Direct Extraction of Helicity Amplitude Ratios on Exclusive ρ^0 Electroproduction

S. I. Manaenkov, Petersburg Nuclear Physics Institute, on behalf of the HERMES Collaboration

XVIII International Workshop on Deep-Inelastic Scattering and Related Subjects

Florence, Italy, April 19 - 23, 2010

- Physics Motivation
- Data Processing
- Amplitude Method and Spin-Density Matrix Element Method
- Kinematic Dependences of Ratios of Helicity Amplitudes
- World Results on Ratios of Helicity Amplitudes
- Summary and Outlook

Physics Motivation

- $\gamma^* + N \rightarrow V + N$ is a perfect reaction to study both vector-meson production mechanism and hadron structure. Spin Density Matrix Elements (SDMEs) of ρ^0 at HERMES: EPJ C62 (2009) 659. SDMEs are expressible in terms of ratios of helicity amplitudes, hence ratios can be extracted from angular distribution of decay $\pi^+\pi^-$.
- Data on $d\sigma/dt = \sum |F_{\lambda_V \lambda_N' \lambda_N \lambda_N}|^2$ additional to SDMEs gives a possibility to extract moduli of all the helicity amplitudes and phase differences between them.
- Generalized Parton Distributions (GPDs) of the nucleon can be obtained from the amplitude $F_{00} \equiv F_{0\frac{1}{2}0\frac{1}{2}}$ ($\gamma_L \to V_L$) for which factorization theorem is proved. Extraction of amplitude ratios is a first step to get F_{00} and GPDs.
- Difference between proton and deuteron results would points out contribution of $q\bar{q}$ -exchange with isospin I=1 and natural parity $P=(-1)^J$ (ρ , a_0 , a_2 reggeons).

Physics Motivation

- Extraction of amplitude ratios provides a possibility to distinguish between contributions of Natural Parity Exchange (NPE, $J^P=0^+,~1^-,...$) amplitudes $T_{\lambda_V\lambda_\gamma}$ (Pomeron = two-gluon exchange, $\rho,~\omega,~a_2,...$ reggeons = $q\bar{q}$ exchange) and Unnatural Parity Exchange (UPE, $J^P=0^-,~1^+,...$) amplitudes $(\pi,~a_1,~b_1,...$ reggeons = $q\bar{q}$ exchange) $U_{\lambda_V\lambda_\gamma}$ better than in SDME method.
- Violation of s-channel helicity ($\lambda_V \neq \lambda_\gamma$) can be studied more reliably on the language of amplitude ratios rather than in SDME analysis. Spin-flip amplitudes T_{01}, T_{10} provide information on vector-meson structure. They are zero in the absence of quark motion in vector mesons (if quark carries momentum fraction $z = \frac{1}{2}$).

Kinematics of Exclusive ρ^0 -Meson Production at HERMES

•
$$W = 3.0 \div 6.5 \text{ GeV}$$
, $< W >= 4.9 \text{ GeV}$ Total number of events (1996-2005)

•
$$Q^2 = 0.5 \div 7.0 \; {\rm GeV^2}$$
, $< Q^2 >= 1.95 \; {\rm GeV^2}$ Deuteron: ρ^0 - 16388

•
$$x_B = 0.01 \div 0.35$$
, $< x_B >= 0.08$ Hydrogen: ρ^0 - 9860

•
$$0 \le -t' \le 0.4 \text{ GeV}^2$$
, $< -t' >= 0.13 \text{ GeV}^2$ with $t' = t - t_{min}$

$$\Delta E=rac{M_X^2-M_p^2}{2M_p}$$
 with $M_X^2=(p+q-p_{\pi^+}-p_{\pi^-})^2$ and M_X being missing mass

SIDIS background is subtracted with the help of MC (PYTHIA)

Data Processing using Maximum Likelihood Method in MINUIT

 $\Psi = \phi - \Phi$ (in S-Channel Helicity Conservation (SCHC) approximation)

- Monte Carlo Events: 3-dimensional matrix of fully reconstructed MC events at initial uniform angular distribution.
- Binned Maximum Likelihood (BML) Method: $8 \times 8 \times 8$ bins of $\cos(\Theta), \phi, \Phi$. Simultaneous fit of 23 SDMEs (5 ratios of helicity amplitudes) for data with negative and positive beam helicity ($< P_b > = \pm 53.5\%$) and unpolarized target. Agreement of fitted angular distributions with the HERMES data

Amplitude Method and Spin-Density Matrix Element Method

- First: $e \rightarrow e + \gamma^*$ (QED) Spin-Density Matrix (SDM) of the virtual photon $\rho(\Phi, \epsilon)$
- Second: $\gamma^* + N \rightarrow V + N$ (QCD) Helicity amplitudes in CM system of $\gamma^* N$ $F_{\lambda_V \lambda'_N; \lambda_\gamma \lambda_N}(W, Q^2, t')$ Vector-meson spin-density matrix $r = \frac{1}{2N} \mathrm{tr}_{\lambda_N \lambda'_N} \{ F \ \rho \ F^+ \},$ $N = \mathrm{Tr}_{\lambda_V \lambda'_V \lambda_N \lambda'_N} \{ F \ \rho \ F^+ \}.$ If SDM of γ^* is decomposed into set of nine matrices Σ^α then SDMEs are $r^\alpha_{\lambda_V \lambda'_V} = \frac{1}{2N} \mathrm{tr}_{\lambda_N \lambda'_N} \{ F \ \Sigma^\alpha \ F^+ \}_{\lambda_V \lambda'_V}.$
- Third: $\rho^0 \Rightarrow \pi^+\pi^-$ (conservation of \vec{J}) $|\rho^0; 1m> \rightarrow |\pi^+\pi^-; 1m> \Rightarrow Y_{1m}(\theta,\phi)$ Angular distribution $\mathcal{W}(\Phi,\phi,\cos\Theta)$ depends linearly on $r^\alpha_{\lambda_V\lambda_V'}$ and P_b .

SDME method

- 23 LU SDMEs (for Longitudinally polarized beam and Unpolarized target) are considered as free parameters in fit of angular distribution of pions from decay $\rho^0 \to \pi^+ + \pi^-$ in any small bin of kinematic variables (Q^2 , t' etc.).
- Relation of SDMEs and helicity amplitudes is ignored.

Amplitude method

- SDMEs are expressed in terms of ratios of helicity amplitudes.
- Helicity amplitude ratios are free parameters in fit of angular distribution in any small bin.
- Binning 4×4 of Q^2 and -t'.

Amplitude Method

- 18 independent amplitudes
 34 real free parameters (functions)
- 23 LU SDMEs (< 34)
- Hierarchy of amplitudes at small t^\prime and high Q^2 .

Neglect small amplitudes.

 $\begin{array}{ll} \bullet \ \ \mathsf{NPE} & (T_{\lambda_V\lambda'_N\lambda_\gamma\lambda_N}) \quad \mathsf{and} \quad \mathsf{UPE} \\ & (U_{\lambda_V\lambda'_N\lambda_\gamma\lambda_N}) \quad \mathsf{helicity amplitudes}. \\ & F = T + U, \\ & T/U_{\lambda_V\lambda'_N\lambda_\gamma\lambda_N} = \frac{1}{2}(F_{\lambda_V\lambda'_N\lambda_\gamma\lambda_N} \\ & \pm (-1)^{\lambda_N - \lambda'_N} F_{\lambda_V - \lambda'_N\lambda_\gamma - \lambda_N}) \end{array}$

Shorthand notation:

$$T_{\lambda_V \lambda_\gamma} = T_{\lambda_V \frac{1}{2} \lambda_\gamma \frac{1}{2}}$$

- No interference between NPE and UPE amplitudes for LU SDMEs
- ullet UPE are suppressed at high W. Neglect all UPE amplitudes?

- No interference between amplitudes with and without nucleon spin flip.
- $T_{\lambda_N' \neq \lambda_N}/T_{\lambda_N' = \lambda_N} \sim \alpha = v_T/(2M)$. Fractional contribution of NPE amplitudes with $\lambda_N' \neq \lambda_N$ to LU SDMEs $\sim \alpha^2 <$ experimental uncertainty.
- Neglect with NPE nucleon spin-flip amplitudes retains T_{11}/T_{00} , T_{01}/T_{00} , T_{10}/T_{00} , T_{1-1}/T_{00} (8 parameters).
- SDME analysis: S-channel helicity conservation (SCHC) at small t'. $|U_{01}|, |U_{10}|, |U_{1-1}| \ll |U_{11}|$ retains only $|U_{11}| = \sqrt{|U_{1\frac{1}{2}1\frac{1}{2}}|^2 + |U_{1-\frac{1}{2}1\frac{1}{2}}|^2}$ 9th parameter: $|U_{11}|/|T_{00}|$.
- Hierarchy of extracted amplitudes at HERMES kinematic region $|T_{00}|^2 \sim |T_{11}|^2 \gg |U_{11}|^2 > |T_{01}|^2 > |T_{10}|^2 \sim |T_{1-1}|^2$

Kinematic Dependences of Ratios of Helicity Amplitudes

- No difference between proton and deuteron results for amplitude ratio T_{11}/T_{00} .
- pQCD prediction (Ivanov, Kirshner; Kuraev, Nikolaev, Zakharov): $T_{11}/T_{00} \propto M_{\rho}/Q$.
- Fit of Q dependence: ${\rm Re}({\rm T}_{11}/{\rm T}_{00})={\rm a/Q},\ {\rm Im}({\rm T}_{11}/{\rm T}_{00})={\rm b\cdot Q}.$ Combined data on proton and deuteron: $a=1.129\pm0.024$ GeV, $\chi^2/N_{df}=1.02;$ $b=0.344\pm0.014$ GeV $^{-1}$, $\chi^2/N_{df}=0.87.$
- Behaviour of ${\rm Im}({\rm T}_{11}/{\rm T}_{00})$ is in a contradiction with high-Q asymptotic in pQCD. Phase difference $\delta_{11}\sim 30^\circ$ and grows with Q^2 in disagreement with pQCD calculation
- No t dependence: difference of slopes $\beta_L \beta_T = -0.6 \pm 0.4 \text{ GeV}^{-2}$.

Kinematic Dependences of Ratios of Helicity Amplitudes

- Violation of S-Channel Helicity $(\lambda_V \neq \lambda_\gamma)$: $T_{01} \neq 0$.
- No difference between proton and deuteron results for amplitude ratio T_{01}/T_{00} .
- pQCD prediction (Ivanov, Kirshner; Kuraev, Nikolaev, Zakharov): $\frac{T_{01}}{T_{00}} \propto \frac{\sqrt{-t'}}{Q}$.
- Fit of t' dependence: $\text{Re}(T_{01}/T_{00}) = \text{a}\sqrt{-t'}$, $\text{Im}(T_{01}/T_{00}) = \text{b}\sqrt{-t'}/\text{Q}$. Combined proton and deuteron data: $a = 0.399 \pm 0.023 \text{ GeV}^{-1}$, $\chi^2/N_{df} = 0.72$; $b = 0.20 \pm 0.07$, $\chi^2/N_{df} = 1.09$.

Kinematic Dependences of Ratios of Helicity Amplitudes

- No difference between proton and deuteron results for amplitude ratio $|U_{11}/T_{00}|$.
- pQCD prediction: $U_{11}/T_{00} \propto M_{
 ho}/Q$.
- Neither Q^2 nor t' dependence: $|U_{11}|/|T_{00}|=a$, $a=0.391\pm0.013$, $\chi^2/N_{df}=0.44$ where $|U_{11}|^2\equiv |U_{1\frac{1}{2}1\frac{1}{2}}|^2+|U_{1\frac{1}{2}1-\frac{1}{2}}|^2$.
- Unnatural Parity Exchange is seen much better than in SDME method.
- Contradiction both with high-Q asymptotic and one-pion-exchange dominance.

Test of Unnatural-Parity Exchange for ρ^0 Meson

HERMES, Eur. Phys. J. C62 (09) 659.

• Natural and Unnatural Parity Exchanges in the t-channel NPE: GPD $H, E; T_{\lambda_{\rho}\lambda_{\gamma}}$

UPE: GPD \tilde{H} , \tilde{E} ; $U_{\lambda_{\rho}\lambda_{\gamma}}$ NPE (Pomeron, ρ , ω , f_2 , a_2 , ...) dominate and UPE $(\pi, a_1, b_1...)$ are suppressed at high energies

Signal of UPE in SDME method

$$u_{1} = 1 - r_{00}^{04} + 2r_{1-1}^{04} - 2r_{11}^{1} - 2r_{1-1}^{1},$$

$$u_{1} = \sum_{\lambda_{N} \lambda_{N}'} \frac{2\epsilon |U_{10}|^{2} + |U_{11} + U_{-11}|^{2}}{N}$$

where
$$N=N_T+\epsilon N_L$$
,
$$N_T=\sum_{\lambda_N\lambda_N'}(|T_{11}|^2+|T_{01}|^2+|T_{01}|^2+|U_{11}|^2+|U_{01}|^2+|U_{-11}|^2),$$

$$N_L=\sum_{\lambda_N\lambda_N'}(|T_{00}|^2+|T_{10}|^2+|T_{-10}|^2+|U_{-10}|^2).$$

World Results on Ratios of Helicity Amplitudes

- H1: Unpolarized beam and unpolarized target (15 SDMEs), $< Q^2 >= 3.3 \text{ GeV}^2$.
- Additional assumption: all amplitudes are imaginary, all amplitude ratios are real.
- HERMES: Longitudinally polarized beam and unpolarized target (23 SDMEs). Both real and imaginary parts of ratios of helicity amplitudes are extracted.
- Excellent agreement of amplitude ratios extracted by H1 and HERMES.

Summary

- Measurement of ρ^0 -meson production by longitudinally polarized electron/positron beam on unpolarized proton and deuteron in the HERMES experiment permits to extract both real and imaginary parts of T_{11}/T_{00} , T_{01}/T_{00} , T_{10}/T_{00} , T_{1-1}/T_{00} , and $|U_{11}/T_{00}|$.
- Dependences of the most reliably obtained ratios T_{11}/T_{00} , T_{01}/T_{00} , $|U_{11}/T_{00}|$ on Q^2 and t' is studied. The observed dependences of $\mathrm{Im}(T_{11}/T_{00})$ and $|U_{11}/T_{00}|$ are in contradiction with high-Q asymptotic behaviour predicted in pQCD while dependences of $\mathrm{Re}(T_{11}/T_{00})$ and $\mathrm{Im}(T_{01}/T_{00})$ are in agreement with pQCD prediction.
- No statistically significant difference between proton and deuteron results for amplitude ratios T_{11}/T_{00} , T_{01}/T_{00} , T_{01}/T_{00} , T_{01}/T_{00} is found.
- Violation of S-channel helicity is observed in amplitude method with higher accuracy than in SDME method.
- Contribution of unnatural parity exchange amplitude U_{11} of ρ^0 -meson production is found in amplitude method with much higher accuracy than in SDME analysis.

Outlook

- To decrease background contribution by measuring recoil nucleon.
- Include data on transversely polarized target into amplitude analysis.