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Background
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Main Topics

Spin Fundamental quantum number (more fundamental than mass).
The group theory is identical to angular momentum.

Proton Bound state of quarks and gluons, has spin 1/2 and mass 0.9 GeV

Quark Fundamental particle, fermion (spin 1/2), interacts via “all”
fundamental forces

Gluon Fundamental particle, boson (spin 1), carries the strong nuclear
force.
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Standard Model of Particle Physics

From: Fehling, Dave. “The Standard Model
of Particle Physics: A Lunchbox’s Guide.”
The Johns Hopkins University. Used under
Creative Commons Attribution 3.0 Unported
license.
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Proton Models

I Early data suggested the proton was made of 2 u-quarks and 1 d-quark
I Pauli exclusion principle implies the spins of the u-quarks must be oppositely

aligned
I The spin of the proton is then 1

2 + 1
2 − 1

2 = 1
2

I Problem: data later showed that the quark masses equal only 10% of the
proton mass.

I Other 90% is binding energy, i.e. more quarks and gluons (called the sea)
I The “original” 2 u and 1 d are called “valence quarks”

I How much do the quarks then contribute to the spin of the proton?
I First measurements suggested 20-30%—The Spin Crisis!
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Semi-Inclusive Deep Inelastic Scattering (SIDIS)

I Scattering: lepton interacting
with proton

I Inelastic: produce additional
particles

I Deep: highly off-shell virtual
photon, probes internal
structure of the proton

I Semi-Inclusive: the lepton and
a few of the target fragments
are measured
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Experimental Access to Quark Spin
Deep Inelastic Scattering (DIS) e± + p → e± + X

Inclusive DIS e± + p → h + X (h = π±, π0, K±, etc.)

Semi-Inclusive DIS (SIDIS) e± + p → e± + h + X

More SIDIS e± + p → e± + H + X, with H a system of hadrons,
e.g. π+π0 or K+K−.

Inclusive pp p + p → h + X
I Note: when colliding an electron or positron into a proton, it is not the

electron that “hits” the proton, but rather a high energy photon
I At HERMES, the cleanest data usually has the photon momentum between

30-90% of the lepton beam momentum.
I The effective wavelength at HERMES was then between 50 to 150 am, while

the other HERA experiment reached wavelengths near 1 am.
I When colliding two protons, it is possible for quarks, anti-quarks, and gluons

from each of the protons to interact.
I The results are more difficult to interpret, as several contributions of the above

can contribute.
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Cross Section Factorization
I SIDIS cross section can be written σep→ehX =

∑
q DF ⊗ σeq→eq ⊗ FF

=

I Access integrals of DFs and FFs through Fourier moments of φh, φS, φR⊥ and
Legendre polynomials in cos ϑ.
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Distribution and Fragmentation Functions
Distribution Functions (DF)

Fragmentation Functions (FF)

quark
Unpol. Pol.

D1 H⊥
1

I Many more distributions at higher twist (an expansion in terms of the Q2, the
rest mass of the virtual photon)

I f1 is the unpolarized distribution, g1 the helicity distribution, and h1 the
transversity distribution.

I The f⊥1T (the Sivers function) is related to orbital angular momentum of
quarks.

I The pretzelocity function h⊥1T is related to the shape of the proton.
I The Boer-Mulders function has polarized quarks in an unpolarized proton
I The “polarized” fragmentation function is known as the Collins function
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Twist

I Twist is rigorously defined as the difference between the order and the spin of
an operator in an operator-product expansion.

I In practice, twist describes the scaling with a relevant mass quantity divided
by Q

I Leading twist is twist-2, i.e. an overall factor proportional to 1/Q2

I Higher twist also implies diagrams with more vertices and effects, even at
leading order in αS
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Optical Theorem

I Amplitudes of different |l′, m′〉 are summed before amplitude is squared.
I Analog two-dihadron amplitude includes sum the states of both dihadrons.
I Note: cross sections and physical quantities usually prefer direct-sum over

direct-product bases.
I E.g., physical meson states are basis elements |0, 0〉 and |1, 0〉, not basis

elements
∣∣ 1

2 , 1
2

〉 ∣∣ 1
2 ,− 1

2

〉
,
∣∣ 1

2 ,− 1
2

〉 ∣∣ 1
2 , 1

2

〉
.

I New expansion: in terms of the |l, m〉 state of the two Dihadron system.
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Transverse Momentum
I In the γ-proton center-of-mass frame, the proton is moving with a large

velocity.
I Initially, all effects from the motion of the quarks in directions transverse to

the direction of the proton were considered completely negligible. (See Kane,
et. al 1979)

I Thus the quarks are all assumed to be moving collinear with the proton (a
‘cold’ system)

I An inclusive asymmetry AN was found to be non-zero at several experiments
at varying energies, with the only explanation being transverse momentum
dependent (TMD) effects.

I Two theories were suggested: one by D. Sivers with the TMD effect in the
proton, and one by J. Collins with the TMD effect in the factorization process.

I Data taken 2002-2005 at HERMES fully demonstrate both of these transverse
momentum effects (and others) at HERMES

I Concurring results from other experiments are also now available.
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The Lund/Artru and
Gluon Radiation Models
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Preliminaries

I Collinear SIDIS Dihadron cross section
I Collinear access to transversity through two transverse target moments.
I Transversity is coupled with “Collins-like” fragmentation functions

H� sp
1,OT and H� pp

1,LT , associated with sp and pp interference.

I TMD SIDIS Dihadron cross section
I The Lund/Artru string fragmentation model predicts Collins function for

pseudo-scalar and vector meson final states have opposite signs.

I Two types of fragmentation are usually defined
Favored: struck quark present in the observed particles.

Disfavored: struck quark not present in the observed
particles.
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Quark Spin and Meson Polarizations

I Mesons have one valence quark and one valence anti-quark
I The spins of the valence quark and anti-quark can be either aligned or

anti-aligned
I One can either write the spins in the

I Direct product basis:
∣∣ 1

2 ,± 1
2

〉 ∣∣ 1
2 ,± 1

2

〉
I Direct sum basis: |1, m〉 or |0, 0〉.

I One often writes 1
2 ⊗ 1

2 = 1⊕ 0.
I In either case, there exists four basis elements
I The mass eigenstates are those of the direct sum basis

I |1, m〉 represent three polarization of vector mesons
I |0, 0〉 represent the one polarization of pseudo-scalar mesons

I For each pseudo-scalar meson, there exists a vector meson with identical
quark content, only differing in the polarization of the quarks (up to mixing of
mass flavor eigenstates)
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Lund/Artru String Fragmentation Model
I Favored fragmentation modeled as the

breaking of a gluon flux tube between the
struck quark and the remnant.

I Assume that the flux tube breaks into a qq̄
pair with quantum numbers equal to the
vacuum.

I Expect mesons overlapping with
∣∣1

2 , 1
2

〉 ∣∣1
2 ,−1

2

〉
and

∣∣1
2 ,−1

2

〉 ∣∣1
2 , 1

2

〉
states to

prefer “quark left”.
I |0, 0〉 = pseudo-scalar mesons.
I |1, 0〉 = longitudinally polarized vector mesons.

I Expect mesons overlapping with
∣∣1

2 , 1
2

〉 ∣∣1
2 , 1

2

〉
and

∣∣1
2 ,−1

2

〉 ∣∣1
2 ,−1

2

〉
states to

prefer “quark right”.
I |1,±1〉 = transversely polarized vector mesons.

I For the two ρT ’s, “the Collins function” should have opposite sign to that for π

I For ρL, “the Collins function” is zero.
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Gluon Radiation Fragmentation Model
I Disfavored frag. model: assume produced

diquark forms the observed meson
I Assume additional final state interaction to

set pseudo-scalar quantum numbers
I Assume no additional interactions in

dihadron production.
I Exists common sub-diagram between this model and the Lund/Artru model.

I Keeping track of quark polarization states,
sub-diagram for disfavored |1, 1〉 diquark production
identical to sub-diagram for favored

∣∣1
2 ,−1

2

〉 ∣∣1
2 , 1

2

〉
diquark production.

I Implies that the disfavored Collins function for transverse vector mesons also
has opposite sign as the favored pseudo-scalar Collins function

I Thus fav. = disfav. for Vector Mesons
I Data suggests fav. ≈ -disfav. for pseudo-scalar mesons.
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HERMES Collins Moments for Pions
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I Final result published in January
A. Airapetian et al, Phys. Lett. B 693

(2010) 11-16. arXiv:1006.4221 (hep-ex)

I Significant π− asymmetry implies
H⊥,disf

1 ≈ −H⊥,fav
1

I Pions have small, but non-zero
asymmetry

I Expect Collins moments negative
for ρ±.

I Would like uncertainties on
dihadron moments on the order of
0.02.
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Partial Wave Analysis
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Fragmentation Functions and Spin/Polarization

I Leading twist Fragmentation functions are related
to number densities

I Amplitudes squared rather than amplitudes

I Difficult to relate Artru/Lund prediction with
published notation and cross section.

I Propose new convention for fragmentation functions
I Functions entirely identified by the polarization states of the quarks, χ and χ′
I Any final-state polarization, i.e. |`1, m1〉 |`2, m2〉, contained within partial wave

expansion of fragmentation functions
I Exists exactly two fragmentation functions

I D1, the unpolarized fragmentation function (χ = χ′)
I H⊥1 , the polarized (Collins) fragmentation function (χ 6= χ′)

I New partial waves analysis proposed, using direct sum basis |`, m〉 rather
than the direct product basis |`1, m1〉 |`2, m2〉.
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Partial Wave Expansion
I Fragmentation functions expanded into partial waves in the direct sum basis

according to

D1 =
∞∑

`=1

∑̀

m=−`

P`,m(cos ϑ)eim(φR−φk)D|`,m〉1 (z, Mh, |kT |),

H⊥
1 =

∞∑

`=1

∑̀

m=−`

P`,m(cos ϑ)eim(φR−φk)H⊥|`,m〉
1 (z, Mh, |kT |),

I Each term in pseudo-scalar and dihadron cross section uniquely related to a
specific partial wave |`, m〉.

I Cross section looks the same for all final states, excepting certain partial
waves may or may not be present

I Pseudo-scalar production is ` = 0 sector
I Dihadron production is ` = 0, 1, 2 sector
I Given the pseudo-scalar cross section (at any twist) can extrapolate cross

section for other final states
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Rigorous Definitions

I Fragmentation Correlation Matrix

∆mn(Ph, Sh; k) =
X

X

Z
d4x

(2π)4 eik·x˙0
˛̨
Ψm(x)

˛̨
Ph, Sh; X

¸˙
Ph, Sh; X

˛̨
Ψn(0)

˛̨
0
¸

I Trace Notation

∆[Γ](z, Mh, |kT |, cos ϑ, φR − φk) = 4π
z|R|

16Mh

Z
dk+ Tr [Γ∆(k, Ph, R)]

˛̨
˛̨

k−=P−h /z

.

I Define fragmentation functions via trace relations

Previous Definitions New Definition
FF Pseudo-Scalar Dihadron All Final States
D1 ∆[γ−] ∆[γ−] ∆[γ−(1+iγ5)]

G⊥1 – – ∝ ∆[γ−γ5] – –
H⊥1 ∆[(σ1−)γ5] ∆[(σ1−)γ5] ∆[(σ1−+iσ2−)γ5]

H̄�1 – – ∝ ∆[(σ2−)γ5] – –
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Relation with Previous Notation

I Real part of fragmentation function similar
I New definition of D1 & H⊥

1
I Adds “imaginary” part to D1 & H⊥1 , instead of introducing new functions.
I Functions are complex valued and depend on Q2, z, |kT |, Mh, cos ϑ, (φR − φk).

I Comparing with similar trace definitions, e.g. PRD 67:094002, yields the
relations

D1

∣∣∣
Gliske

=
[

D1 + i
|R||kT |

M2
h

sin ϑ sin(φR − φk) G⊥1

]

other

,

H⊥
1

∣∣∣
Gliske

=
[

H⊥
1 +

|R|
|kT | sin ϑei(φR−φk) H̄�1

]

other
=

|R|2
|kT |2 H�1

∣∣∣∣
other

,

I Note: there are inconsistencies in the literature between definitions of
H�1 , H̄�1 , and H′�

1 .
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Where is “the Collins function?”
I Consider direct sum vs. direct product basis

1
2
⊗ 1

2
⊗ 1

2
⊗ 1

2
=

(
1
2
⊗ 1

2

)
⊗

(
1
2
⊗ 1

2

)
,

= (1⊕ 0)⊗ (1⊕ 0) ,

= 2⊕ 1⊕ 1⊕ 1⊕ 0⊕ 0.

I Three ` = 1 and two ` = 0 cannot be separated experimentally
I Theoretically distinguishable via Generalized Casimir Operators

I Longitudinal vector meson state |1, 0〉 |1, 0〉 is a mixture of |2, 0〉 and |0, 0〉
I Cannot access, due to ` = 0 multiplicity
I Model predictions for longitudinal vector mesons not testable

I Transverse vector meson states |1,±1〉 |1,±1〉 are exactly |2,±2〉
I Models predict dihadron H⊥|2,±2〉

1 has opposite sign as pseudo-scalar H⊥1 .
I Cross section has direct access to H⊥|2,±2〉

1

I Note: the usual IFF, related to H⊥|1,1〉
1 is not pure sp, but also includes pp

interference.
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Cross Section
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Dihadron Twist-3 Cross Section
dσUU =

α2MhPh⊥
2πxyQ2

 
1 +

γ2

2x

!

×
2X

`=0

(
A(x, y)

X̀

m=0

»
P`,m cos(m(φh − φR))

„
F

P`,m cos(m(φh−φR))
UU,T + εF

P`,m cos(m(φh−φR))
UU,L

«–

+ B(x, y)
X̀

m=−`

P`,m cos((2 − m)φh + mφR)F
P`,m cos((2−m)φh+mφR)
UU

+ V(x, y)
X̀

m=−`

P`,m cos((1 − m)φh + mφR)F
P`,m cos((1−m)φh+mφR)
UU

)
,

dσUT =
α2MhPh⊥

2πxyQ2

 
1 +

γ2

2x

!
|S⊥|

2X

`=0

X̀

m=−`

(
A(x, y)

»
P`,m sin((m + 1)φh − mφR − φS))

×
„

F
P`,m sin((m+1)φh−mφR−φS)
UT,T + εF

P`,m sin((m+1)φh−mφR−φS)
UT,L

«–

+ B(x, y)
»

P`,m sin((1 − m)φh + mφR + φS)F
P`,m sin((1−m)φh+mφR+φS)
UT

+ P`,m sin((3 − m)φh + mφR − φS)F
P`,m sin((3−m)φh+mφR−φS)
UT

–

+ V(x, y)
»

P`,m sin(−mφh + mφR + φS)F
P`,m sin(−mφh+mφR+φS)
UT

+ P`,m sin((2 − m)φh + mφR − φS)F
P`,m sin((2−m)φh+mφR−φS)
UT

–)
.
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Structure Functions, Unpolarized
F

P`,m cos(mφh−mφR)

UU,L = 0,

F
P`,m cos(mφh−mφR)

UU,T =

8
><
>:

I
h
f1D|`,0〉

1

i
m = 0,

I
h
2 cos(mφh − mφk) f1

“
D|`,m〉

1 + D|`,−m〉
1

”i
m > 0,

F
P`,m cos((2−m)φh+mφR)

UU = −I

» |pT ||kT |
MMh

cos
`
(m− 2)φh + φp + (1− m)φk

´
h⊥1 H⊥|`,m〉

1

–
,

F
P`,m cos((1−m)φh+mφR)

UU = −2M
Q

I

"
|kT |
Mh

cos((m− 1)φh + (1− m)φk)

×
„

xhH⊥|`,m〉
1 +

Mh

M
f1

D̃⊥|`,m〉

z

«

+
|pT |
M

cos((m− 1)φh + φp − mφk)

×
„

xf⊥D|`,m〉
1 +

M
Mh

h⊥1
H̃|`,m〉

z

«#
.

I Can test Lund/Artru model with Fsin2 ϑ cos(2φR)
UU , Fsin2 ϑ cos(4φh−2φR)

UU via Boer-Mulder’s function
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Twist-2 Structure Functions, Transverse Target

F
P`,m sin((m+1)φh−mφR−φS)

UT,L = 0

F
P`,m sin((m+1)φh−mφR−φS)

UT,T = −I

» |pT |
M

cos
`
(m + 1)φh − φp − mφk

´

×
“

f⊥1T

“
D|`,m〉

1 + D|`,−m〉
1

”
+ χ(m)g1T

“
D|`,m〉

1 − D|`,−m〉
1

””–
,

F
P`,m sin((1−m)φh+mφR+φS)

UT = −I

» |kT |
Mh

cos
`
(m− 1)φh − φp − mφk

´
h1H⊥|`,m〉

1

–
,

F
P`,m sin((3−m)φh+mφR−φS)

UT = I

» |pT |2|kT |
M2Mh

cos
`
(m− 3)φh + 2φp − (m− 1)φk

´
h⊥1T H⊥|`,m〉

1

–
.

I Can test Lund/Artru model with Fsin2 ϑ sin(−φh+2φR+φS)
UT and Fsin2 ϑ sin(3φh−2φR+φS)

UT via
transversity

I In theory, could also test Lund/Artru and gluon radiation models with Fsin2 ϑ sin(φh+2φR−φS)
UT and

Fsin2 ϑ sin(5φh−2φR−φS)
UT via pretzelocity

I Data from SIDIS pseudo-scalar production indicate pretzelocity very small or possibly zero
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Collinear Assumption and Structure Functions

I TMD Structure function for the |1, 1〉 AUT moment

Fsin ϑ sin(φR+φS)
UT (x, y, z, Ph⊥, pT , kT) = −I

» |kT |
Mh

cos
`
φp − φk

´
h1(x, pT) H⊥|1,1〉

1 (z, zkT)

–

I Collinear assumption implies
∫

dφh dPh⊥ Fsin ϑ sin(φR+φS)
UT (x, y, z, Ph⊥, pT , kT) ≈ h1(x) H⊥|1,1〉 (1)

1 (z),

with

h1(x) =
∫

dpT h1(x, pT), H⊥|1,1〉 (1)
1 (z) =

∫
dkT

|kT |
Mh

H⊥|1,1〉
1 (z, zkT).
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Collinear versus TMD Moments
I It is not the particulars of the DF or FF that make a moment survive in the

collinear case, but rather the
∑

m = 0 (necessary condition).
I Moments with h⊥1 H⊥|`,m〉1 (Boer-Mulders moments)

I h⊥1 has χ 6= χ′, and thus ∆m = −1
I H⊥1 similarly has ∆m = −1.
I Final state polarization must have m = 2 in order that

P
m = 0.

I Only surviving moment in collinear dihadron production is |2, 2〉.
I Moments with h1H⊥|`,m〉1 (Collins moments)

I h1 has ∆m = 0.
I H⊥1 again has ∆m = −1.
I Collinear moments are |1, 1〉, |2, 1〉.

I Can also look for the m which cancels the φh dependence

F
P`,m cos((2−m)φh+mφR)

UU = −I

» |pT ||kT |
MMh

cos
`
(m− 2)φh + φp + (1− m)φk

´
h⊥1 H⊥|`,m〉

1

–
,

F
P`,m sin((1−m)φh+mφR+φS)

UT = −I

» |kT |
Mh

cos
`
(m− 1)φh − φp − mφk

´
h1H⊥|`,m〉

1

–
,
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Spectator Model of Dihadron
Fragmentation

32 / 39



Collinear Dihadron Spectator Model

I Exists only one model for polarized dihadron fragmentation functions
I 2006 publication of A. Bacchetta and M. Radici from INFN-Pavia

Phys. Rev. D74 (2006)
I Focuses on collinear fragmentation

I The model is a spectator model
I Optical theorem used to compute the scattering amplitude of pγ∗p̄′γ′∗ → HH̄′.
I A single particle “spectator” is assumed to mediate between p γ H and p̄ γ H̄

vertices.
I Spectator forced to be on-shell, with mass Ms ∝ Mh.

I Model assumes single spectator for both hadron pairs and vector mesons.
I This causes the amplitudes to be summed, rather than the cross sections

I The leading twist fragmentation correlation matrix is computed from the tree
level diagram.

I Integration over transverse momenta is performed before extracting
fragmentation functions via trace relationships.
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TMD Dihadron Spectator Model

I One can use the same correlator to extract TMD fragmentation functions
I Just do not integrate over transverse momentum.
I Convenient to apply new partial wave analysis after Dirac trace algebra.
I Numeric studies show need for additional kT cut-off.

I Original model intended for π+π− pairs
I Adding flavor dependence allows generalization to π+π0, π−π0 pairs.
I Slight change to vertex function allows generalization to K+K− pairs.
I Slight change to vertex function and allows generalization to K+K− pairs.

I Unfortunately, the model only includes partial waves of the Collins function
for ` < 2.

I Instead, one can set |2,±2〉 partial waves proportional to either H⊥|`,m〉1 for
` ≤ 1 or to D|`,m〉1 for ` ≤ 2.
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Fragmentation Correlation Function
I The tree-level diagram implies the following fragmentation correlation

function

∆q(k, Ph, R) =


|Fs|2 e

−2 k2

Λ2
s /k
`
/k − /Ph + Ms

´
/k

+ |Fp|2 e
−2 k2

Λ2
p /k/R

`
/k − /Ph + Ms

´
/R/k

+ Fs∗Fpe
−2 k2

Λ2
sp /k
`
/k − /Ph + Ms

´
/R/k

+ FsFp∗e
−2 k2

Λ2
sp /k/R

`
/k − /Ph + Ms

´
/k
ff

× 1
(2π)3

1
k4 δ

“
(k − Ph)

2 −M2
s

”
e
−2

k2
T

Λ2
b .

I The cut-offs are imposed by assuming certain vertex functions.
I Fragmentation functions can be obtained by applying trace-definitions.
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Results of the Model Calculation
16π2Mhk4

|R|
D|0,0〉

1 =

 
z2|kT |2 + M2

s

1 − z

!2
64
˛̨
Fs ˛̨2 e

−2 k2

Λ2
s − R2 ˛̨Fp ˛̨2 e

−2 k2

Λ2
p

3
75

16π2Mhk4

|R|
D|1,1〉

1 = −2Ms|R||kT |

2
64Re

`
Fs∗Fp´ e

−2 k2

Λ2
sp

3
75

16π2Mhk4
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I Note again the absence of the H⊥|2,m〉
1 partial waves.
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Conclusions and Summary

I The Lund/Artru and (new) gluon radiation model
I Can verify the predictions regarding the signs of certain structure functions

I New partial wave analysis
I Increases understanding and aids in interpretation
I Simplifies notation
I Allows computation of the sub-leading twist cross section

I TMD Spectator Model for Dihadron Fragmentation
I Only available model for TMD polarized dihadron production
I Unfortunately, predicts |2,±2〉 states to be zero.
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