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SIDIS Meson Production

e®

Q f‘\(\f-"vv /

e'E)

Distribution Functions (DF)

quark

U L T
Ty ® L@@
¢ 5 @-@|nE@
s PPN LORO
g flTé @ i é é b ® é

» SIDIS cross section can be written
ep—ehX _ eq—req
o =>,DF®o ® FF
» Access integrals of DFs and FFs
through azimuthal asymmetries in
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Lund/Artru String Fragmentation Model

-

» Favored fragmentation modeled as the breaking of a gluon flux tube.

» Assume flux tube breaks into gg pair with vacuum quantum numbers.

» Expect mesons overlapping with |4, $)[3, —4) and |3, —1)|3, 1

29
prefer “quark left”.

» |0,0) = pseudo-scalar mesons; |1,0) = long. pol. vector mesons.

LI 3 and |, =313, ) sutes o

) states to

prefer “quark right”.
» |I,+1) = transversely polarized vector mesons.
» For the two p7’s, “the Collins function” should have opposite sign to that for 7
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Gluon Radiation Fragmentation Model

» Disfavored frag. model: assume produced
diquark forms the observed meson

» Assume additional final state interaction to
set pseudo-scalar quantum numbers
» Assume no additional interactions in
dihadron production.
» Exists common sub-diagram between this model and the Lund/Artru model.

» Keeping track of quark polarization states,
sub-diagram for disfavored |1, 1) diquark production
identical to sub-diagram for favored |3, —3)(3, 3)
diquark production.

+

» Implies that the disfavored Collins function for transverse vector mesons also
has opposite sign as the favored pseudo-scalar Collins function

» Thus fav. = disfav. for Vector Mesons
» Data suggests fav. ~ -disfav. for pseudo-scalar mesons.
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HERMES Collins Moments for Pions

» Results published in Jan 2010
A. Airapetian et al, Phys. Lett. B 693
(2010) 11-16. arXiv:1006.4221 (hep-ex)

» Significant 7~ asymmetry implies
HlL,dlsf ~ _Hlifav

» Pions have small, but non-zero
asymmetry

Vector Meson Expectation

Species ‘ Type ‘ Sign
pT fav. -
p° mix | ~0or-

o~ disfav. -
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Fragmentation Functions and Spin/Polarization

>

Leading twist Fragmentation functions are related bty ma) 1o, ma)

to number densities
» Amplitudes squared rather than amplitudes

Difficult to relate Artru/Lund prediction with
published notation and cross section.

ax 7x
Propose new convention for fragmentation functions
» Functions entirely identified by the polarization states of the quarks, x and x’
» Any final-state polarization, i.e. |¢;,m;)|¢2, m;), contained within partial wave
expansion of fragmentation functions
Exists exactly two fragmentation functions
» Dy, the unpolarized fragmentation function (y = x’)
» Hi, the polarized (Collins) fragmentation function (x # x’)
New partial waves analysis proposed, using direct sum basis |¢, m) rather

than the direct product basis |¢1, m;)|¢2, my).
00 L

Hi = Z Z P&m(cosz?)eim(qsr@)Hllwm(Z7Mh,|kTD,
{=1 m=—¢
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Where is ‘‘the Collins function?”’

» Consider direct sum vs. direct product basis |y, mi) B |y, my)
r 1 _ 1 _1 1 1 1 1
29329297 < (2®2>®<2®2)’
= 1e0)x(140),
= 201e1e14040. ax X
» The three ¢ = 1 cannot be separated experimentally

v

Longitudinal vector meson state |1,0)|1,0) is a mixture of |2, 0) and |0, 0)
» Cannot access, due to £ = 0 multiplicity
Transverse vector meson states |1, £1)|1, +1) are exactly |2, £2)

v

» Models predict dihadron H ]uz.iz> has opposite sign as pseudo-scalar Hi-.

. . 12,42
» Cross section has direct access to H, 12,%2)

v

Note: the usual IFF, related to H 1“ L1 is not pure sp, but also includes pp
interference.

v

Using symmetry, can calculate cross section for any polarized final state from

the scalar final state cross section
a 7133



Dihadron Twist-2 and Twist-3 Cross Section

2 2
a“MyP,

doyy = SMPiL () 7
27mxyQ? 2x

2 [ P s(m(p, P m(pp—,
x> {A(x,y) > [ngm cos(m(¢p — ¢r)) ( o "}CO ((on=or)) + eFUf/’rzm( (@ R>>) ]
=0

m=0
£

P 2—m) ¢ +mpR)
+ B(x,y) Z Py cos((2 — m)y, + mpp)Fyy; 0,m ©0s((2—m) pp+meg
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2
aMyP
doyr = % <1 + *) IS Z Z {A(x,y) {Pl,m sin((m + 1) ¢y, — mog — ¢s))
2mxyQ: i
Py m sin((m+1) ¢ —meg—bg) Py sin((m+1) dp —mpp — bg)
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; Pe (1)t merg+ )
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Structure Functions, Unpolarized

Pg mcos(mpp—meg)
Fui'y = 0,

£,0)
D] =
Py cos(mey —mer) J [fl ! m =0,
FUU,T =

9 [2cos(m¢h — mé) fi (D‘l‘*”” n DL"*””)] m> 0,

s((2—m m k ) ,m
FZ[[{/,WCO (@=m)@p+mdr) _j|:|pT|| | cos ((M—2)¢h +¢p+ (1 —m)¢)k) hllH]lV- >:|’
MM,
cos((1—m mg 2M
prgresGmmontnon) Vg Mcos((m— 1)én + (1 — m)gx)
Q0 | M,
M DL\[,:U)
hHL\[,m) Mh
X (x . + Mfl .
+ el cosm — 1) + 6y — mo)

|2,m)
(xf D\Fm> + hJ_H ):|'
Z

2 i o2 ) _ . .
> Can test Lund/Artru model with Fjiy, ¥ <C¢8) o0 cos(42i=208) yiq Boer-Mulder’s function
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Twist-2 Structure Functions, Transverse Target

e e
Fzyff}sm“mﬁ)(b"_md)“_@“ = {IPT| cos ((m + 1) — ¢p — may)
« ( 1Jf (D\]ANQ + D‘]Z,*llo) + X(m)ng (D\]K,/n> _ D‘IZ,*HO)) :|7

Py msin((1—m)¢p+mor+og k 0, m

Fransn(-mantmontéo) _jPMﬂ cos (1 — 1) — 6y — meye) I H-1" >}’
h

Py o sin((3—m)pp+mopr—dpg m

FU? sin(( )ntmer—ds) _ |:IPAI/)|21‘V[T‘ cos ((m _ 3)¢h + 2¢p ( _ 1)¢k) h#HLl[ ):|

Can test Lund/Artru model with F';
transversity

sin” 9 sin(—¢p+2Pr+ds) and Fsin2 9 sin(3¢, —2¢pr+ds) via
ur

In theory, could also test Lund/Artru and gluon radiation models with F}; sin® 9 sin( @208 =95 a1

F;}'} Vsin(3¢=20r=95) \ia pretzelocity

Data from SIDIS pseudo-scalar production indicate pretzelocity very small or possibly zero
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Collinear versus TMD Moments

» It is not the particulars of the DF or FF that make a moment survive in the
collinear case, but rather the > m = 0 (necessary condition).

» Moments with hi- H ILM""O (Boer-Mulders moments)

it has x # X', and thus Am = —1

Hi similarly has Am = —1.

Final state polarization must have m = 2 in order that > m = 0.
Only surviving moment in collinear dihadron production is |2, 2).

» Moments with i H ILM"“
» /1 has Am = 0.
> Hi" again has Am = —1.
» Collinear moments are |1, 1), |2, 1).

vvyyewy

) (Collins moments)

» Can also look for the m which cancels the ¢; dependence

s((2—m m k m
FZZ””CO (2 )bnt+mer) — -9 IPTH T| cos ((m _ Z)QS/I +¢p + (] _ m)¢k) hﬁH]lV ) ,
MMh
F’ZZT'W sin((1—m) ¢y +mbr+os) - 9 {%Th‘ cos ((m _ 1)¢h _ ¢p _ m¢k) thlJ_M,m):| 7
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The HERMES Experiment
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Particle Reconstruction

N
a
=}
S

M,, [GeV/c?]

2000

1500

1000

500

$

N
=]
=]

TTESFTT T[T T[T ([ ITT[ T ITT T

.-

-
@ @
S o

Counts per 1 MeV/c?
I
B O R O N &
= - - -]

n
=]

=)

16 0.18 0.2
Counts per 1.4 MeV/c?

Raw Distribution
In Acceptance

—— Pythia Total

* Hermes 02-05

— Pythia ¢

+*’++"+

=
-
o
=
=
Q
<]

1.04

I 1.05
M., [GeV/c]

% F vy
S 2200 4 ¢ Hermes 02-05
[} =
= 20005 —— Pythia Total
g 1800} o,
5 1600 — Pythia p
%1400; — Pythia ©
‘51200; 4 —— Pythian
© 1000
o o Raw Distribution
0; In Acceptance
of-
oF
nt i
0.2 0.4 0.6 0.8 1 1.2

[ [chlcz]
Central value of 7° peak is close to
PDG value—observed width due to
detector resolution

Pythia vs data plots indicate the
many subprocesses in wr-dihadron
production

KK~ much cleaner—only

processes are one resonant (¢) and
one non-resonant production 5,5,



Analysis Details

v

Considering final states of 77 =, 7y, 7=y, KTK~
» Need a model for TMDGen, and then could likewise analyze K*7—, K~ 7™,
K*yy, K=y
Need to correct for acceptance, which requires a new Monte Carlo generator
and new TMD fragmentation functions.

v

v

Correction applied for non-resonant -y pairs.

v

Integrated charge symmetric background < 5% and exclusive
background < 3.5%.

» Effects determined to be negligible.

v

Systematics include

» Acceptance, smearing, and radiative effects
» Dependence on the beam charge
» Particle identification procedures
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New TMDGEN Generator

» No previous Monte Carlo generator has TMD dihadron production with full
angular dependence
» Method
» Integrates cross section per flavor to determine “quark branching ratios”
» Throw a flavor type according to ratios
» Throw kinematic/angular variables by evaluating cross section
» Can use weights or acceptance rejection
» Full TMD simulation: each event has specific |p|, ¢,, |kr|, ¢« values
» Includes both pseudo-scalar and dihadron SIDIS cross sections
» Guiding plans
» Extreme flexibility
> Allow many models for fragmentation and distribution functions
> Various final states: pseudo-scalars, vector mesons, hadron pairs, etc.
» Output options & connecting to analysis chains of various experiments
» Minimize dependencies on other libraries

» Full flavor and transverse momentum dependence.
» Current C++ package considered stable and allows further expansion

v

Can be useful for both experimentalists and theorists.
a 15/33



Acceptance/Smearing

» One could do two step process
1. Unfold the yieldy = Sx
2. Solve for moments x = X

» Or do all at once by solvingy = SX«
» Or unfold in parameter space via X'y = X~ !1SXa < 3 = S«
» In practice, we solve b = Ba with

v Nimzlf((k‘k))’ (@) = NR71|:NRZ/((R’k))_(bi)2:|’
6. 16, 11 -
o B (@ - [ )R ) - ]

» The fit is applied over the angular variables in several different binning
options:
» 1D My, bins or various 2D bins: My, and one of {x,y, z, Py, }
» We “unfold” acceptance only using TMDGen, thus x(®) = x(7) and B = B”.
» Basis consists of 24 unpolarized and 18 polarized moments
a 16/33



|1, 1) Moment for 7w Dihadrons
Published w7~ Results
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|2, £2) Moments for 77 Dihadrons
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> |2, —2) moment very consistent with zero for all flavors
» Results for |2,2) are consistent with expectations
» No indication of any signal outside the p-mass bin
» Negative moments for p*, very small p° moments
» Results are sufficiently suggestive to merit measurements at current
experiments.
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Conclusions and Outlook

> First preliminary results for transverse target moments of dihadron production
» Current work continues on the finalization and publication of these
preliminary results

» Transverse momentum dependent |2, +2) moments related to string models
of fragmentation

» Measurements are consistent with models
» Results point towards needing a higher statistic data set

» Measured |1, 1) moments allow collinear access to transversity
» These additional 7% 7% species will assist in the u-d flavor separation
» Future work with K™K~

» Little data near ¢-mass, but much more for Mgx > 1.05 GeV
» Can again measure |1, 1) to access to strange flavor of transversity
» Sivers moments related to strange flavor of Sivers function.

> Also have data for 7K-dihadrons
» However, we are lacking a fragmentation function model.
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Partial Wave Expansion

>

Fragmentation functions expanded into partial waves in the direct sum basis
according to

4
Z P&m(COS ﬁ)eim(d)R_(bk)D‘l&m) (Zth’ |kT|)7
—£

WE

D, =

~
Il
—_

m

Py (cos 19)e"’”(@?*‘z”‘)Hf'lé’m> (z, Mp, |kr|),

NE
M)~

H{ =

)
I

—L

m

Each term in pseudo-scalar and dihadron cross section uniquely related to a
specific partial wave |¢, m).
Cross section looks the same for all final states, excepting certain partial
waves may or may not be present

» Pseudo-scalar production is £ = 0 sector

» Dihadron production is £ = 0, 1, 2 sector

» Given the pseudo-scalar cross section (at any twist) can extrapolate cross

section for other final states
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Rigorous Definitions

» Fragmentation Correlation Matrix

Al?i}l(Ph7 Sh; k) = Z /
X

» Trace Notation

4 . —
0[] i35 ) P 5 X 0)]0)

Z|R|

AT, My, |z, cos 9, ¢r — ¢x) = 4 dk" T [CA(k, Py, R)]

» Define fragmentation functions via trace relations

Previous Definitions New Definition
FF | Pseudo-Scalar ‘ Dihadron All Final States
D, A7 AT AL~ (+ir)]
Gt __ o AT —
Hi Al Y] Al | Al T +i0? )y
Iz __ o Al __

T .
16M), R
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Relation with Previous Notation

» Real part of fragmentation function similar
» New definition of D| & HlL
» Adds “imaginary” part to D; & Hi‘, instead of introducing new functions.
» Functions are complex valued and depend on Q2, z, |kz|, Mj,, cos ¥, (or — ¢x)-
» Comparing with similar trace definitions, e.g. PRD 67:094002, yields the
relations

R||k
Dl‘ — [Dl + i’H72T’ sin ¥ sin(pg — k) Gll} ,
Gliske M; other
R : _ R|?
Hf‘ = [HlL + IR] sinﬂe’(@_‘m)Hl{] _ IR H<I )
Gliske |kT ‘ other |kT | other

» Note: there are mconsmtencies in the literature between definitions of
H H > and H
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Collinear Dihadron Spectator Model

» Based on Bacchetta/Radici spectator model for collinear dihadron production
Phys. Rev. D74 11 (2006) 114007

» The SIDIS X is replaced with a single, on-shell, particle of mass M oc Mj,.

» Assume one spectator for hadron pairs and vector mesons.

» Integration over transverse momenta is performed before extracting
fragmentation functions.

> One can use the same correlator to extract TMD fragmentation functions

» One just needs to not integrate and follow the Dirac-matrix algebra and partial
wave expansion.
» Numeric studies show need for additional kr cut-off.

» Original model intended for 77~ pairs

» Adding flavor dependence allows generalization to 7+ 7, 7= 70 pairs.
» Slight change to vertex function allows generalization to KK~ pairs.
» Slight change to vertex function and allows generalization to K™K~ pairs.

» The model only includes partial waves of the Collins function for ¢ < 2.
» Model cannot easily be extended to mixed mass pairs (K)
a 24/33



Available Models in TMDGen

Distribution Functions ‘ Model Identifier
f CTEQ
fi LHAPDF
f BCRO08
f GRV9S8
g1 GRSV2000
fr, hlLT, h Torino Group
fi, &1, &1L, &17> fiT» 1 hll, hllT Pavia Spectator Model
Frag. Functions ‘ Final State ‘ Model Identifier
D, pseudo-scalar | fDSS
D pseudo-scalar | Kretzer
D,H IL dihadron Spectator Model
D\, H IL dihadron Set given partial wave proportional

to any other partial wave

25/33



Normalized Counts

Normalized Counts

7+ ¥ Kinematic Distributions, p.1
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» Close agreement for x, y, z
distributions.
» Main discrepancy in x—may be
due to imbalance in the flavor
contributions, or Q7 effects.

» Similar results for other 77 and
KK dihadrons.
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7+ Kinematic Distributions, p.2
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» Fairly good agreement in both Py and M), distributions.

» Note: some discrepancies in full 5D kinematic, but PYTHIA also doesn’t

match data in full 5D
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Smearing/Acceptance Effects

» Let x(7) be true value of variables, x®) the reconstructed values

> A conditional probability p (x®| x(1)) relates the true PDF p (x()) with the
PDF of the reconstructed variables, p (x(R)).

» Specific relation given by Fredholm integral equation

» (xm)) _ n/de(T)p (x(R) x(T))p (xm)’

I / &P ® P (x(m‘ x<T>) » (x(r)) .
1

» Can rewrite in terms of a smearing operator
s [g(xm)] _ / x p (x(m} xm) ¢ (xm) _
» Fredholm equation is simply
P () =3[ ()]
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Solution with Finite Basis and Integrated
Squared Error

> Restrict to finite basis
W) = San ()
p(x(m‘xm) - ZF J( <R>) ( <T>)‘
» Determine parameters by minimizing the integrated squared error (ISE)

2
/de(R)de(T) [p (x(m x(r)) _ fo,zﬁ(x(m)ﬁ(x"))] 7
i

[ () - Sasle ()]}

ISE,

ISE,
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Analytic Solution

» Define/compute

Fij

/de(T)ﬁ (xm)ﬁ (xm) 7
/ P ® gD (x<1<> x(r))ﬁ_ (x(R)) 5 (x(n) ’
-y / 2P PxD (xm’ x(R)) 5 (xue)) 5 (x(T)) 7

b = /de(R)p (x(R)>f,- (x(R)> .

» ISEs reduce to the matrix equation

Bi,

B'F'Ba = BTF'b.

» Assuming B is invertible, this reduces to Bax = b.

» Note: the least squares solution, ignoring smearing, is Fa = b.
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Numeric Solution

» The quantities can be computed as

b = Zf((Rk))

Nyc

= S ()

» Use standard methods to solve B = b.

» One is simply unfolding in the parameter space.
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Uncertainty Calculation
» Define

() = NRN_1 Zf ( Rk)) (i)2],
Zﬁ( U (0) - <Bf*k>2]’

B)  _ (B)
i1’ - Z Cl,] i x]’O[JOZJ

» The uncertainty on « is then

( CB) _ JJ’5k k'

cl@ — p-lc)p=T L p~1c/Bp-T

. . 1p\—1 . .
» One could consider a third term (B"F~'B) ™, the Hessian of the matrix eq.
» Numeric studies show this term is not a meaningful estimate of the uncertainty,
and that it can be neglected.
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Alternate Derivation

v

Again, assume that p (x(R)’ x(T)) = Vp(x®, x(M),

v

Substitute np (x(T)) = ofi (x(T)) into the Fredholm integral equation:

p(x<R>) - vy / AP0 pye <x<T>,x<R>) P (xm)

v

Applying the operator [ dPx®) Ui (x(R)) to both sides yields

/ Px®f (x<R>) » (xw)) - vYa / &x® Px® e (xm’ x(m) P (xm) 7

v

Using the definitions of b and B, this reduces to

b = Bo.
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