

PRD 91, 057101(2015)

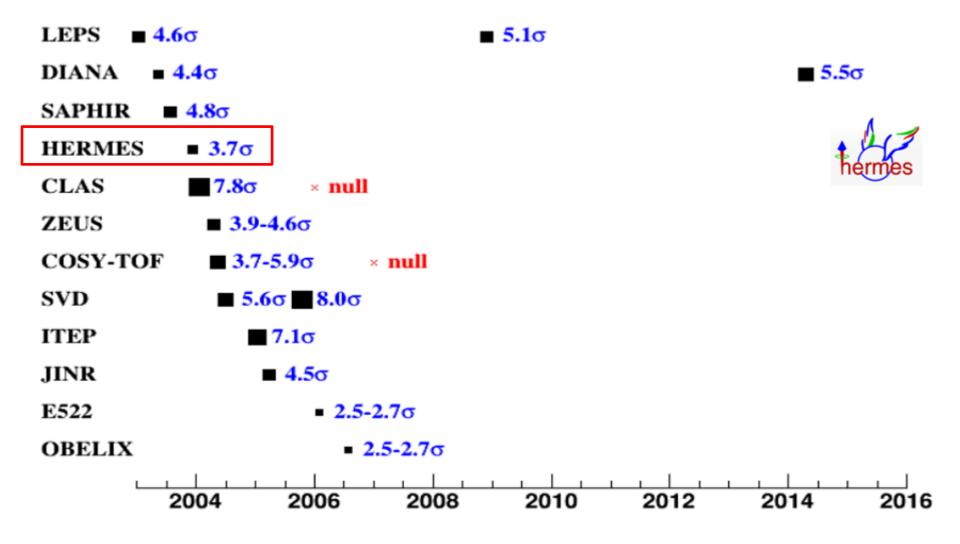
Pentaquark ⊕⁺ search at HERMES

Siguang WANG
School of Physics, Peking University

on behalf of the HERMES Collaboration

NSTAR2015, May 25-28, 2015, Osaka, Japan

Outline

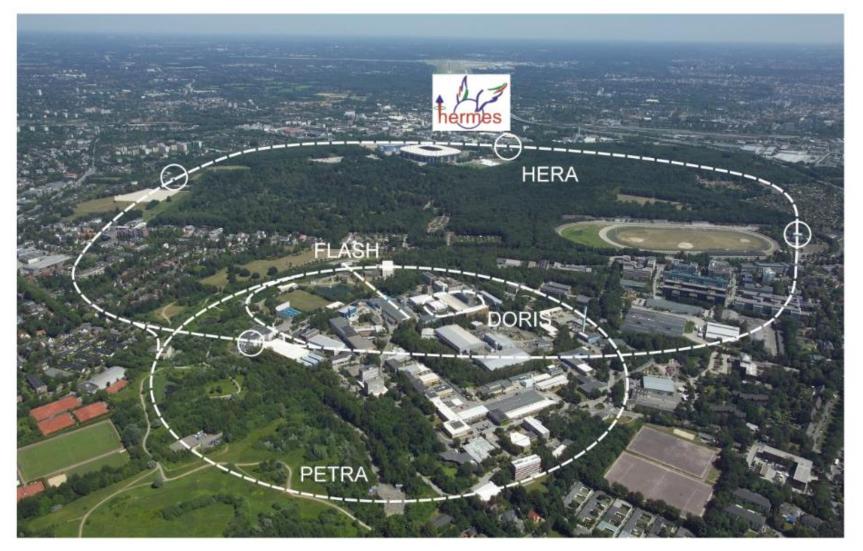


- Significances of Θ^+ (if seen)
- HERMES experiment
- Previous and present results from deuterium target
- Results from hydrogen target
- Summary

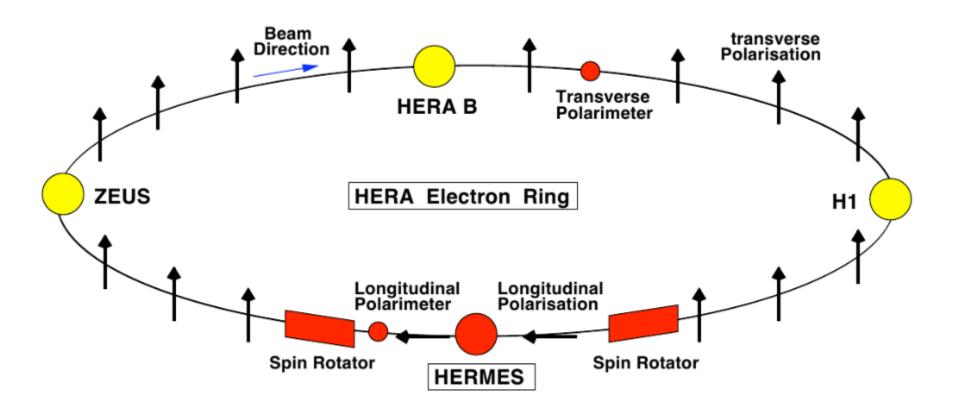
Significances of Θ^+ (Groups ever announced positive results)

Groups with Negative Results (now)

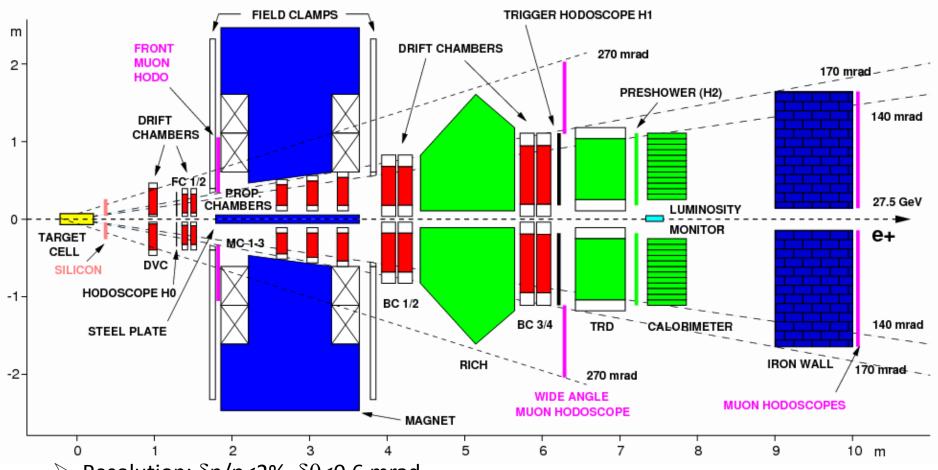
Group	Reaction	Mode	Upper limit	Confidence
CLAS	$\gamma d \rightarrow pK^-K^+n$	$K^+ n$	$\sigma < 0.3 \; \mathrm{nb}$	95%
	$\gamma d \rightarrow \Lambda K^+ n$	$K^+ n$	$\sigma < 5 \; \mathrm{nb}$	95%
	$\gamma p \rightarrow \overline{K}^0 K^+ n$	K^+n	$\sigma < 0.8 \; \mathrm{nb}$	95%
			$N(\Theta^{+})/N(\Lambda(1520)) < 0.22\%$	95%
	$\gamma p \rightarrow \overline{K}^0 K^0 p$	$K_S^0 p$	$\sigma < 1.5 \; \mathrm{nb}$	95%
COSY-TOF	$pp \rightarrow \Sigma^{+}K^{0}p$	$K_S^0 p$	$\sigma < 0.15~\mu\mathrm{b}$	95%
FOCUS	$\gamma \text{BeO} \rightarrow p K_S^0 X$	$K_S^0 p$	$\sigma(\Theta^+)\mathcal{B}(pK_S^0)/\sigma(K(892)^+) < 0.13\%$	95%
			$\sigma(\Theta^{+})B(pK_{S}^{0})/\sigma(\Sigma(1385)^{\pm}) < 2.3\%$	95%
NOMAD	$\nu_{\mu}A \rightarrow K_S^0 p X$	$K_S^0 p$	$N(\Theta^{+})/N_{\rm events} < 2.13 \times 10^{-3}$	90%
BES	$\psi(2S), J/\psi$ decays	K^+n , K_S^0p	see Eq.(2)	90%
BaBar	$e^+e^- \rightarrow \Upsilon(4S) \rightarrow pK_S^0X$	$K_S^0 p$	$N(\Theta^+)/N_{\rm events} < 1.8 \times 10^{-4}$	95%
	$e^+e^- \rightarrow q\bar{q} \rightarrow pK_S^0X$	$K_S^0 p$	$N(\Theta^{+})/N_{\text{events}} < 5.0 \times 10^{-5}$	95%
	$B^0 \rightarrow p\bar{p}K_S^0$	$K_S^0 p$	$B(\Theta^{+}) \cdot B(pK_{S}^{0}) < 0.5 \times 10^{-7}$	95%
Belle	$B^0 \rightarrow p\bar{p}K_S^0$	$K_S^0 p$	$B(\Theta^{+}) \cdot B(pK_{S}^{0}) < 2.3 \times 10^{-7}$	90%
	$KN \rightarrow pK_S^0X$	$K_S^0 p$	$N(\Theta^+)/N(\Lambda(1520)) < 2.5\%$	90%
	$K^+n \rightarrow pK_S^0$	$K_S^0 p$	$\Gamma < 0.64~{ m MeV}$	90%
ALEPH	$Z \rightarrow pK_S^0X$	$K_S^0 p$	$N(\Theta^+)/N_{\rm events} < 2.5 \times 10^{-3}$	95%
DELPHI	$Z \rightarrow p K_S^0 X$	$K_S^0 p$	$N(\Theta^{+})/N_{\rm events} < 2.0 \times 10^{-3}$	95%
L3	$\gamma \gamma \rightarrow p(\bar{p})K_S^0 X$	$K_S^0 p$	$N(\Theta^+)/N_{\rm events} < 4.7 \times 10^{-3}$	95%
H1	$ep \rightarrow ep(\bar{p})K_S^0$	$K_{S}^{0}p$	$\sigma < 120 - 360 \text{ pb}$	95%
COSY-Jülich	$pp \rightarrow pK^0\pi^+\Lambda$	$K^{0}p$	$\sigma < 58 \; \mathrm{nb}$	95%
NA49	$pp \rightarrow pK_S^0X$	$K_S^0 p$	not observed	_
CDF	$p\bar{p} \rightarrow pK_S^0X$	$K_S^0 p$	$N(\Theta^{+}) < 89,76$	90%
HERA-B	$pC \rightarrow pK_S^0X$	$K_{S}^{0}p$	$N(\Theta^{+})/N(\Lambda(1520)) < 2.7\%$	95%
SPHINX	$pN \rightarrow nK^+K_S^0N$	$K^+ n$	$\sigma < 26 \; \mathrm{nb}$	90%
	$pN \rightarrow pK_S^0K_L^0N$	$K_S^0 p$	$\sigma < 42 \; \mathrm{nb}$	90%
	$pN \rightarrow pK_L^0K_S^0N$	$K_L^0 p$	$\sigma < 39 \text{ nb}$	90%
	$pN \rightarrow pK_S^0K_S^0N$	$K_{S}^{0}p$	$\sigma < 52 \text{ nb}$	90%
PHENIX	$dAu \rightarrow K^- \bar{n}X$	$K^-\bar{n}$	not observed	_
HyperCP	$p(\pi^+, K^+)$ Cu $\rightarrow p(\bar{p})K_S^0X$	$K_S^0 p$	$N(\Theta^+)/N_{\rm events} < 0.3\%$	90%
LASS	$K^+p \rightarrow K^+n\pi^+$	$K^+ n$	no narrow resonance	_
WA89	$\Sigma^- C(Cu) \rightarrow pK_S^0$	$K_S^0 p$	$\sigma < 7.2~\mu\mathrm{b}$	99%
E559	$K^+p \to \pi^+X$	_	$d\sigma/d\Omega < 3.5 \ \mu \mathrm{b/sr}$	90%
J-PARC	$\pi^- p \rightarrow K^- X$	_	$d\sigma/d\Omega < 0.26 \ \mu \mathrm{b/sr}$	90%


Reviewed by Tianbo Liu, Yajun Mao, and Bo-Qiang Ma, Int. J. Mod. Phys. A 29, 1430020 (2014)

HERA @ DESY


Hadron-Elektron-Ringanlage @ Deutsches Elektronen-Synchrotron

HERMES@HERA



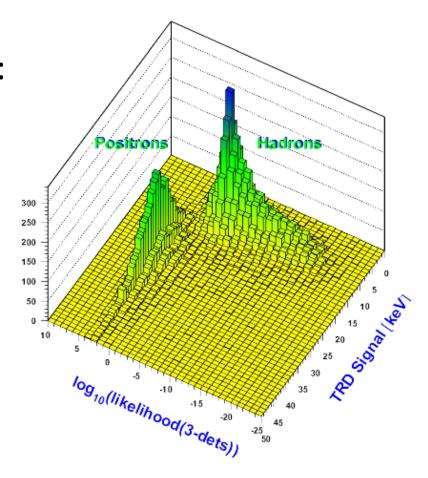
The HERMES Spectrometer

 \triangleright Resolution: $\delta p/p < 2\%$, $\delta \theta < 0.6$ mrad

ightharpoonup Internal Gas Target: \overrightarrow{He} , \overrightarrow{D} , \overrightarrow{H} , H^{\uparrow} unpol: H_2 , D_2 , He, N_2 , Ne, Kr, Xe

> Particle Identification: TRD, Preshower, Calorimeter,

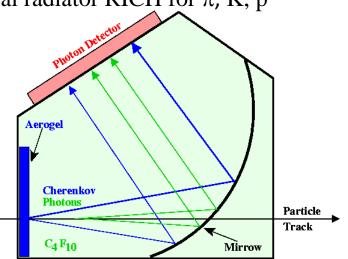
→1997:Cherenkov; 1998→:RICH + Muon ID

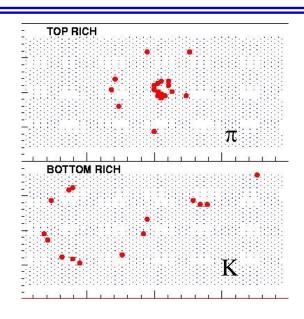

Particle Identification

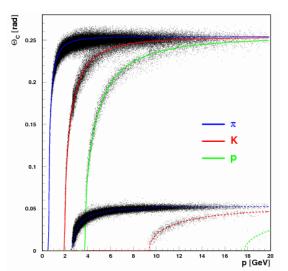
Hadron/Positron separation:

Combining signals from:

TRD(Transition Radiation Detector), Calorimeter, Preshower, RICH



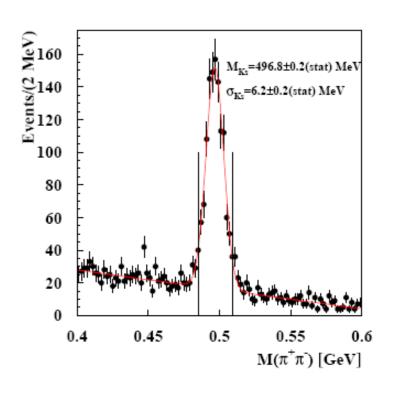


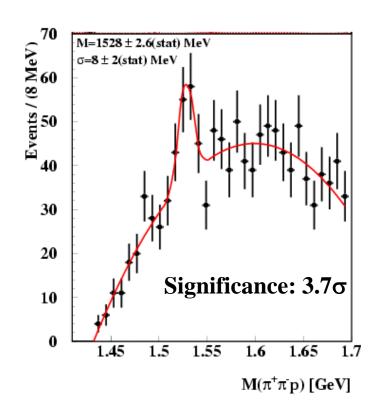

Particle Identification

Improvements in PID reconstruction:

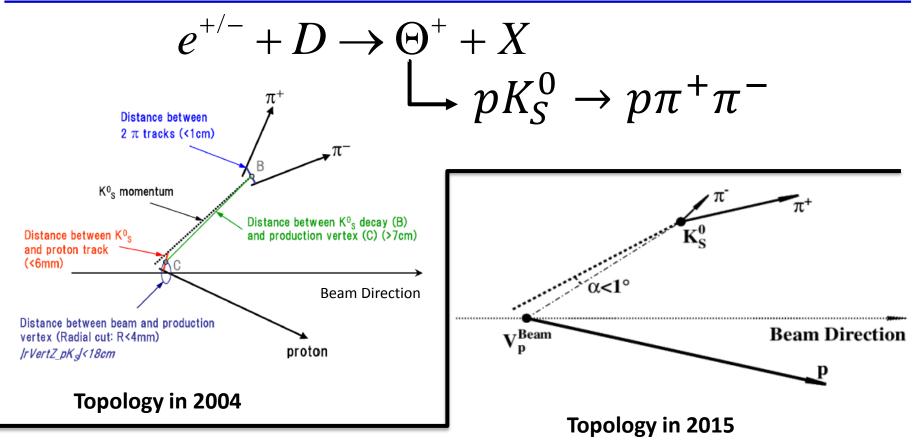
Old (track level): Track-by-track reconstructed, separately

New(event level): Response pattern of all the tracks present in an event are reconstructed simultaneously, since with multiple tracks Cherenkov rings can overlap and lead to misidentification.


Particle Identification: $\cos \Theta = \frac{1}{r}$

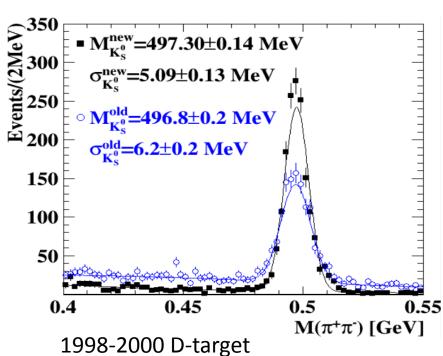

siguang@pku.edu.cn

HERMES Result in 2004

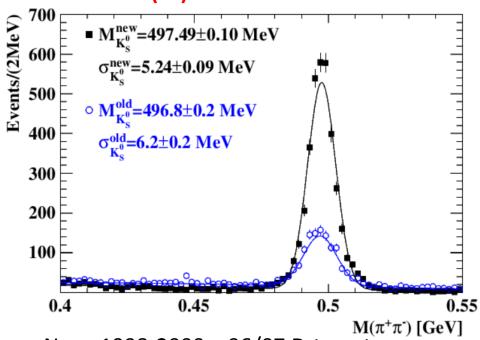

1998-2000 D-target published in *Physics Letters B 585 (2004) 213*

How about the spectra with new (improved) data?

Old and New Topologies for ⊕+ Hunting

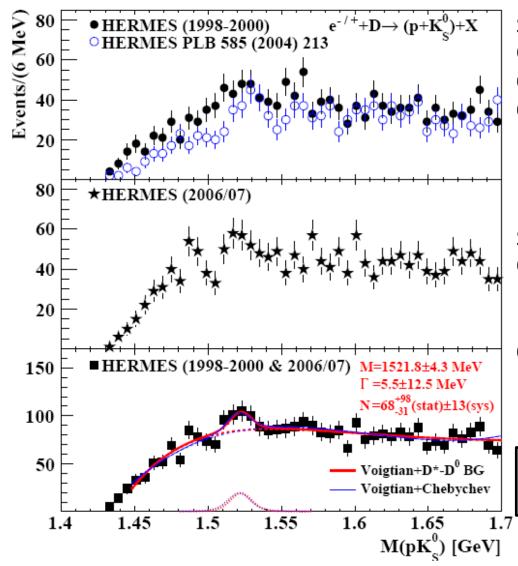

Main Improvements:

- Event-level RICH particle ID
- Advanced tracking corrections for magnetic fields and detector material based on Kalman-filter algorithm and new alignment


Improved K_S^0

With old and New analysis

New: 1998-2000 + 06/07 D-target


Old: 1998-2000 D-target

Analysis Periods	Number Ks S (±2σ)	Number Background B(±2σ)	Purity S/(S+B)
New Analysis (98-00+06/07)	3311±60	87±11	97.4±0.4%
Old Analysis(98-00)	963±38	180±15	84.3±1.3%

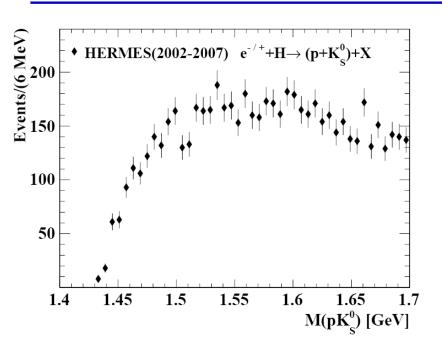
$M(pK_S^0)$ from D-target Data

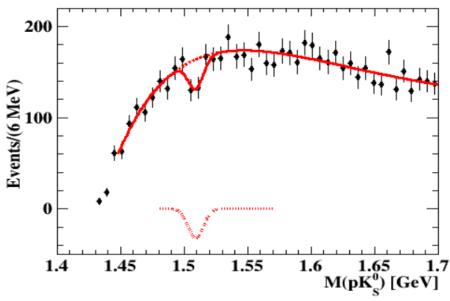
Systematic uncertainty from:

- ① Different background shapes
- ② Fit ranges
- ③ Bias from the shape studied with Toy-MC to create and fit with Background+Peak functions

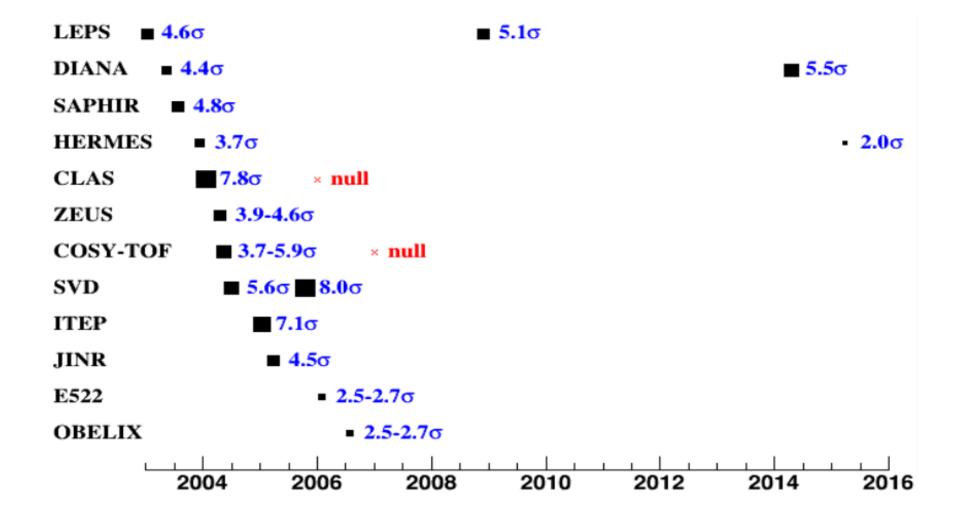
Significance: $^2\sigma$

- \bigcirc Δ log-likelihood method gives 1.9 σ (average value of different fit ranges)
- ② Toy-MC to create smooth shape and fit with Background+Peak, gives 2.2σ


Note:


"D*-D⁰ BG" is a function name of RooFit

$M(pK_S^0)$ from H-target Data


no structure found in hydrogen data

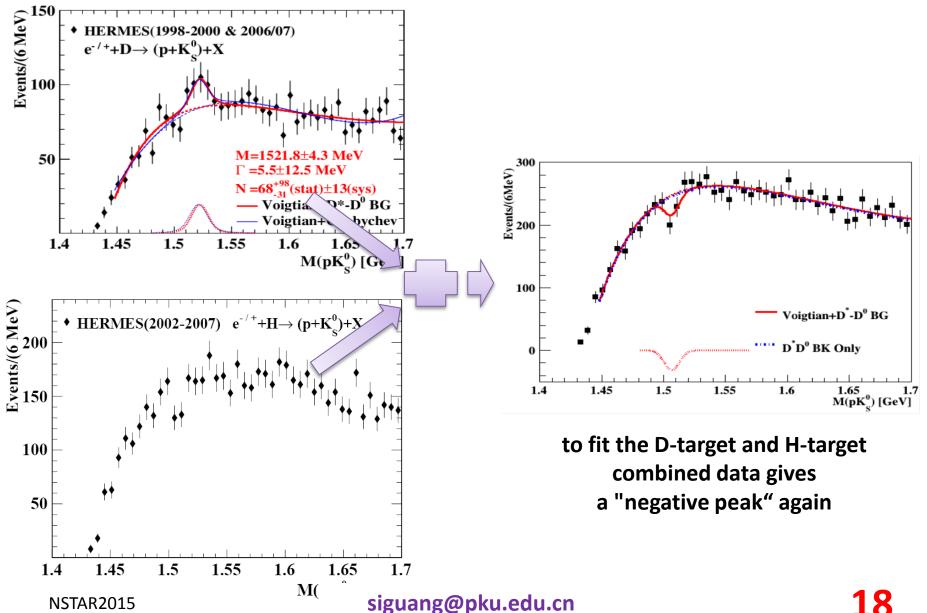
an attempt to fit gives "negative peak"

Significances of Θ^+ (Groups ever announced positive results)

Summary

- With the improved HERMES original data set taken in 1998-2000 and also the additional 2006-2007 data on deuterium target, the K_S^0 is obtained with significantly less background and better mass resolution.
- The potential resonance structure in the $M(pK_S^0)$ spectrum near the 1521.8±4.3MeV has a significance ~2 σ while it was 3.7 σ at 1528.0±2.6MeV in the old analysis.
- Drop in significance in spite of twice the number of events for the data from a deuterium target does not support the presence of a positive Θ^+ signal at HERMES.
- For the hydrogen data, there is no indication of the existence of an enhancement in the region of interest.

Thanks! 谢谢! siguang@pku.edu.cn



Backup

$M(pK_S^0)$ from D- & H-target Data

CLAS and COSY-TOF Results

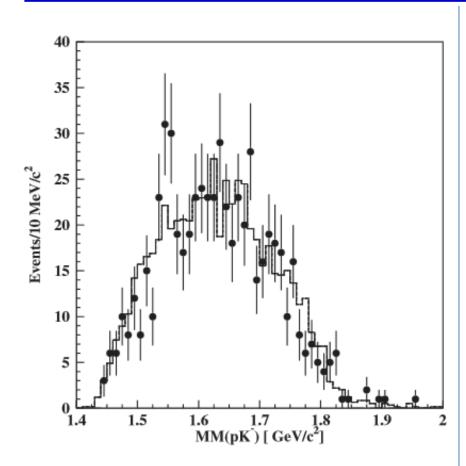


FIG. 5. Comparison of the previously published [8] result (points) with the current result (histogram) normalized (by a factor of 1/5.92) to get the same total number of counts.

CLAS, PRL 96, 212001 (2006)

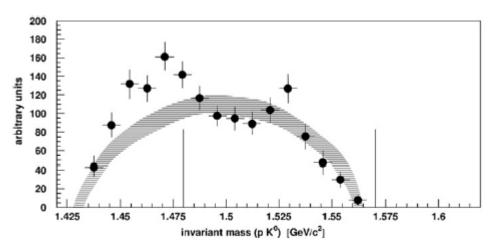


Fig. 5. Invariant mass of the pK^0 spectrum of the previous measurement together with a band representing the shape of the new measurement. The height of the band is adjusted in the mass range indicated by the two vertical lines.

COSY-TOF, Physics Letters B 649(2007) 252-257

LEPS (2009)

Evidence for the Θ^+ in the $\gamma d \to K^+K^-$ pn reaction by detecting K^+K^- pairs

T. NAKANO et al.

PHYSICAL REVIEW C 79, 025210 (2009)

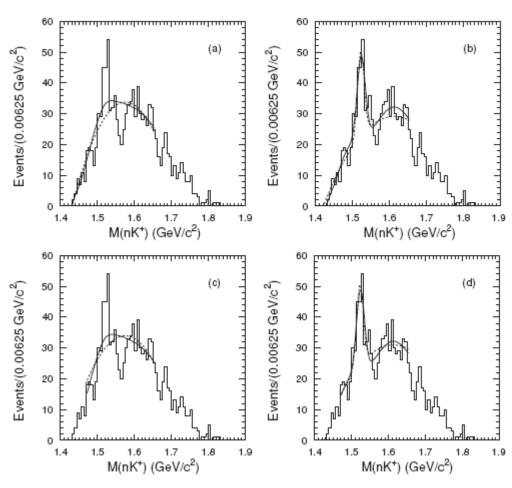


FIG. 14. Comparison of the fits with the RMM distributions (solid line) and a second-order polynomial functions (dashed line): (a) in the region of 1.43 $\text{GeV}/c^2 < M(nK^+) < 1.65 \text{ GeV}/c^2$ without the Θ^+ contribution; (b) with the Θ^+ contribution; (c) in the region of 1.47 $\text{GeV}/c^2 < M(nK^+) < 1.65 \text{ GeV}/c^2$ without the Θ^+ contribution; (d) with the Θ^+ contribution.

DIANA Collaboration (2014)

Observation of a narrow baryon resonance with positive strangeness formed in K+Xe collisions

arXiv:1307.1653v3 [nucl-ex] 18 Apr 2014

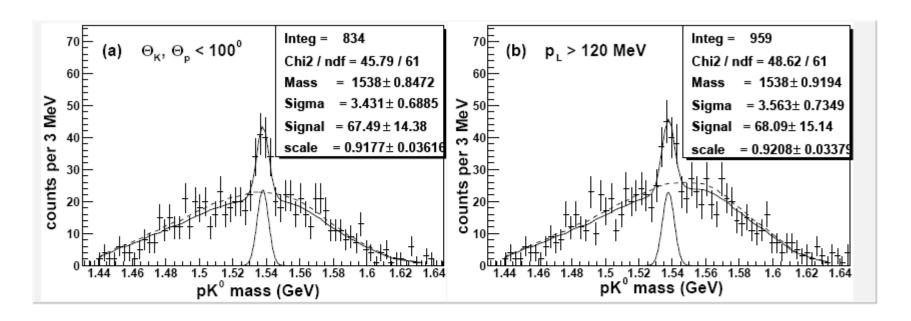


Figure 7: Shown in (a) and (b) are the pK^0 effective-mass spectra under the selections $\Theta_K, \Theta_p < 100^0$ and $p_L > 120$ MeV plus the common selections $p_T < 300$ MeV and $445 < p(K^+) < 535$ MeV. The signal and null fits are shown by the solid and dashed lines, respectively.