calibrations
> Track search and reconstruction
> Momentum reconstruction
> Event selection and reconstruction
= At this stage 3-momenta of all found tracks are reconstructed

= Combine individual tracks to events

= Apply certain requirements (cuts) on track correlations to select events of
interest and reject the background

= Alternatively use kinematic fitting

> Physics analysis

Sergey Yaschenko | Kinematic fitting | 12.10.2011 | Page 3



Introduction: kinematic fitting as a tool of event selection

> Kinematic fitting — adjustment of measured kinematic parameters
under certain assumptions (conditions, constraints)

> Aims
= Test if assumptions are true
= |Improve accuracy of measurements
= Check if the knowledge of measurement uncertainties is correct

= Check for possible systematic uncertainties

> Has been used for more than 50 years in particle physics, considered
as a standard tool of event selection and reconstruction

> But also often considered as too complicated and not really necessary
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Example 1

> Decay of a particle a to 3 particles a > 1+2+3
= Energy of the primary particle is precisely known and equal to £, = 30 GeV

> Energies of the secondary particles are equal to
E,=5GeV, E,=10GeV and E; =15 GeV
and measured with errors distributed by Gaussian with sigmas
o,=1GeV,0,=1GeVando,;=1GeV

= Minimization of least-squares functional
3
2 fit\2 2
X :Z(Ei_Ei ) 1o
i=1

_ | ;
> under condition E"+E+E)"-E, =0

a

> |f measurement errors are the same the result is trivial:
Eiflt _ Ei _c
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Results of example 1

> Chi square distributed as chi square for one 1
degree of freedom . 1 E‘a
~ Probability distribution j f(z;n)dz
i —.
Zz oL RH”"‘“—
e
> A measure of the probability that a chi square 10f k) g
from the theoretical distribution is greater than S S S S R )

chi square obtained from the fit

> Improvement of accuracies of energy L N S R A M A
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Background process

= Decay of a particle a to 4 particles a > 1+2+3+4 [ T

> Energy of the primary particle is precisely known

and equal to E£_=30 GeV

> Energies of the secondary particles are equal to
E,=3GeV,E,=8GeV and E; =13 GeV
and measured with errors distributed by Gaussian

with sigma

0,=1GeV,0,=1GeVando,;=1GeV

> Particles 4 with energy of 6 GeV is unmeasured

(missed particle)

= Fitting assuming a = 1+2+3 hypothesis
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Missing energy method vs kinematic fitting

> Process of interest: missing energy is peaked near zero, chi square is
distributed as chi square for 1 degree of freedom

4 <
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Yo a5 10 0 5 10 15 20 S T S T
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> Background process: missing energy peak is shifted, chi square distribution is
completely different
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Missing energy method vs kinematic fitting

= Apply a cut on the missing energy or to chi-square or probability distribution to
select the process of interest and reject the background
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Kinematic fitting technique

= Minimization of least squares functional

2= Z(yi _77i)2/0i2
i1

under constraints
(7 11p0001,) =0
f, (7, 1750001,) =0

NG/ R

y;— measured kinematic parameters, n; — fit parameters,
0; — measurement errors, n — number of kinematic parameters,
m — number of constraints

> |In case of correlations between kinematic parameters, covariance
matrix G, should be used

2= (=G, 1 (Y — 1)
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Minimization of least-squares functions with constraints

> Method of elements

= Using g equations of constraints eliminate g of the n kinematic parameters
as functions of n-q parameters

= Not always possible, procedure is not automatic
> Method of Lagrange multiplies

= Automatic procedure, widely used
= Exact solution if constraints depend linearly on parameters

= Simple iterative procedure if constraints are non-linear
> Method of orthogonal transformation

= Mentioned in one textbook, not widely used
> Method of penalty functions

= Automatic procedure
= Can be effectively used with constraints of inequality type
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Method of Lagrange multipliers

= Measurements give instead of true _
o ° Yi =1 T &
quantities ), values y;
> Measurement errors are normally E(gi) =0,
distributed about zero with standard , ,
deviations o, E(s) =0
> m equations of constraints f (77)=0k=12,..m

|

= If equations are linear write in the B7+b,=0
matrix form
> Define C=By+ 40
> Minimization of Lagrange function L = §TGy§ +247 (C—Bg)

~ Total derivative should vanish dL = 2§TGyd§ —21'Bdg =0

Sergey Yaschenko | Kinematic fitting | 12.10.2011 | Page 12



Method of Lagrange multipliers

=T TR _
> Solve system of linear equations & Gy -4 B=0
C—-Be=0
> Obtain C— BG;lBT}: =0
~ o\
> Can be easily solved A= (BGleT) C
~ Estimators of the measurement :g': —G B’ (BG‘lBT )_16
errors J J
> Estimators for fit parameters ﬁ - y —c
> Using abbreviation G, = (BG;lBT )_1
. . . 1~ 1pT 1
> Obtain by applying error propagation - =G, -G, B G;BG,
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Solution of example 1

> Inthe example 1 B=(1 1 1)

El
> Vector ¢=01 1 1)E,|-E,=E,+E,+E,—E,
E3
) -1
o 0 O .
G,=|(1 110 o 0]1 =3
0 0 o

> Estimation of fit parameters
ﬁi =E _%(El"' E,+E;—E,)

= Estimation of error matrix of fit parameters

2 -1 -1)

-1 2 -1
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Example 2

> Decay of a particle a to 3 particles a > 1+2+3 ol -

> Energy of the primary particle is precisely known ILH“‘
and equal to £, = 30 GeV : -

> Energies of the secondary particles are equal to ol: "~ -
E,=5GeV, E,=10 GeV and E; = 15 GeV ol e ]
and measured with errors distributed by T T e
Gaussian with sigma X
o,=1GeV,0,=1GeVand o;=5 GeV
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Results of example 2

= Pull distributions defined as
Yi — 1

pull, = d

> Help to understand if measurement errors are

known correctly

> Check for possible systematic effects

oi(5)  Joi(y)—o*(m)

= Should be normally distributed around zero
with standard deviation equal to unity
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Example 3

> Decay of a particle 3 particles a > 1+2+3

> Energy of the primary particle is precisely known
and equal to £,=30 GeV

> Energies of the secondary particles are equal to
E,=5GeV, E,=10GeV and E; =15 GeV
and measured with errors distributed by
Gaussian with sigma
o,=1GeV,0,=1GeVand o;=5 GeV

= Measurement of error of £, is not known and
assumed to be 2 GeV
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Results of example 3

= Pull distributions are wider, indication that something is wrong with the
knowledge of measurement errors

x2 1 ndf 181.6/166 221 ndf 181.6/ 166
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Example 4

Decay of a particle 3 particles a > 1+2+3

I

10°E
Energy of the primary particle is precisely known 1&
and equal to £,=30 GeV 10 -

Energies of the secondary particles are equal to ek T
E,=5GeV, E,=10GeV and E; = 15 GeV F
and measured with errors distributed by
Gaussian with sigma 2
o,=1GeV,0,=1GeVand o;=5 GeV
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Results of example 4

= Pull distributions are shifted

FrrT LI LI LI L T XZ/ndf 75.65/81 FrTT T T T T T LI LI lendf 75.65/81
4000E Constant 3981+ 155 4000E Constant 3981+ 15.5
= f\ Mean 0.3808 + 0.0032 g jf\ Mean 0.3808 + 0.0032
3500F / Sigma 1.001+ 0.002 3500F l \ Sigma 1.001+ 0.002
3000F ’[ \\ i 3000F [ i
2500§ ’ \ i 2500; ’ \ ;
2000F [\ . 2000F [ :
1500F / : 1500F /
1000F / : 1000F /
500; / - 5001 / -
E LA m o A 3
g.I.O -8 -6 4 -2 0 2 4 6 8 10 E:'10 -8 6 -4 -2 0 2 4 6 8 10
Pull 1 Pull 2
T T T T T T XZ / ndf 80.15 / 78
F A Constant 4134+ 16.1
4000 f Mean 0.3668 + 0.0031
3500k J \ Sigma_ 0.9643 + 0.0022
500F :
- -/ \_ :

%% "8 6 4 =2 0 2 4% 3
Pull 3

Sergey Yaschenko | Kinematic fitting | 12.10.2011 | Page 20



Applications of kinematic fitting

> Event selection

= Background rejection

= Improvement of resolution

> Better understanding of measurement errors, search for possible sources of
systematic uncertainties

= Analysis of chi square (probability) and pull distributions

> Detector calibration

= If number of constraints is enough, some measurements can be considered as
unknown parameters, reconstructed by kinematic fitting and then used for calibration
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Possible problems

> Measurement errors are not known precisely
= Systematic uncertainties
> Measurement errors are not Gaussian

> If different particles are measured in different coordinate systems —
misalignment between these systems

> Multiple scattering and radiative effects usually lead to tails in chi-
square and pull distributions
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Deeply virtual Compton scattering (DVCS) at HERMES

Bethe-Heitler

> DVCS and Bethe-Heitler: the same initial and final state
> Bethe-Heitler dominates at HERMES kinematics

> Generalized Parton Distributions (GPDs) accessible through cross section
differences and azimuthal asymmetries via interference term
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The HERMES experiment
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DVCS/BH measurement with the Recoil Detector

> Pre-Recoil data

= Scattered lepton and photon were detected in the
forward spectrometer

el o = Recoil proton was not detected
Z%’ 0.3 ¢ e'data = Exclusivity achieved via missing mass technique
< o € data
§ — MC sum = Associated processes (ep—>eAy) were not resolved
S L elastic BH (12% contribution in the signal)

mm associated BH
--------- semi-inclusive

o
[N

0.1
1 Tesla superconducting solenoid

Photon Detector (PD)

> Recoil data

Scintillating Fiber Tracker

= Detection of recoil proton

Lepton beam

= Suppression of the
background to <1% level

Silicon Strip Detector

Target cell of unpolarized target
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Elastic DVCS/BH and associated background

> Elastic DVCS/BH: ep = epy

= Beam 3-momentum is known precisely (in comparison with 3-momenta of
secondary particles)

= Target proton is at rest

= For e, p, and y, 3-momenta are measured with certain precision

> Background from associated process ep 2eA*y with A* 2prmr?

= Not possible to separate by missing mass only

> Low efficiency of selection if one-dimensional cuts (coplanarity,
momentum-momentum correlations) are applied

Sergey Yaschenko | Kinematic fitting | 12.10.2011 | Page 27



Selection of elastic DVCS/BH using simple cuts

> One-dimensional cuts

= Momentum-momentum
correlations

= Coplanarity condition

= Efficiency of 70% at background
contamination of 5%

> background contamination of 2%
can be achieved but efficiency
drops below 50%

> No improvement of resolutions

1500
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turned around
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Kinematic fitting for elastic DVCS/BH

= Nine kinematic parameters:

Scattered electron Photon Proton

y, =tan(p,,/ p,1) Y, =tan(p,,/ p,,) Y1 = ¢

y, =tan(p,,/ p,) ys = tan( py2/ P.2) Ys = s

y; =1/p Ys =€, Yo =1/ p3Sin93)

> Four equations of constraints
1:1: px1+ px2+ px3 :0
f, =P+ P+ Py =0
f3 = Put+ Pt Pz = Poeam = 0

f4:e1+e2+e3—ebeam—mp:0
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Constraints as functions of parameters

> Constraints are non-linear

f= Yol Vo L4 Y2+ Y2 4y, - Y 1+ Y2+ y2 +cos(y,) /] ¥,

£ = Yo ! Yo 31+ Y2 + Y2+ Ys- Yo /[ 1+ Y2+ Y2 +5sin(y;)/ v

f =10y /314 y2 + y2 + Yo 1+ Y2+ Y2 +1/(y tan(Ve)) — Poean
fy =L/ Y3 +ME + yg +1/(y2 -Sin?(Ye)) + M, — €y =M,

= Derivatives of constraints can be calculated analytically or numerically
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Fitting procedure

= Minimization of chi square with constraints using penalty term

7= -m)Gy (v, — 1) 4T Zf /o2

=1 j=1

= |f T is large enough constraints are satisfied automatically during the
fitting procedure

> In order to equalize penalty contributions from different constraints
errors of constraints are formally calculated using error propagation

> Non-linear constraints of inequality type can be included
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Results for elastic DVCS/BH and associated background

> For elastic DVCS/BH (Monte Carlo)
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Efficiency of elastic event selection

> T LI T C 7\ 1T L \7
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= X r
0 an g -
2 & 0.001F i
0'1; b E ]
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x? cut x? cut

= Efficiency of event selection of elastic DVCS/BH events is high at a
reasonable cut on chi-square

= Contamination of associated process is well below 1%

> In addition, improvement of resolutions
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Improvement of kinematic parameter reconstruction

Momentum of electron
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t resolution

> Mandelstam t=(p-p”)?, important
physical observable

> Blue squares — reconstruction using 016
measured kinematiC parameters Of ('\'; . EI T 1T T 1T T T T T [ L T 1T T 1T I T T T L I+I T I:
electron and photon 8 014__ .......... ............... ............... ............... .............. i .............. .............. S —

= - » ! .

z 0_12:_ ,,,,,,,, - .............. ............. - ............. ............... ............... l .......... ]

PSR U U WD WO WU WS WO SO
> Magenta triangles - reconstruction 0.08F

using measured kinematic parameters | ]
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0.04F ............. ............. v ............. ............. ............. S .
002 A ______________ ST R T —
. . _ . r A....é IIIIIIII L 5””:””5””:””
> nght blue tnangleg recc_)nstructlon Y B B L LR R R B T T ey o
using measured kinematic parameters t[GeVY]
of electron and photon (excluding
photon energy) assuming proton mass

> Red squares — reconstruction using
kinematic fitting
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Pull distributions

Electron Photon Proton
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Selection of elastic DVCS/BH events (HERMES data)

> Kinematic fitting is developed and tested on Monte-Carlo

= 3 particles detected = 4 constraints from energy-momentum conservation

= Allows to suppress the associated processes and semi-inclusive background to
negligible level

> Applied for data for physics analysis

= Systematic studies in progress

= First physics results expected soon a0l T
2500E- Data
> Missing mass distribution ——— 72000

1000

= No requirement for Recoil =999

= Positively charged Recoil track TOOO} j
= Kinematic fit probability > 1% 500"
= Kinematic fit probability < 1% Ot i e L b

M [GeVZ/c*]
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> Kinematic fitting is a powerful tool of event selection and reconstruction

= Many applications
= Improvement of resolution

= Better understanding of measurement errors, search for possible sources of
systematic uncertainties

= Detector calibration

> Kinematic fitting technique is well developed and described in literature

= Different problems could appear in different experiments, solutions are
not always straightforward
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