Search for 'exotic' baryons at HERMES

Wouter Deconinck for the HERMES Collaboration

Quarks and Nuclear Physics 2006 June 5, 2006

Overview

Motivation

- → Θ(1540) at HERMES
- Photo-production of $\Lambda(1520)$ and $\Theta(1540)$
- Hadron photo-production
- The HERMES Spectrometer
- Event selection and reconstruction
- A(1520) spectra and cross section
- Conclusions

Motivation Exotics at HERMES

- ► Θ(1540) observed (59 ± 16 events) M = 1528 ± 2.6(stat) ± 2.1(syst) MeV
- $\overline{\Theta}(1540)$ not observed (3 ± 6 events)

Motivation

Photo-production of $\Lambda(1520)$ and $\Theta(1540)$

- In some models: production mechanism similar
- Assumption: anti-particle/particle ratio similar
- Determine cross section ratios $\bar{\Lambda}/\Lambda$, Θ/Λ , $\bar{\Theta}/\bar{\Lambda}$

Motivation

Hadron production

BaBar: search for Θ^+ and Ξ^{--}

Mesons and baryons

- ▶ BaBar: $ee
 ightarrow (q\bar{q})^n
 ightarrow X$
- Different slope for mesons and baryons!

Exotics at HERMES

- HERMES: photo-production
- Do exotics have a different slope?
- Where is our σ_Θ?

The HERMES Spectrometer

- ▶ 27.6 GeV e^{\pm} HERA beam on \overrightarrow{H} , \overrightarrow{He} , \overrightarrow{D} or H₂, D₂, He,...
- Resolution: $\frac{\Delta p}{p} = 1.4 2.5\%$, $\Delta \vartheta \lesssim 0.6$ mrad
- TRD, Calorimeter and Preshower: hadron/lepton separation
- **RICH**: hadron identification (p, π, K)

The HERMES Spectrometer

Hadron/lepton separation: combination of

- TRD
- Calorimeter
- Preshower
- RICH

Hadron identification: dual radiator RICH

- ▶ aerogel: n = 1.03
- ▶ C₄F₁₀ gas: *n* = 1.0014

The HERMES Spectrometer

Hadron/lepton separation: combination of

- TRD
- Calorimeter
- Preshower
- RICH

Hadron identification: dual radiator RICH

- ▶ aerogel: n = 1.03
- ▶ C₄F₁₀ gas: *n* = 1.0014

Event selection and reconstruction

 $209.2 \, \text{pb}^{-1}$ of deuterium data

- $e^+D \rightarrow \Lambda(1520)X \rightarrow pK^-X$
- $e^+D \rightarrow \overline{\Lambda}(1520)X \rightarrow \overline{\rho}K^+X$

Event topology (checked in Monte Carlo)

- p and K tracks closer than 0.6 cm
- A(1520) decayed inside target
 - ▶ *R* < 0.4 cm
 - ▶ |z| < 18 cm
- ► Λ(1520) decay length < 5 cm (motivated by resolution)</p>

Invariant mass spectra

Acceptance correction (MC)

- ► Acceptance varies in Λ(1520) mass region
- Shape of peak changes to skewed Breit-Wigner
- \blacktriangleright Mass from simple Breit-Wigner 1.5 \pm 0.5 MeV too high

Unbinned maximum likelihood fi t

- Breit-Wigner resonance shape
- Convolved with Gaussian detector resolution (4 MeV)
- Polynomial background (third order)
- Procedure:
 - Determine the *M* and Γ from $\Lambda(1520) \rightarrow pK^{-}$ spectrum
 - Fix *M* and Γ for $\overline{\Lambda}(1520) \rightarrow \overline{\rho}K^+$ spectrum

W. Deconinck

Invariant mass spectra

 $\Lambda(1520) \rightarrow pK^{-}$

 $\bar{\Lambda}(1520) \rightarrow \bar{p}K^+$

M = 1521.3±0.8(stat)±0.5(syst) MeV
 Γ = 16.7 ± 3.4 MeV
 W. Deconinck

• $M_{PDG} = 1519.5 \pm 1.0 \text{ MeV}$ • $\Gamma_{PDG} = 15.6 \pm 1.0 \text{ MeV}$ (QNP'06 11/16

(1)

Partial cross sections and ratio Method of calculation (total cross section)

$$\sigma_{\gamma^* D \to \Lambda(1520) X} = \frac{N_{observed}^{eD \to \Lambda(1520) X}}{\Phi \cdot Br \cdot \mathcal{L} \cdot \epsilon}$$

- photon flux $\Phi = 0.02 \, \text{GeV}^{-3}$
- branching ratio Br = 22.5%
- integrated luminosity $\mathcal{L} = 209.2 \, \text{pb}^{-1}$
- efficiency and acceptance
 equal (full momentum range)

Effi ciency and acceptance ϵ

W Deconinck

- Determine ϵ using Monte Carlo simulation
- ΡΥΤΗΙΑ Monte Carlo: no Λ(1520) state available...
- Model for decay momentum distribution of Λ(1520) necessary

Partial cross sections and ratio

Effi ciency and acceptance ϵ

- ▶ Previous results (Θ , Ξ^{--}): assumed Ξ^{0*} momenta
- Now: looked at several hyperons (Λ , Σ , Ξ , Σ^* , Ξ^*)
- ϵ depends strongly on decay momentum distribution
 - 0.03 3% for full momentum range, depending on model
- ▶ In HERMES acceptance ($P_z > 6 \text{ GeV}$): momenta very similar
 - 3 4% inside acceptance
- Differences from behavior outside HERMES acceptance

Polarization $\Lambda(1520)$

W Deconinck

- ► $\Lambda(1520)$ has spin $J = \frac{3}{2} \rightarrow$ momentum distributions change
- Presented results assume isotropic decay (J = 0)
- Effect of $J \neq 0$ not in systematic uncertainty

Partial cross sections and ratio

 $P_z > 6 \, {
m GeV}$

Motivated by HERMES acceptance for Λ(1520)

Photo-production cross sections

•
$$\sigma_{\gamma^* D \to \Lambda(1520) X} = 65.3 \pm 8.8 (\text{stat}) \pm 6.9 (\text{syst}) \, \text{nb}$$

►
$$\sigma_{\gamma^* D \rightarrow \bar{\Lambda}(1520)X} = 9.8 \pm 2.6 \text{(stat)} \pm 0.9 \text{(syst)} \text{ nb}$$

Cross section ratio $\overline{\Lambda}(1520)$ over $\Lambda(1520)$

•
$$R_{\bar{\Lambda}/\Lambda} = 0.15 \pm 0.05 (\text{stat}) \pm 0.02 (\text{syst})$$

Extrapolation to $\overline{\Theta}(1540)$

Assumptions

- ▶ Production mechanism ∧(1520) and ⊖(1540) similar
- ► Cross section ratio Λ(1520) and Θ(1540) equal

Expected number of $\overline{\Theta}(1540)$

- ▶ $59 \pm 16 \Theta(1540)$ observed
- ► 10 ± 4 $\overline{\Theta}$ (1540) are expected when $R_{\overline{\Theta}/\Theta} = R_{\overline{\Lambda}/\Lambda}$
- $3 \pm 6 \ \bar{\Theta}(1540)$ were observed

Conclusions

Summary

Partial cross sections of the Λ(1520) (P_z > 6 GeV) presented:

- $\sigma_{\gamma^* D \to \Lambda(1520)X} = 65.3 \pm 8.8 (\text{stat}) \pm 6.9 (\text{syst}) \,\text{nb}$
- $\sigma_{\gamma^* D \to \bar{\Lambda}(1520)X} = 9.8 \pm 2.6 \text{(stat)} \pm 0.9 \text{(syst)} \text{ nb}$
- ► Ratio of $\overline{\Lambda}(1520)$ over $\Lambda(1520)$ production
 - $R_{\bar{\Lambda}/\Lambda} = 0.15 \pm 0.05 (\text{stat}) \pm 0.02 (\text{syst})$
- Assuming similar ⊖(1540) and ∧(1520) production mechanisms, the expected number ⊖(1540) is 10 ± 4, and 3 ± 6 were observed.

Plans

- Data taking on hydrogen and deuterium is continuing
- Analysis of hydrogen data ongoing