

Dihadron production in semi-inclusive DIS from transversely polarized protons

S. Gliske for the HERMES Collaboration

High Energy Physics Division Argonne National Laboratory

XXI International Workshop on Deep-Inelastic Scattering and Related Subjects Parc Chanot, Marseille, France 24 April, 2013

SIDIS Meson Production

- ► SIDIS cross section can be written $\sigma^{ep \to ehX} = \sum_{a} DF \otimes \sigma^{eq \to eq} \otimes FF$
- ► Access integrals of DFs and FFs through azimuthal asymmetries in ϕ_h , ϕ_S , ϕ_R

Distribution Functions (DF)

		quark		
		U	L	Т
n u	U	f ₁ •		h ₁ 🚺 - 👽
Ç	L		g ₁ • - • - • -	$h_{\mathrm{1L}}^{\perp} \underbrace{\bullet} \!$
e o n	т	f _{1T} • - •	$g_{1T}^{\perp} \stackrel{\uparrow}{\bullet} - \stackrel{\uparrow}{\bullet}$	h_1 $\downarrow $ $\downarrow $ $\downarrow $ $\downarrow $ $\downarrow $ $\downarrow $

Fragmentation Functions (FF)

quark	
Unpol.	Pol.
D_1	H_1^{\perp}

Lund/Artru String Fragmentation Model

- ► Favored fragmentation modeled as the breaking of a gluon flux tube.
- Assume flux tube breaks into $q\bar{q}$ pair with vacuum quantum numbers.
- ► Expect mesons overlapping with $|\frac{1}{2},\frac{1}{2}\rangle|\frac{1}{2},-\frac{1}{2}\rangle$ and $|\frac{1}{2},-\frac{1}{2}\rangle|\frac{1}{2},\frac{1}{2}\rangle$ states to prefer "quark left".
 - $|0,0\rangle = \text{pseudo-scalar mesons}; |1,0\rangle = \text{long. pol. vector mesons}.$
- ► Expect mesons overlapping with $|\frac{1}{2}, \frac{1}{2}\rangle |\frac{1}{2}, \frac{1}{2}\rangle$ and $|\frac{1}{2}, -\frac{1}{2}\rangle |\frac{1}{2}, -\frac{1}{2}\rangle$ states to prefer "quark right".
 - ▶ $|1,\pm 1\rangle$ = transversely polarized vector mesons.
- For the two ρ_T 's, "the Collins function" should have opposite sign to that for π

Gluon Radiation Fragmentation Model

- Disfavored frag. model: assume produced diquark forms the observed meson
- ► Assume additional final state interaction to set pseudo-scalar quantum numbers
- ► Assume no additional interactions in dihadron production.
- Exists common sub-diagram between this model and the Lund/Artru model.
- ► Keeping track of quark polarization states, sub-diagram for disfavored $|1,1\rangle$ diquark production identical to sub-diagram for favored $|\frac{1}{2},-\frac{1}{2}\rangle|\frac{1}{2},\frac{1}{2}\rangle$ diquark production.

- ► Implies that the disfavored Collins function for transverse vector mesons also has opposite sign as the favored pseudo-scalar Collins function
 - ► Thus fav. = disfav. for Vector Mesons
 - ▶ Data suggests fav. \approx -disfav. for pseudo-scalar mesons.

HERMES Collins Moments for Pions

- Results published in Jan 2010
 A. Airapetian et al, Phys. Lett. B 693
 (2010) 11-16. arXiv:1006.4221 (hep-ex)
- Significant π^- asymmetry implies $H_1^{\perp,disf} \approx -H_1^{\perp,fav}$
- Pions have small, but non-zero asymmetry

Vector Meson Expectation

Species	Type	Sign
$-\rho^+$	fav.	-
$ ho^0$	mix	≈ 0 or -
$ ho^-$	disfav.	-

Fragmentation Functions and Spin/Polarization

- ► Leading twist Fragmentation functions are related to number densities
 - ► Amplitudes squared rather than amplitudes
- ▶ Difficult to relate Artru/Lund prediction with published notation and cross section.

- ▶ Propose new convention for fragmentation functions
 - \blacktriangleright Functions entirely identified by the polarization states of the quarks, χ and χ'
 - Any final-state polarization, i.e. $|\ell_1, m_1\rangle |\ell_2, m_2\rangle$, contained within partial wave expansion of fragmentation functions
- ► Exists exactly two fragmentation functions
 - ▶ D_1 , the unpolarized fragmentation function ($\chi = \chi'$)
 - ▶ H_1^{\perp} , the polarized (Collins) fragmentation function ($\chi \neq \chi'$)
- New partial waves analysis proposed, using direct sum basis $|\ell, m\rangle$ rather than the direct product basis $|\ell_1, m_1\rangle |\ell_2, m_2\rangle$.

$$H_1^{\perp} = \sum_{\ell=1}^{\infty} \sum_{m=-\ell}^{\ell} P_{\ell,m}(\cos \vartheta) e^{im(\phi_R - \phi_k)} H_1^{\perp |\ell,m\rangle}(z, M_h, |\mathbf{k}_T|),$$

Where is "the Collins function?"

► Consider direct sum vs. direct product basis

$$\begin{array}{rcl} \frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} & = & \left(\frac{1}{2} \otimes \frac{1}{2}\right) \otimes \left(\frac{1}{2} \otimes \frac{1}{2}\right), \\ & = & \left(1 \oplus 0\right) \otimes \left(1 \oplus 0\right), \\ & = & 2 \oplus 1 \oplus 1 \oplus 1 \oplus 0 \oplus 0. \end{array}$$

- ▶ The three $\ell = 1$ cannot be separated experimentally
- ▶ Longitudinal vector meson state $|1,0\rangle|1,0\rangle$ is a mixture of $|2,0\rangle$ and $|0,0\rangle$
 - ▶ Cannot access, due to $\ell = 0$ multiplicity
- ► Transverse vector meson states $|1,\pm 1\rangle|1,\pm 1\rangle$ are exactly $|2,\pm 2\rangle$
 - ► Models predict dihadron $H_1^{\perp |2,\pm 2\rangle}$ has opposite sign as pseudo-scalar H_1^{\perp} .
 - Cross section has direct access to $H_1^{\perp |2,\pm 2\rangle}$
- Note: the usual IFF, related to $H_1^{\perp |1,1\rangle}$ is not pure sp, but also includes pp interference.
- ▶ Using symmetry, can calculate cross section for any polarized final state from the scalar final state cross section

Dihadron Twist-2 and Twist-3 Cross Section

$$\begin{split} d\sigma_{UU} &= \frac{\alpha^2 M_h P_{h\perp}}{2\pi x y Q^2} \left(1 + \frac{\gamma^2}{2x} \right) \\ &\times \sum_{\ell=0}^2 \left\{ A(x,y) \sum_{m=0}^{\ell} \left[P_{\ell,m} \cos(m(\phi_h - \phi_R)) \left(F_{UU,T}^{P_{\ell,m}} \cos(m(\phi_h - \phi_R)) + \epsilon F_{UU,L}^{P_{\ell,m}} \cos(m(\phi_h - \phi_R)) \right) \right] \right. \\ &+ B(x,y) \sum_{m=-\ell}^{\ell} P_{\ell,m} \cos((2-m)\phi_h + m\phi_R) F_{UU}^{P_{\ell,m}} \cos((2-m)\phi_h + m\phi_R) \\ &+ V(x,y) \sum_{m=-\ell}^{\ell} P_{\ell,m} \cos((1-m)\phi_h + m\phi_R) F_{UU}^{P_{\ell,m}} \cos((1-m)\phi_h + m\phi_R) \right\}, \\ d\sigma_{UT} &= \frac{\alpha^2 M_h P_{h\perp}}{2\pi x y Q^2} \left(1 + \frac{\gamma^2}{2x} \right) |S_{\perp}| \sum_{\ell=0}^2 \sum_{m=-\ell}^{\ell} \left\{ A(x,y) \left[P_{\ell,m} \sin((m+1)\phi_h - m\phi_R - \phi_S)) \right. \right. \\ &\times \left(F_{UT,T}^{P_{\ell,m}} \sin((m+1)\phi_h - m\phi_R - \phi_S) + \epsilon F_{UT,L}^{P_{\ell,m}} \sin((m+1)\phi_h - m\phi_R - \phi_S) \right) \right] \\ &+ B(x,y) \left[P_{\ell,m} \sin((1-m)\phi_h + m\phi_R + \phi_S) F_{UT}^{P_{\ell,m}} \sin((1-m)\phi_h + m\phi_R - \phi_S) \right. \\ &+ P_{\ell,m} \sin((3-m)\phi_h + m\phi_R - \phi_S) F_{UT}^{P_{\ell,m}} \sin((3-m)\phi_h + m\phi_R - \phi_S) \right] \\ &+ V(x,y) \left[P_{\ell,m} \sin(-m\phi_h + m\phi_R + \phi_S) F_{UT}^{P_{\ell,m}} \sin((2-m)\phi_h + m\phi_R - \phi_S) \right] \right\}. \end{split}$$

Structure Functions, Unpolarized

$$\begin{split} F_{UU,L}^{P_{\ell,m}\cos(m\phi_h - m\phi_R)} &= 0, \\ F_{UU,T}^{P_{\ell,m}\cos(m\phi_h - m\phi_R)} &= \begin{cases} \Im\left[f_1D_1^{|\ell,0\rangle}\right] & m = 0, \\ \Im\left[2\cos(m\phi_h - m\phi_k)f_1\left(D_1^{|\ell,m\rangle} + D_1^{|\ell,-m\rangle}\right)\right] & m > 0, \end{cases} \\ F_{UU}^{P_{\ell,m}\cos((2-m)\phi_h + m\phi_R)} &= -\Im\left[\frac{|p_T||k_T|}{MM_h}\cos\left((m-2)\phi_h + \phi_p + (1-m)\phi_k\right)h_1^{\perp}H_1^{\perp|\ell,m\rangle}\right], \\ F_{UU}^{P_{\ell,m}\cos((1-m)\phi_h + m\phi_R)} &= -\frac{2M}{Q}\Im\left[\frac{|k_T|}{M_h}\cos((m-1)\phi_h + (1-m)\phi_k)\right. \\ & \times \left(xhH_1^{\perp|\ell,m\rangle} + \frac{M_h}{M}f_1\frac{\tilde{D}^{\perp|\ell,m\rangle}}{z}\right) \\ & + \frac{|p_T|}{M}\cos((m-1)\phi_h + \phi_p - m\phi_k) \\ & \times \left(xf^{\perp}D_1^{|\ell,m\rangle} + \frac{M}{M_h}h_1^{\perp}\frac{\tilde{H}^{|\ell,m\rangle}}{z}\right)\right]. \end{split}$$

Can test Lund/Artru model with $F_{UU}^{\sin^2\vartheta\cos(2\phi_R)}$, $F_{UU}^{\sin^2\vartheta\cos(4\phi_h-2\phi_R)}$ via Boer-Mulder's function

Twist-2 Structure Functions, Transverse Target

 $\times \left(f_{1T}^{\perp} \left(D_1^{|\ell,m\rangle} + D_1^{|\ell,-m\rangle} \right) + \chi(m) g_{1T} \left(D_1^{|\ell,m\rangle} - D_1^{|\ell,-m\rangle} \right) \right) \Big],$

 $F_{UT,T}^{P_{\ell,m}\sin((m+1)\phi_h-m\phi_R-\phi_S)} = -\Im\left[\frac{|\boldsymbol{p}_T|}{M}\cos\left((m+1)\phi_h-\phi_p-m\phi_k\right)\right]$

 $F_{IIT}^{\sin^2\vartheta\sin(5\phi_h-2\phi_R-\phi_S)}$ via pretzelocity

 $F_{UT,L}^{P_{\ell,m}\sin((m+1)\phi_h-m\phi_R-\phi_S)}$

$$F_{UT}^{P_{\ell,m}\sin((1-m)\phi_h+m\phi_R+\phi_S)} = -\Im\left[\frac{|k_T|}{M_h}\cos\left((m-1)\phi_h - \phi_p - m\phi_k\right)h_1H_1^{\perp|\ell,m\rangle}\right],$$

$$F_{UT}^{P_{\ell,m}\sin((3-m)\phi_h+m\phi_R-\phi_S)} = \Im\left[\frac{|p_T|^2|k_T|}{M^2M_h}\cos\left((m-3)\phi_h + 2\phi_p - (m-1)\phi_k\right)h_{1T}^{\perp}H_1^{\perp|\ell,m\rangle}\right].$$

$$\blacktriangleright \text{ Can test Lund/Artru model with } F_{UT}^{\sin^2\vartheta\sin(-\phi_h+2\phi_R+\phi_S)} \text{ and } F_{UT}^{\sin^2\vartheta\sin(3\phi_h-2\phi_R+\phi_S)} \text{ via transversity}$$

In theory, could also test Lund/Artru and gluon radiation models with $F_{trr}^{\sin^2 \vartheta \sin(\phi_h + 2\phi_R - \phi_S)}$ and

Data from SIDIS pseudo-scalar production indicate pretzelocity very small or possibly zero

Collinear versus TMD Moments

- ▶ It is not the particulars of the DF or FF that make a moment survive in the collinear case, but rather the $\sum m = 0$ (necessary condition).
 - ► Moments with $h_1^{\perp} H_1^{\perp |\ell,m\rangle}$ (Boer-Mulders moments)
 - h_1^{\perp} has $\chi \neq \chi'$, and thus $\Delta m = -1$
 - $ightharpoonup H_1^{\perp}$ similarly has $\Delta m = -1$.
 - Final state polarization must have m=2 in order that $\sum m=0$.
 - Only surviving moment in collinear dihadron production is $|2,2\rangle$.
 - ► Moments with $h_1 H_1^{\perp |\ell,m\rangle}$ (Collins moments)
 - $h_1 \text{ has } \Delta m = 0.$
 - ▶ H_1^{\perp} again has $\Delta m = -1$.
 - ▶ Collinear moments are $|1,1\rangle$, $|2,1\rangle$.
- ▶ Can also look for the m which cancels the ϕ_h dependence

$$\begin{split} F_{UU}^{P_{\ell,m}\cos((2-m)\phi_h+m\phi_R)} &= -\Im\bigg[\frac{|p_T||k_T|}{MM_h}\cos\big((m-2)\phi_h+\phi_p+(1-m)\phi_k\big)\;h_1^\perp H_1^{\perp|\ell,m\rangle}\bigg], \\ F_{UT}^{P_{\ell,m}\sin((1-m)\phi_h+m\phi_R+\phi_S)} &= -\Im\bigg[\frac{|k_T|}{M_h}\cos\big((m-1)\phi_h-\phi_p-m\phi_k\big)\;h_1 H_1^{\perp|\ell,m\rangle}\bigg], \end{split}$$

The HERMES Experiment

Beam Long. pol. e^{\pm} at 27.6 GeV

Target Trans. pol. H ($\approx 75\%$)

Long. pol. H ($\approx 85\%$)

Unpol. H,D,Ne,Kr,...

Lep.-Had. Sep. High efficiency $\approx 98\%$ Low contamination (<2%)

Hadron PID Separates π^{\pm} , K^{\pm} , p, \bar{p} with momenta in 2-15 GeV

Particle Reconstruction

- Central value of π^0 peak is close to PDG value—observed width due to detector resolution
- Pythia vs data plots indicate the many subprocesses in $\pi\pi$ -dihadron production
- $\triangleright K^+K^-$ much cleaner–only processes are one resonant (ϕ) and one non-resonant production

Analysis Details

- ► Considering final states of $\pi^+\pi^-$, $\pi^+\gamma\gamma$, $\pi^-\gamma\gamma$, K^+K^-
 - ▶ Need a model for TMDGen, and then could likewise analyze $K^+\pi^-$, $K^-\pi^+$, $K^+\gamma\gamma$, $K^-\gamma\gamma$.
- ▶ Need to correct for acceptance, which requires a new Monte Carlo generator and new TMD fragmentation functions.
- Correction applied for non-resonant $\gamma\gamma$ pairs.
- ▶ Integrated charge symmetric background $\lesssim 5\%$ and exclusive background $\lesssim 3.5\%$.
 - ► Effects determined to be negligible.
- Systematics include
 - ► Acceptance, smearing, and radiative effects
 - ▶ Dependence on the beam charge
 - Particle identification procedures

New TMDGEN Generator

- ► No previous Monte Carlo generator has TMD dihadron production with full angular dependence
- ► Method
 - ► Integrates cross section per flavor to determine "quark branching ratios"
 - ► Throw a flavor type according to ratios
 - ► Throw kinematic/angular variables by evaluating cross section
 - ► Can use weights or acceptance rejection
 - ► Full TMD simulation: each event has specific $|p_T|$, ϕ_p , $|k_T|$, ϕ_k values
 - Includes both pseudo-scalar and dihadron SIDIS cross sections
- ► Guiding plans
 - Extreme flexibility
 - ► Allow many models for fragmentation and distribution functions
 - ▶ Various final states: pseudo-scalars, vector mesons, hadron pairs, etc.
 - ▶ Output options & connecting to analysis chains of various experiments
 - ▶ Minimize dependencies on other libraries
 - ► Full flavor and transverse momentum dependence.
- ► Current C++ package considered stable and allows further expansion
 - Can be useful for both experimentalists and theorists.

Acceptance/Smearing

- ► One could do two step process
 - 1. Unfold the yield y = Sx
 - 2. Solve for moments $x = X\alpha$
- Or do all at once by solving $y = SX\alpha$
- Or unfold in parameter space via $X^{-1}y = X^{-1}SX\alpha \Leftrightarrow \beta = S'\alpha$
- In practice, we solve $b = B\alpha$ with

$$b_{i} = \frac{V}{N_{R}} \sum_{k=1}^{N_{R}} f_{i} \left(\mathbf{x}^{(R,k)}\right), \qquad \left(C^{b}\right)_{j,j'} = \frac{\delta_{j,j'}}{N_{R}-1} \left[\frac{V^{2}}{N_{R}} \sum_{k=1}^{N_{R}} f_{i}^{2} \left(\mathbf{x}^{(R,k)}\right) - (b_{i})^{2}\right],$$

$$B_{i,j} = \frac{V^{3}}{N_{MC}} \sum_{k=1}^{N_{MC}} f_{i} \left(\mathbf{x}^{(R,k)}\right) f_{j} \left(\mathbf{x}^{(T,k)}\right), \qquad \left(C^{B}\right)_{j,k;j',k'} = \frac{\delta_{j,j'} \delta_{k,k'}}{N_{\epsilon}-1} \left[\frac{V^{4}}{N_{\epsilon}} \sum_{k=1}^{N_{\epsilon}} f_{j}^{2} \left(\mathbf{x}^{(M,k)}\right) f_{k}^{2} \left(\mathbf{x}^{(T,k)}\right) - (B_{j,k})^{2}\right]$$

- ► The fit is applied over the angular variables in several different binning options:
 - ▶ 1D M_{hh} bins or various 2D bins: M_{hh} and one of $\{x, y, z, P_{h\perp}\}$
- We "unfold" acceptance only using TMDGen, thus $x^{(R)} = x^{(T)}$ and $B = B^T$.
- ► Basis consists of 24 unpolarized and 18 polarized moments

$|1,1\rangle$ Moment for $\pi\pi$ Dihadrons

- ► Signs of moments are consistent for all $\pi\pi$ dihadron species.
- Statistics are much more limited for $\pi^{\pm}\pi^{0}$ dihadrons.
- Despite uncertainties, may still help constrain global fits.

$|2,\pm2\rangle$ Moments for $\pi\pi$ Dihadrons

- \triangleright $|2,-2\rangle$ moment very consistent with zero for all flavors
- ightharpoonup Results for $|2,2\rangle$ are consistent with expectations
 - ▶ No indication of any signal outside the ρ -mass bin
 - Negative moments for ρ^{\pm} , very small ρ^{0} moments
 - Results are sufficiently suggestive to merit measurements at current experiments.

Conclusions and Outlook

- ► First preliminary results for transverse target moments of dihadron production
- Current work continues on the finalization and publication of these preliminary results
- ► Transverse momentum dependent $|2,\pm2\rangle$ moments related to string models of fragmentation
 - ► Measurements are consistent with models
 - Results point towards needing a higher statistic data set
- ▶ Measured $|1,1\rangle$ moments allow collinear access to transversity
 - ▶ These additional $\pi^{\pm}\pi^{0}$ species will assist in the *u-d* flavor separation
- ▶ Future work with K^+K^-
 - ▶ Little data near ϕ -mass, but much more for $M_{KK} > 1.05$ GeV
 - ► Can again measure $|1,1\rangle$ to access to strange flavor of transversity
 - ► Sivers moments related to strange flavor of Sivers function.
- ▶ Also have data for πK -dihadrons
 - ▶ However, we are lacking a fragmentation function model.

Backup Slides

Partial Wave Expansion

► Fragmentation functions expanded into partial waves in the direct sum basis according to

$$D_{1} = \sum_{\ell=1}^{\infty} \sum_{m=-\ell}^{\ell} P_{\ell,m}(\cos \vartheta) e^{im(\phi_{R}-\phi_{k})} D_{1}^{|\ell,m\rangle}(z, M_{h}, |\mathbf{k}_{T}|),$$

$$H_{1}^{\perp} = \sum_{\ell=1}^{\infty} \sum_{m=-\ell}^{\ell} P_{\ell,m}(\cos \vartheta) e^{im(\phi_{R}-\phi_{k})} H_{1}^{\perp|\ell,m\rangle}(z, M_{h}, |\mathbf{k}_{T}|),$$

- ► Each term in pseudo-scalar and dihadron cross section uniquely related to a specific partial wave $|\ell, m\rangle$.
- ► Cross section looks the same for all final states, excepting certain partial waves may or may not be present
 - ▶ Pseudo-scalar production is $\ell = 0$ sector
 - ▶ Dihadron production is $\ell = 0, 1, 2$ sector
 - Given the pseudo-scalar cross section (at any twist) can extrapolate cross section for other final states

Rigorous Definitions

Fragmentation Correlation Matrix

$$\Delta_{mn}(P_h, S_h; k) = \sum_{X} \int \frac{d^4x}{(2\pi)^4} e^{ik \cdot x} \langle 0 | \Psi_m(x) | P_h, S_h; X \rangle \langle P_h, S_h; X | \overline{\Psi}_n(0) | 0 \rangle$$

► Trace Notation

$$\Delta^{[\Gamma]}(z, M_h, |\mathbf{k}_T|, \cos \vartheta, \phi_R - \phi_k) = 4\pi \frac{z|\mathbf{R}|}{16M_h} \int dk^+ \operatorname{Tr}\left[\Gamma \Delta(k, P_h, R)\right] \Big|_{k^- = P_h^-/z}.$$

▶ Define fragmentation functions via trace relations

	Previous D	New Definition	
\mathbf{FF}	Pseudo-Scalar	Dihadron	All Final States
D_1	$\Delta^{[\gamma^-]}$	$\Delta^{[\gamma^-]}$	$\Delta^{[\gamma^-(1+i\gamma^5)]}$
G_1^\perp		$\propto \Delta^{[\gamma^- \gamma^5]}$	
H_1^{\perp}	$\Delta^{[(\sigma^{1-})\gamma^5]}$	$\Delta^{[(\sigma^{1-})\gamma^5]}$	$\Delta^{[(\sigma^{1-}+i\sigma^{2-})\gamma^5]}$
$\bar{H}_1^{\not \searrow}$		$\propto \Delta^{[(\sigma^{2-})\gamma^5]}$	

Relation with Previous Notation

- ► Real part of fragmentation function similar
- ▶ New definition of $D_1 \& H_1^{\perp}$
 - Adds "imaginary" part to $D_1 \& H_1^{\perp}$, instead of introducing new functions.
 - ► Functions are complex valued and depend on Q^2 , z, $|k_T|$, M_h , $\cos \vartheta$, $(\phi_R \phi_k)$.
- ► Comparing with similar trace definitions, e.g. PRD 67:094002, yields the relations

$$\begin{split} D_1 \Big|_{Gliske} &= \left[D_1 + i \frac{|\mathbf{R}||\mathbf{k}_T|}{M_h^2} \sin \vartheta \sin(\phi_R - \phi_k) G_1^{\perp} \right]_{other}, \\ H_1^{\perp} \Big|_{Gliske} &= \left[H_1^{\perp} + \frac{|\mathbf{R}|}{|\mathbf{k}_T|} \sin \vartheta e^{i(\phi_R - \phi_k)} \bar{H}_1^{\circlearrowleft} \right]_{other} = \frac{|\mathbf{R}|^2}{|\mathbf{k}_T|^2} H_1^{\circlearrowleft} \Big|_{other}, \end{split}$$

Note: there are inconsistencies in the literature between definitions of H_1^{\checkmark} , \bar{H}_1^{\checkmark} , and $H_1'^{\checkmark}$.

Collinear Dihadron Spectator Model

- ▶ Based on Bacchetta/Radici spectator model for collinear dihadron production *Phys. Rev.* D74 11 (2006) 114007
 - ▶ The SIDIS *X* is replaced with a single, on-shell, particle of mass $M_s \propto M_h$.
 - ► Assume one spectator for hadron pairs and vector mesons.
 - ► Integration over transverse momenta is performed before extracting fragmentation functions.
- ▶ One can use the same correlator to extract TMD fragmentation functions
 - ▶ One just needs to not integrate and follow the Dirac-matrix algebra and partial wave expansion.
 - ▶ Numeric studies show need for additional k_T cut-off.
- Original model intended for $\pi^+\pi^-$ pairs
 - ▶ Adding flavor dependence allows generalization to $\pi^+\pi^0$, $\pi^-\pi^0$ pairs.
 - ► Slight change to vertex function allows generalization to K^+K^- pairs.
 - ► Slight change to vertex function and allows generalization to K^+K^- pairs.
- ▶ The model only includes partial waves of the Collins function for $\ell < 2$.
- ▶ Model cannot easily be extended to mixed mass pairs $(K\pi)$

Available Models in TMDGen

Distribution Functions	Model Identifier
f_1	CTEQ
f_1	LHAPDF
f_1	BCR08
f_1	GRV98
<i>g</i> ₁	GRSV2000
f_{1T},h_{1T}^\perp,h_1	Torino Group
$f_1, g_1, g_{1L}, g_{1T}, f_{1T}, h_1, h_1^{\perp}, h_{1T}^{\perp}$	Pavia Spectator Model

Frag. Functions	Final State	Model Identifier
$\overline{D_1}$	pseudo-scalar	fDSS
D_1	pseudo-scalar	Kretzer
D_1, H_1^{\perp}	dihadron	Spectator Model
D_1, H_1^{\perp}	dihadron	Set given partial wave proportional
		to any other partial wave

$\pi^+\pi^0$ Kinematic Distributions, p.1

- ► Close agreement for *x*, *y*, *z* distributions.
- ▶ Main discrepancy in *x*—may be due to imbalance in the flavor contributions, or *Q*² effects.
- Similar results for other $\pi\pi$ and KK dihadrons.

$\pi^+\pi^0$ Kinematic Distributions, p.2

- ▶ Fairly good agreement in both $P_{h\perp}$ and M_h distributions.
- ▶ Note: some discrepancies in full 5D kinematic, but PYTHIA also doesn't match data in full 5D

Smearing/Acceptance Effects

- Let $x^{(T)}$ be true value of variables, $x^{(R)}$ the reconstructed values
- A conditional probability $p\left(\mathbf{x}^{(R)} \mid \mathbf{x}^{(T)}\right)$ relates the true PDF $p\left(\mathbf{x}^{(T)}\right)$ with the PDF of the reconstructed variables, $p\left(\mathbf{x}^{(R)}\right)$.
- ► Specific relation given by Fredholm integral equation

$$p\left(\mathbf{x}^{(R)}\right) = \eta \int d^{D}\mathbf{x}^{(T)} p\left(\mathbf{x}^{(R)} \middle| \mathbf{x}^{(T)}\right) p\left(\mathbf{x}^{(T)}\right),$$

$$\frac{1}{\eta} = \int d^{D}\mathbf{x}^{(R)} d^{D}\mathbf{x}^{(T)} p\left(\mathbf{x}^{(R)} \middle| \mathbf{x}^{(T)}\right) p\left(\mathbf{x}^{(T)}\right).$$

► Can rewrite in terms of a smearing operator

$$S\left[g(\mathbf{x}^{(T)})
ight] = \int d^D \mathbf{x}^{(T)} \, p\left(\mathbf{x}^{(R)} \,\middle|\, \mathbf{x}^{(T)}
ight) g\left(\mathbf{x}^{(T)}
ight).$$

▶ Fredholm equation is simply

$$p\left(\boldsymbol{x}^{(R)}\right) = S\left[\eta p\left(\boldsymbol{x}^{(T)}\right)\right].$$

Solution with Finite Basis and Integrated Squared Error

► Restrict to finite basis

$$\eta p\left(\boldsymbol{x}^{(T)}\right) = \sum_{i} \alpha_{i} f_{i}\left(\boldsymbol{x}^{(T)}\right),
p\left(\boldsymbol{x}^{(R)} \middle| \boldsymbol{x}^{(T)}\right) = \sum_{i,j} \Gamma_{i,j} f_{i}\left(\boldsymbol{x}^{(R)}\right) f_{j}\left(\boldsymbol{x}^{(T)}\right).$$

► Determine parameters by minimizing the integrated squared error (ISE)

$$ISE_{1} = \int d^{D}\boldsymbol{x}^{(R)} d^{D}\boldsymbol{x}^{(T)} \left[p\left(\boldsymbol{x}^{(R)} \middle| \boldsymbol{x}^{(T)}\right) - \sum_{i,j} \Gamma_{i,j} f_{i}(\boldsymbol{x}^{(R)}) f_{j}(\boldsymbol{x}^{(T)}) \right]^{2},$$

$$ISE_{2} = \int d^{D}\boldsymbol{x}^{(R)} \left\{ p\left(\boldsymbol{x}^{(R)}\right) - \sum_{i} \alpha_{i} S\left[f_{i}\left(\boldsymbol{x}^{(T)}\right)\right] \right\}^{2}.$$

Analytic Solution

► Define/compute

$$F_{i,j} = \int d^{D}\mathbf{x}^{(T)} f_{i}\left(\mathbf{x}^{(T)}\right) f_{j}\left(\mathbf{x}^{(T)}\right),$$

$$B_{i,j} = \int d^{D}\mathbf{x}^{(R)} d^{D}\mathbf{x}^{(T)} p\left(\mathbf{x}^{(R)} \middle| \mathbf{x}^{(T)}\right) f_{i}\left(\mathbf{x}^{(R)}\right) f_{j}\left(\mathbf{x}^{(T)}\right),$$

$$= V \int d^{D}\mathbf{x}^{(R)} d^{D}\mathbf{x}^{(T)} p_{MC}\left(\mathbf{x}^{(T)}, \mathbf{x}^{(R)}\right) f_{i}\left(\mathbf{x}^{(R)}\right) f_{j}\left(\mathbf{x}^{(T)}\right),$$

$$b_{i} = \int d^{D}\mathbf{x}^{(R)} p\left(\mathbf{x}^{(R)}\right) f_{i}\left(\mathbf{x}^{(R)}\right).$$

► ISEs reduce to the matrix equation

$$B^T F^{-1} B \alpha = B^T F^{-1} \boldsymbol{b}.$$

- Assuming *B* is invertible, this reduces to $B\alpha = b$.
- ▶ Note: the least squares solution, ignoring smearing, is $F\alpha = b$.

Numeric Solution

► The quantities can be computed as

$$b_{i} = \frac{V}{N_{R}} \sum_{k=1}^{N_{R}} f_{i} \left(\boldsymbol{x}^{(R,k)} \right),$$

$$B_{i,j} = \frac{V^{3}}{N_{MC}} \sum_{k=1}^{N_{MC}} f_{i} \left(\boldsymbol{x}^{(R,k)} \right) f_{j} \left(\boldsymbol{x}^{(T,k)} \right).$$

- Use standard methods to solve $B\alpha = b$.
- ▶ One is simply unfolding in the parameter space.

Uncertainty Calculation

▶ Define

$$(C^{b})_{j,j'} = \frac{\delta_{j,j'}}{N_{R} - 1} \left[\frac{V^{2}}{N_{R}} \sum_{k=1}^{N_{R}} f_{i}^{2} \left(\mathbf{x}^{(R,k)} \right) - (b_{i})^{2} \right],$$

$$(C^{B})_{j,k;j',k'} = \frac{\delta_{j,j'} \delta_{k,k'}}{N_{\epsilon} - 1} \left[\frac{V^{6}}{N_{\epsilon}} \sum_{k=1}^{N_{\epsilon}} f_{j}^{2} \left(\mathbf{x}^{(M,k)} \right) f_{k}^{2} \left(\mathbf{x}^{(T,k)} \right) - (B_{j,k})^{2} \right],$$

$$C'^{(B)}_{i,i'} = \sum_{j,j'} C^{(B)}_{i,j;i',j'} \alpha_{j} \alpha_{j'}.$$

▶ The uncertainty on α is then

$$C^{(\alpha)} = B^{-1}C^{(b)}B^{-T} + B^{-1}C^{\prime(B)}B^{-T}.$$

- ▶ One could consider a third term $(B^TF^{-1}B)^{-1}$, the Hessian of the matrix eq.
 - ▶ Numeric studies show this term is not a meaningful estimate of the uncertainty, and that it can be neglected.

Alternate Derivation

- Again, assume that $p\left(\mathbf{x}^{(R)} \mid \mathbf{x}^{(T)}\right) = Vp(\mathbf{x}^{(R)}, \mathbf{x}^{(T)}).$
- ► Substitute $\eta p\left(\mathbf{x}^{(T)}\right) = \sum_{i} \alpha_{i} f_{i}\left(\mathbf{x}^{(T)}\right)$ into the Fredholm integral equation:

$$p\left(\mathbf{x}^{(R)}\right) = V \sum_{i} \alpha_{i} \int d^{D}\mathbf{x}^{(T)} p_{MC}\left(\mathbf{x}^{(T)}, \mathbf{x}^{(R)}\right) f_{i}\left(\mathbf{x}^{(T)}\right).$$

► Applying the operator $\int d^D \mathbf{x}^{(R)} f_j(\mathbf{x}^{(R)})$ to both sides yields

$$\int d^{D}\boldsymbol{x}^{(R)} f_{j}\left(\boldsymbol{x}^{(R)}\right) p\left(\boldsymbol{x}^{(R)}\right) = V \sum_{i} \alpha_{i} \int d^{D}\boldsymbol{x}^{(R)} d^{D}\boldsymbol{x}^{(T)} p_{MC}\left(\boldsymbol{x}^{(T)}, \boldsymbol{x}^{(R)}\right) f_{i}\left(\boldsymbol{x}^{(T)}\right),$$

 \blacktriangleright Using the definitions of **b** and B, this reduces to

$$b = B\alpha$$
.