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Motivation & Background



The HERMES Spectrometer
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SIDIS Production of Hadrons

» The SIDIS hadron & dihadron processes

1 v ,
e+p — e +h+X,
h e+p — €€ +h+h+X
» Dihadron production includes all
P X sub-processes leading to hadron pair final
states

» Factorization theorem implies o?~¢"X = S~ 4 PF @ 0“1 @ FF

» Access integrals of DFs and FFs
through Fourier moments of ¢y, ¢s, ¢r

& Legendre polynomials in cos .
(g x k) - (g X Py)

¢p = signum[ (k X Py) - q] arccos ,
lg < kI g x Pp|
(g x k) - (g X S)
s = signum[(k X S) -q] arccos ——————————
lg x kllg x S|’
X k) - (P, XR
br = signum[(R X Py) »n} arccos w
lg X k| [P, X R|
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Motivation

» Collinear SIDIS Dihadron cross section

» Collinear access to transversity through two transverse target moments.
» Transversity is coupled with “Collins-like” fragmentation functions

H 1{03}' and H EIL’;” , associated with sp and pp interference.

» TMD SIDIS Dihadron cross section

» The Lund/Artru string fragmentation model predicts Collins function for
pseudo-scalar and vector meson final states have opposite signs.

» Two types of fragmentation are usually defined

Favored: struck quark present in the observed particles.
Disfavored: struck quark not present in the observed

particles. %’ﬁi

S 6/54



Lund/Artru String Fragmentation Model

» Favored fragmentation modeled as the
breaking of a gluon flux tube between the
struck quark and the remnant.

» Assume that the flux tube breaks into a gg
pair with quantum numbers equal to the
vacuum.

» Expect mesons overlapping with |3, 3)|3, —3) and |3, —3)|3, 3) states to
prefer “quark left”.
» |0,0) = pseudo-scalar mesons.
» |1,0) = longitudinally polarized vector mesons.
» Expect mesons overlapping with |3, 3)|3, 1) and |3, —3)|3, —3) states to
prefer “quark right”.
» |1,£1) = transversely polarized vector mesons.

» For the two p7’s, “the Collins function” should have opposite sign to that for ™
» For p;, “the Collins function” is zero.
B
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Lund/Artru String Fragmentation Model

» Favored fragmentation modeled as the
breaking of a gluon flux tube between the
struck quark and the remnant.

» Assume that the flux tube breaks into a gg
pair with quantum numbers equal to the
vacuum.

» Expect mesons overlapping with |3, 3)|3, —3) and |3, —1)|3, 1) states to
prefer “quark left”.
» |0,0) = pseudo-scalar mesons.
» |1,0) = longitudinally polarized vector mesons.
» Expect mesons overlapping with |4, 3)[1, 1) and |1, —1)|3, —1) states to
prefer “quark right”.
» |1,+£1) = transversely polarized vector mesons.

» For the two p7’s, “the Collins function” should have opposite sign to that for 7

» For p;, “the Collins function” is zero.
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Gluon Radiation Fragmentation Model

» Disfavored frag. model: assume produced
diquark forms the observed meson

» Assume additional final state interaction to
set pseudo-scalar quantum numbers

» Assume no additional interactions in
dihadron production.

» Exists common sub-diagram between this model and the Lund/Artru model.

» Keeping track of quark polarization states,
sub-diagram for disfavored |1, 1) diquark production
identical to sub-diagram for favored |3, —3)(3, 3)
diquark production.

+

» Implies that the disfavored Collins function for transverse vector mesons also
has opposite sign as the favored pseudo-scalar Collins function
» Thus fav. = disfav. for Vector Mesons
» Data suggests fav. ~ -disfav. for pseudo-scalar mesons.
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HERMES Collins Moments for Pions

» Final result published in January
A. Airapetian et al, Phys. Lett. B 693
(2010) 11-16. arXiv:1006.4221 (hep-ex)

> Significant 7~ asymmetry implies
Hf_’dmf ~ _Hf_,fav

» Pions have small, but non-zero
asymmetry

» Expect Collins moments negative
for p*.

» Would like uncertainties on
dihadron moments on the order of
0.02.
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Collinear Dihadron Results
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The Angles ¢ verses ¢g |

v

The angle ¢ is the fundamental quantity

vy

The difference is suppressed by (Q?) 2

» Doesn’t matter for leading twist analysis (twist-2)
» Might matter at twist-3 and twist-4

v

Can compute one as easily as the other, so should really use ¢g

v

Note, the equations for ¢ and ¢p | are similar

(g x k) - (P x Rr)

The angle ¢g | is supposed to be an experimentally “easier” quantity.

¢g = signum[(R x Py) - n] arccos

(g x k) - (q x Rr)
lg < k| |qg x Rr| ’

¢r1 = signum[(g x k) - Ry] arccos

with
n=(q Pyk—(k-Py)q.

lg x k| [Py < Rr| -

(1
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Second SIDIS Dihadron Program at HERMES

» Uses ¢g not ¢g | and also use cos ¥.
» Analyzes full TMD (i.e. non-collinear), sub-leading twist cross section.

» Number of unpol. moments: 15 (24 at Tw. 3), compared with pseudo-scalar
mesons 2 (3 at Tw. 3).

» Number of transverse target moments: 27 (54 at Tw. 3), compared with
pseudo-scalars 3 (6 at Tw. 3).

» Must determine which moments are suitable for release.

» Apply acceptance correction.
» Note: RICH momentum cuts significantly effect cos ¢ distribution.
» Attempt background subtraction to separate vector mesons from hadron pairs.

» Measure at least 4 vector mesons/hadron pairs (p-triplet and ¢).

» Have data for K*s (less background than p)
» Theory regarding mixed mass pairs (7K) not as well developed.
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Items Which Required Additional Development

» Non-collinear SIDIS Monte Carlo generator at sub-leading twist.

» Must simulate azimuthal dependence of cross section for systematic studies.
» Cannot use polynomial fits to the data as was done for pseudo-scalar analysis.

» Generator requires

» Non-collinear cross section at sub-leading twist.
» Non-collinear fragmentation models.

» Would also like to understand “Which term in the cross section includes
‘the Collins function’ for pg, pr?”
» Use alternate partial wave expansion
» Note: perhaps possible to answer question without new expansion
» However, pursuit of the answer in this manner has led to new theoretical results:
the sub-leading twist, TMD cross section.
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Theory
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Fragmentation Functions and Spin/Polarization
R, ma) R |02, mo)

» Leading twist Fragmentation functions are related
to number densities
» Amplitudes squared rather than amplitudes
» Difficult to relate Artru/Lund prediction with
published notation and cross section.

X X

» Propose new convention for fragmentation functions
» Functions entirely identified by the polarization states of the quarks,  and x’
» Any final-state polarization, i.e. |1, m;)|{5, m,), contained within partial wave
expansion of fragmentation functions
» Exists exactly two fragmentation functions
» Dy, the unpolarized fragmentation function (y = x’)
» H ll, the polarized (Collins) fragmentation function (x # x’)
» New partial waves analysis proposed, using direct sum basis |¢, m) rather
than the direct product basis |{1, m;)|¢2, my).
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Rigorous Definitions

» Fragmentation Correlation Matrix

DAon(Ph, Sii k) Z/( (0| W,n(x) [Py S X) (P, Sii X|W,(0)|0)

» Trace Notation
zZ|R|

A"z, My, lkr|,cos 9, ¢r — i) = 4m dk" Tr [T A(k, Py, R)]

» Define fragmentation functions via trace relations

Previous Definitions New Definition
FF | Pseudo-Scalar ‘ Dihadron All Final States
D, A7l Al Al 0+
Gt o o AT __
Hi- Al 7] Al 7] Alle' ™ +io7)7)
Ii]ff __ o AlE®)’] __

16M,, k==P, /z.
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Relation with Previous Notation

» Real part of fragmentation function similar
» New definition of D; & Hi-
» Adds “imaginary” part to Dy & Hﬁ, instead of introducing new functions.
» Functions are complex valued and depend on Q2, z, |kr|, My, cos 9, (¢g — ¢x)-
» Comparing with similar trace definitions, e.g. PRD 67:094002, yields the
relations

R||k
Dl‘ = [Dl —i—i% sinJ sin(¢gr — @ )Gl} ;
Gliske Mh other
2
H%‘ = [Hli + IR G geiten—n) FI?] _ R| < Nl
Gliske ‘kT ‘ other ’kT ‘ other

» Note: there are inconsistencies in the literature between definitions of
fo, I:IFI, and H;<I
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Partial Wave Expansion

» Fragmentation functions expanded into partial waves in the direct sum basis
according to

oo L

Dy = 303 Prlcos D)D" (2 My, k),
l=1 m=—¢
oo /L ]

HE = 30 ST Pu(cosd)em O (2 by Jkr).

~
Il

1 m=—¢

» Each term in pseudo-scalar and dihadron cross section uniquely related to a
specific partial wave |¢, m).
» Cross section looks the same for all final states, excepting certain partial
waves may or may not be present
» Pseudo-scalar production is ¢ = 0 sector
» Dihadron production is £ = 0, 1, 2 sector
» Given the pseudo-scalar cross section (at any twist) can extrapolate cross

section for other final states
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Where is ‘‘the Collins function?”’

» Consider direct sum vs. direct product basis By, my) 1 |2, ms)
1®1®1®1 - 1®1 ® 1®1
2727272  \272 2°2)°
= (1e0)®(1®0),
20101010 000. ax qx

» Three ¢ = 1 and two ¢ = 0 cannot be separated experimentally
» Theoretically distinguishable via Generalized Casimir Operators

» Longitudinal vector meson state |1,0)|1, 0) is a mixture of |2, 0) and |0, 0)
» Cannot access, due to £ = 0 multiplicity
» Model predictions for longitudinal vector mesons not testable

» Transverse vector meson states |1, £1)|1, £1) are exactly |2, £2)

» Models predict dihadron H f‘z‘i” has opposite sign as pseudo-scalar H;-.

. . 12,42
» Cross section has direct access to 1, 12,%2)

» Note: the usual IFF, related to H f“’w is not pure sp, but also includes pp

interference.
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Dihadron Twist-3 Cross Section

2 2
a“MpP,
doyy = LML (LT
2mxyQ? 2x

3 S Py cos(m(dp—dR)) Py cos(m(d),— dR))
X2 {A(Xv Ny [Pe,m cos(m(éy — Hr)) (FUﬁT“)S W= PR) EFU@,LCOS = bR ) ]
=0

m=0

‘
+B(x,y) D Pgmcos((2 — m)gy + m¢R)F‘;§/m cos((2—m)pp+meR)

m=—2

V(x,y) Z Py cos((1 — m)pp, + meg)Fyy

m=—=~

2
doyr T MiPh1 <1 + 7) [S1] Z Z { [Pg m Sin((m + 1)y, — mbr — ¢s))

2mxyQ? = L,

P, m cos((1— /")¢h+m¢R)}

P, sin((m+1)dp—mog—¢g) Py sin((m+1) ) —mbp— dbg)
(il sl e

+ B(x,y) [Pz,m sin((1 — m)y, + mog + ¢5)F Pe o sin((1—=m) ey +mepp+ds)

P 3—m)pp+mbr—bg)
+ Py sin((3 — m)y, + mopp — ¢bs)F, /zm*'"(( m)y+mbg— g]

i Py sin(—=mj+mer+dsg)
+ V(x,y) [Pg,m sin(—may, + meg + ¢s)Fyy 0,m pAmoR+bg

+ Py sin((2 — m)y, + mpg — $5)F,, Pe o sin((2—m)dp+meg— ¢3)] }
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Structure Functions, Unpolarized

Py, cos(mpp—maor)

Fyor 0,
1£,0)
D =
pr,m cos(mep, —meR) J [f] ! ] m=0,
w.r |€,m) |¢,—m)
g [2 cos(men — mae) fi (Dl" + Dl )] m>0,
m € 2—m)¢pp+m ' m
Fib os((2=m)gtmer) PPTH 7] cos ((m —2)gn + &p + (1 — m) ) hiH >],
cos((1—m)pp+md 2M k
FZ@"’" ((=mntmor) —=7 lfer| cos((m — 1) + (1 — m)ex)
0 | My
) L|¢,m)
x (thﬁ“ " 4 f D )
Prl costm — _
+ 57 cos((m — 1)én + ¢p — mex)
- M |€,m)
(xf plm 4 th ) .
z
» Can test Lund/Artru model with F' % veos(or) ;}"UZ 7 eos(4on=298) \ia Boer-Mulder’s function

S
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Twist-2 Structure Functions, Transverse Target

0,m sin((m+1)¢—mor—ps)

ur, - O
Ff/ o sin((m+1) ¢, —mepr—ps) _ |:[pT| cos (( l)¢h — ¢y — mfbk)

% (f[if (D\llml) +D\1€,7m)> + X(m)ng (D\l[wl) _ D\[Z,*W))) :|7
FppmUmmennoetes g { |MT| cos ((m — 1) — ¢ — may) thlL‘Lm>:| ;
h

Py sin((3—m)pp+mbr—bs) lPT| | T‘ Loy L|e,m)

Fyr = MM, cos ((m = 3)n +2¢p — (m — 1)¢k) hirH, :

» Can test Lund/Artru model with Fp; sin® 0 sin(— 61 +208+65) ypg sin” 0 sin(30 —20rF5) i
transversity

> In theory, could also test Lund/Artru and gluon radiation models with F'; sin® 9 sin(1+ 26 —0s) and

F Z}? 75in(3on=208=95) yia pretzelocity
» Data from SIDIS pseudo-scalar production indicate pretzelocity very small or possibly zero
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Collinear versus TMD Moments

» It is not the particulars of the DF or FF that make a moment survive in the
collinear case, but rather the >~ m = 0 (necessary condition).
» Moments with /2, H, LIEm (Collins moments)
» £y has Am = 0; Hi" has x # %/, and thus Am = —1.

> Fragmentation functions surviving in collinear case must have m = 1so ) m = 0.
> Collinear moments are |1, 1), |2, 1).

> Moments with 4-H,"“"" (Boer-Mulders moments)

> it has Am = —1.

> Hi* again has Am = —1.

> Moments surviving in collinear case have m = 2, i.e. |2, 2).
» TMD Structure function for the |1, 1) Ay moment

sin 29 sin k N
FUT9 (¢R+¢S)(X»y7 2, PhJ_7pT7kT) = |:|A/[T| (¢p - ¢k) hl(xva) I—[lj“l l>(z" ZkT)

» Collinear assumption implies
/d(rbh dPhL @m ﬂgm(”R—Hj)S)( X, Y52, PhL;pTakT) ~ hl(x) HL“J) (1)(2)3

. k
with ()= [dprmepr) 1O = [ay Ferl i .

h
B
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The TMDGen Generator



Collinear Dihadron Spectator Model

» Based on Bacchetta/Radici spectator model for collinear dihadron production
Phys. Rev. D74 (2006)
» The SIDIS X is replaced with a single, on-shell, particle of mass My o< Mj,.
» Assume one spectator for hadron pairs and vector mesons.
» Integration over transverse momenta is performed before extracting
fragmentation functions.
» One can use the same correlator to extract TMD fragmentation functions
> One just needs to not integrate and follow the Dirac-matrix algebra and partial
wave expansion.
» Numeric studies show need for additional k7 cut-off.
» Original model intended for 717~ pairs
» Adding flavor dependence allows generalization to 7 7%, 7~ 70 pairs.
» Slight change to vertex function allows generalization to Kt K~ pairs.
» Slight change to vertex function and allows generalization to K K~ pairs.
» Unfortunately, the model only includes partial waves of the Collins function
for £ < 2.
» Instead, one can set |2, £2) partial waves proportional to partial waves of either
Hi- or Dy.
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New TMDGEN Generator

» No previous Monte Carlo generator has TMD dihadron production with full
angular dependence
» Method
» Integrates cross section per flavor to determine “quark branching ratios”
» Throw a flavor type according to ratios
» Throw kinematic/angular variables by evaluating cross section
» Can use weights or acceptance rejection
» Full TMD simulation: each event has specific [p;|, ¢,, |kr|, ¢« values
Includes both pseudo-scalar and dihadron SIDIS cross sections
» Guiding plans
» Extreme flexibility
> Allow many models for fragmentation and distribution functions
> Various final states: pseudo-scalars, vector mesons, hadron pairs, etc.
» Output options & connecting to analysis chains of various experiments
» Minimize dependencies on other libraries
» Full flavor and transverse momentum dependence.

v

» Current C++ package considered stable and allows further expansion

» Can be useful for both experimentalists and theorists.
S 26/54



Normalized Counts

Normalized Counts

7+ 7% Kinematic Distributions, p.1
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7+ 7% Kinematic Distributions, p.2
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» Fairly good agreement in both Py and M, distributions.

» Note: some discrepancies in full 5D kinematic, but PYTHIA also doesn’t

match data in full 5D
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ot 7? Kinematic Distributions,
Intrinsic Transverse Momentum

.« Py [GeVic]
s zk; [GeVic]

o

o

5]
I

Normalized Counts
° °
o 5
T

o

o

8
T

o
=
2

Partonic transverse momentum denoted pr
The fragmenting quark’s transverse momentum is zky
Model requires pr /= zkr in order to get narrow P peak

However, model poorly constrains RMS values (p%), (k%)

>
>
>
» Model does not require any flavor dependence to k2, k7 cut-offs
[
» No other generator can show pr, kr distributions

S
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Analysis
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Neutral Pion Reconstruction
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» Invariant mass spectrum of yy-system for 7+~ events.

> Ecys. = ok, with o equal to 0.97, 0.9255 and 0.95 for HERMES, PYTHIA,
and TMDGEN data, respectively.

» Central value of the peak is sufficiently close to the accepted value.

» Width of the peak is reflection of the resolution of the spectrometer for the

7T0 mass.
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Mass Distribution: 7+ #°
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Left panel: comparison with PYTHIA, highlighting various process decaying
into 7t~ pair.

Right panel: Hermes 02-05 data, fit to Breit-Wigner plus linear background to
estimate background fraction.

» High background fraction, but hope only VMs in pp-wave.

v

Distributions for other 77 dihadron effectively the same.



Mass Distribution: K™K~
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» Lower signal, but much lower background fraction.
» No other mesons decaying into K™K~ within mass window.

» Clean access to strange quark distribution and fragmentation functions.

33/54



Fitting Functions

» Perform angular fit in each kinematic bin
» Main focus is on transverse target Collins and Sivers moments
» Fit function includes 41 angular moments plus constant term

» Unpolarized moments, twist-2 and twist-3 (24 moments)

» The transverse target Collins and Sivers moments (18 moments)

2 £
Fleos D, by, dr, bs) = Z[Za‘.“’”l’e,mcos(mmf:mzsR)

£
+ 30 (a7 Py cos((2 — m)n + mor) +al " Py cos(1 = m)éy + mr))

£ )
+ 30 (B P sin(on + Dby — mog — bs) +BL") Py sin(1 — m)gy + mbr + bs))

m=—~

» Constrain a|10,0> =1
» Fit parameters are integrals of structure functions, which are integrals of

distribution and fragmentation functions

|€,m) |€,m) [€,m) 1 |¢m)
a;”" o fiDy lem) pIEm) it prlem) by o< firD)
|€,m) 1 pLlem) 93 x fi [€,m) L|e,m)
a, < hyH, b, x hiH,
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Summary of Further Analysis Details

» The angular acceptance per kinematic bin was correct using a least squares
method and a basis expansion.

» A naive test of the acceptance correction method using TMDGen data for
both training and “HERMES” data.

» The the non-resonant photon pair background was estimated and subtracted
from the results.

» The charge symmetric background was studied and found to be negligible.

» Exclusive background fraction determined to be less than 3.5% with
negligible effects

» The overall vector meson fraction was determined for each final state.

» Using a simple MLE fit (no acceptance correction) the results were also
compared with the published results, using the same data productions,
binning, cuts, etc.



Systematic Uncertainty

» Three non-negligible sources of systematic uncertainty were found:
» Acceptance and the Acceptance Correction
» PYTHIA+RADGEN is used to simulate data
» Moments are induced in PYTHIA+RADGEN data using weights computed from
the angular part of cross section using TMDGEN
» Angular integrated TMDGEN is used as training data for the acceptance
correction.
» Uncertainty set to half the difference between 47 weighted PYTHIA moments and
the corrected PYTHIAmoments.
» Year dependence
> 2002-2004 is with e* beam, 2005 is with e~ beam—almost equal statistics (about
40/60 split)
» Systematic uncertainty is estimated as half the uncertainty needed to reduce the x
per moment per bin to 1.
» RICH Unfolding vs. No Unfolding
» Two methods exist: either assign a track the most likely PID or assigning weights
according to some unfolding.
» Half the difference is taken as the systematic uncertainty.

2
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Results and Conclusions
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Conclusions

» Non-collinear SIDIS Dihadron production provides unique access to
» Strange quark distribution and fragmentation functions
» Testing the Lund/Artru model
» The TMD spin structure of fragmentation
» Theoretical developments include
» Clarifying the prediction of the Lund/Artru Model
» Developing the gluon radiation model
» Defining a new partial wave expansion
» Computing the twist-3 dihadron cross section
» Numerical Methods and Software
» Smearing and acceptance correction method
» TMDGEN Monte Carlo generator
» Analysis and systematic studies completed
» Results are in agreement with Lund/Artru model and the gluon radiation
model, assuming u#-quark dominance

» Much more detailed information now provided regarding H f'l’w
» Just need release of preliminary results by the HERMES Collaboration
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Relations with Previous Notation, Partial Waves
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Fragmentation Correlation Function

» Described spectator model uses the following fragmentation correlation

function

AY(k,Pp,R) =

{ PR R (E— Pyt M) K

R R (= P+ M) RE
CFPE N (= Py M) RE
+ Fst*@iz/(%%”kR (£ — Py + M) lé}

2
1 1 25
X

Gyt (=P = m) e 5.
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Model Calculation for Fragmentation

Functions
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Model Calculation for Fragmentation
Functions

8kt R
TRI HM = “k || <k +\kr\)(( zz>k2—z2\kr\2>

2
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I
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Smearing/Acceptance Effects

» Letx(7) be true value of variables, x(®) the reconstructed values
» A conditional probability p (x(R)‘ x(T)) relates the true PDF p (x(T)) with the

PDF of the reconstructed variables, p (x(®)).
» Specific relation given by Fredholm integral equation

» (xua)) ~ / PxD p (x(R) x(r)) » (xm)’

o / &P ® P (x(R)‘ x(r)) » (xm) _
n

» Can rewrite in terms of a smearing operator
() = sl
= /de(T) p (x(R)
» Fredholm equation is simply

p(+") =s[w ()]

x(T)) g (x(r)) .




Solution with Finite Basis and Integrated
Squared Error

» Restrict to finite basis
> adi (x7).

- (xm) A
p (x<R>‘ x(T>) = S (x(R))_;; (xm) .
iy

» Determine parameters by minimizing the integrated squared error (ISE)

ISE,

2
/ P3P P [p (x(m‘ x(T)) = r,m(ﬂ“);;(ﬂ”)} 7
i

s =[xl () s (7))}



Numerical Solution

» Define/compute

F, = / %D, () 5 (1)
B, = / APx ) D) (x(R)‘ ) (x(R)) p (xm) 7
v / O P (x(T), x(R)) 5 (x(R)) 5 (x(r)) 7
/ 2P ®) (x(R))f,- (x(m) 7
Ng
Vv (R )
A 2 ()
k=1

» ISEs reduce to the matrix equation

S
I

B"F'Ba =B"F'b.
» Assuming (BT F~'B) and B are invertible, the solution for the given ISEs is
o= (B"F'B)'B'F'b=B'b.
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Uncertainty Calculation

» Define

b _
(C )jJ’ - NR _ 1

Zﬁ (xR0 — (-)2],
2 ) () - ]

/(B) (B)
Ci,i' = Zci,j;i/,j'ajaj’-

» The uncertainty on « is then
c® =g~ lc®)p-T 4 p~1c'B)p-T

. . 11 . .
» One could consider a third term (BTF lB) , the Hessian of the matrix eq.
» Numeric studies show this term is not a meaningful estimate of the uncertainty,
and that it can be neglected.
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