Hybrid Electron Compton Polarimeter with online self-calibration

August 24, 2007

W. Deconinck, A. Airapetian, W. Lorenzon

Outline

- · Physics behind Compton polarization measurements
 - single photon mode (differential asymmetry)
 - multi photon mode (energy weighted asymmetry)
- Hybrid design using:
 - chicane
 - scattered electron
 - pair spectrometer
 - sampling calorimeter
- Advantages multiple detection scheme
- First Monte Carlo studies
- Conclusions

Compton scattering:

$$e(E) + \lambda(k) \rightarrow e'(E') + \gamma(k')$$
 (~ zero crossing angle)

Cross section:

- Transverse polarization → position asymmetry (HERA TPOL)
- Longitudinal polarization → energy asymmetry (HERA LPOL)
 Due to experience: LPOL-like polarimeter described here

$$d\sigma/dk' = d\sigma_0/dk' [1 + P_e P_{\lambda} A_z(k')]$$
 $d\sigma_0, A_z$: known (QED)

 P_{λ} : circular polarization (±1) of laser beam (measured after IP)

P_e: longitudinal polarization of electron beam

Different cross section for positive and negative photon helicity S_3 .

Difference largest at higher electron beam energy. (HERA = 27.5 GeV)

Laser energy:

• 1064 nm (1.17 eV)

Different cross section for positive and negative photon helicity S_3 .

Difference largest at higher electron beam energy. (HERA = 27.5 GeV)

Laser energy:

- 1064 nm (1.17 eV)
- 532 nm (2.33 eV)

Different cross section for positive and negative photon helicity S_3 .

Difference largest at higher electron beam energy. (HERA = 27.5 GeV)

Laser energy:

- 1064 nm (1.17 eV)
- 532 nm (2.33 eV)
- 20 · 248 nm (5.0 eV)

(GeV)

Compton Edge k' _{max}

Single photon mode: measure energy of every Compton photon.

• Highest photon energy: Compton edge k'_{max}~k·E²

Single photon mode: measure energy of every Compton photon.

- Highest photon energy: Compton edge k'_{max}~k·E²
- Highest asymmetry at Compton edge:
 A(k'____)~k·E

Single photon mode: measure energy of every Compton photon.

- Highest photon energy: Compton edge k'_{max}~k·E²
- Highest asymmetry at Compton edge:
 A(k'_max)~k·E
- Cross check at zero asymmetry crossing
- Calibration at sharp
 Compton edge

Two points with known energy (QED)

section do/dk' (mb

Sompton

Single photon mode: measure energy of every Compton photon.

- → Higher laser energy has some advantages (higher asymmetry)
- → Variable laser energy: move zero-crossing and Compton edge around

But...

Everything has its price: differential cross section smaller!

Advantages:

- Uses all information in photons
- Calibration using
 Compton edge

Disadvantages:

- Sensitive to absolute calorimeter calibration
- Background from Bremsstrahlung

Physics behind multi photon mode

Analyzing Power

Energy weighted asymmetry:

$$A_{m} = (I_{3/2} - I_{1/2}) / (I_{3/2} + I_{1/2}) = P_{e} P_{\lambda} A_{p}$$

Advantages:

- Effectively independent of bremsstrahlung background
- dP/P = 1%/min now already
- Independent from absolute energy calibration (first order)

Disadvantages:

 No monitoring of calorimeter performance and linearity

Analyzing power

$$A_p = (\Sigma_{3/2} - \Sigma_{1/2}) / (\Sigma_{3/2} + \Sigma_{1/2})$$

Combine both photon methods and measure simultaneously

Advantages of chicane setup

- Moves Compton cone away from electron beam
- Reduces bremsstrahlung background (maybe less at EIC)
- (Possibly) compensation of focusing magnets around experiment IR

Scattered electron

We have not yet put a great deal of thought into this...

Pair spectrometer magnet with e⁺e⁻ pair production

- Convertor material (movable, with variable thickness) produces e⁺e⁻ pairs of fraction of the Compton photons
- Dipole magnet separates electrons and positrons
- Detection in Si, SciFi, scintillator detectors

C -- Adjustable Converter

H1,H2 -- Hodoscopes

Pair spectrometer magnet with e⁺e⁻ pair production

- Convertor material (movable, with variable thickness) produces e⁺e⁻ pairs of fraction of the Compton photons
- Dipole magnet separates electrons and positrons
- Detection in Si, SciFi, scintillator detectors

C -- Adjustable Converter

H1,H2 -- Hodoscopes

Pair spectrometer magnet with e⁺e⁻ pair production

- Convertor material (movable, with variable thickness) produces e⁺e⁻ pairs of fraction of the Compton photons
- Dipole magnet separates electrons and positrons
- Detection in Si, SciFi, scintillator detectors

PSM -- Pair Spectrometer Magnet

C -- Adjustable Converter

Momentum determination → energy k'

H1,H2 -- Hodoscopes

Use experience gained at HERA LPOL: sampling calorimeter with W convertor plates and scintillator

Operated in

- single photon mode at high PMT voltage (lower laser power)
- multi photon mode at lower PMT voltage (higher laser power)

Plastic scintillator plates

Tungsten plates

Good energy resolution and linearity in test beams (DESY and CERN)

Monte Carlo in Geant:

- model detector
- Compton cross section
- shower simulation

Simulated asymmetry agrees with theoretical curve, at $E = 7.5 \, GeV$

Additional energy smearing could complicate things:

No additional smearing

Additional energy smearing could complicate things:

Additional smearing: 5%

Additional energy smearing could complicate things:

Additional smearing: 10%

Additional energy smearing could complicate things:

Additional smearing: 15%

Shower development in calorimeter

• Compton centering important, to avoid losing part of the shower (beam sizes from HERA used in this Monte Carlo simulation)

Shower development in calorimeter \rightarrow add spatial resolution

- Optically separate sides of detector with separate PMTs
- Four PMTs enough to determine position of Compton cone
- Eight PMTs in simulation

Position of Compton photons:

Asymmetry η in PMT signal correlated to position on calorimeter

Comparison Monte Carlo and theory

In single photon mode

Energy weighted asymmetry multi photon mode

Linearity of the calorimeter:

Use Compton edge to calibrate calorimeter

Change beam energy to access different Compton edge values

Advantage of two polarimeters

Systematics:

- simultaneous or interleaved measurements with two devices
- disentangle effects of machine and polarimeter

Efficiency:

 redundancy leads to high efficiency, in cases of failure

Summary

chicane

Dedicated beam component and space for a polarimeter

scattered electron

Scattered electron measurement (with Si,...)

pair spectrometer

Single photon mode by e⁺e⁻ pair production in variable convertor

single/multi photon

Single photon mode:

 calibration at zero-crossing and Compton edge

Multi photon mode

 independent of calorimeter response

Sampling calorimeter with W and plastic scintillator plates