

Accessing TMDs at HERMES

Luciano Pappalardo pappalardo@fe.infn.it (for the HERMES Collaboration)

PANIC11 - Massachusetts Institute of Technology, Cambridge, MA, USA , July 24-29 2011

Quantum phase-space tomography of the nucleon

Quantum phase-space tomography of the nucleon

Quantum phase-space tomography of the nucleon

The table of TMDs

The table of TMDs

functions in red are naive T-odd

functions in red are naive T-odd

functions in green box are chirally odd

functions in red are naive T-odd

functions in green box are chirally odd

$$\frac{d\sigma^{h}}{dx \, dy \, d\phi_{S} \, dz \, d\phi \, d\mathbf{P}_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}2(1-\epsilon)} \left(1+\frac{\gamma^{2}}{2x}\right) \left\{ \begin{bmatrix} F_{\mathrm{UU},\mathrm{T}} + \epsilon F_{\mathrm{UU},\mathrm{L}} \\ +\sqrt{2\epsilon(1+\epsilon)}\cos(\phi)F_{\mathrm{UU}}^{\cos(\phi)} + \epsilon\cos(2\phi)F_{\mathrm{UU}}^{\cos(2\phi)} \end{bmatrix} + \lambda_{l} \left[\sqrt{2\epsilon(1-\epsilon)}\sin(\phi)F_{\mathrm{LU}}^{\sin(\phi)}\right] \\ + \lambda_{l} \left[\sqrt{2\epsilon(1-\epsilon)}\sin(\phi)F_{\mathrm{UL}}^{\sin(\phi)} + \epsilon\sin(2\phi)F_{\mathrm{UL}}^{\sin(2\phi)}\right] \\ + S_{L} \left[\sqrt{2\epsilon(1+\epsilon)}\sin(\phi)F_{\mathrm{UL}}^{\sin(\phi)} + \epsilon\sin(2\phi)F_{\mathrm{UL}}^{\sin(2\phi)}\right] \\ + S_{L} \lambda_{l} \left[\sqrt{1-\epsilon^{2}}F_{\mathrm{LL}} + \sqrt{2\epsilon(1-\epsilon)}\cos(\phi)F_{\mathrm{LL}}^{\cos(\phi)}\right] \\ + S_{T} \left[\sin(\phi-\phi_{S})\left(F_{\mathrm{UT},\mathrm{T}}^{\sin(\phi-\phi_{S})} + \epsilon F_{\mathrm{UT},\mathrm{L}}^{\sin(\phi-\phi_{S})}\right) \\ + \epsilon\sin(\phi+\phi_{S})F_{\mathrm{UT}}^{\sin(\phi+\phi_{S})} + \epsilon\sin(3\phi-\phi_{S})F_{\mathrm{UT}}^{\sin(3\phi-\phi_{S})} \\ + \sqrt{2\epsilon(1+\epsilon)}\sin(\phi_{S})F_{\mathrm{UT}}^{\sin(\phi,S)} \\ + \sqrt{2\epsilon(1+\epsilon)}\sin(2\phi-\phi_{S})F_{\mathrm{UT}}^{\sin(2\phi-\phi_{S})}\right] \right]$$

$$+ S_T \lambda_l \left[\sqrt{1 - \epsilon^2} \cos (\phi - \phi_S) F_{LT}^{\cos (\phi - \phi_S)} \right. \\ \left. + \sqrt{2\epsilon (1 - \epsilon)} \cos (\phi_S) F_{LT}^{\cos (\phi_S)} \right. \\ \left. + \sqrt{2\epsilon (1 - \epsilon)} \cos (2\phi - \phi_S) F_{LT}^{\cos (2\phi - \phi_S)} \right] \right\}$$

-		quark		
U	5	U	L	Т
n	U	f_1 \bigcirc		h_1^{\perp} (*) - ()
c l e n	L		g_1) -)	h_{1L}^{\perp} $\textcircled{\baselinetwidth{\circ}}$ – $\textcircled{\baselinetwidth{\circ}}$
	т	f_{1T}^{\perp} - () - ()	g_{1T}^{\perp}	$h_1 - \bigcirc \bullet \bigcirc \bullet$ $h_{1T}^{\perp} - \bigcirc \bullet \bigcirc \bullet$

$$\frac{d\sigma^{h}}{dx\,dy\,d\phi_{S}\,dz\,d\phi\,d\mathbf{P}_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2\left(1-\epsilon\right)}\left(1+\frac{\gamma^{2}}{2x}\right)$$

$$\left\{\begin{array}{c}\left[F_{\mathrm{UU,T}}+\epsilon F_{\mathrm{UU,L}}\right.\right.\right.\\\left.+\sqrt{2\epsilon\left(1+\epsilon\right)}\cos\left(\phi\right)F_{\mathrm{UU}}^{\cos\left(\phi\right)}+\epsilon\cos\left(2\phi\right)F_{\mathrm{UU}}^{\cos\left(2\phi\right)}\right]\right.$$

+
$$\lambda_l \left[\sqrt{2\epsilon (1-\epsilon)} \sin (\phi) F_{\rm LU}^{\sin (\phi)} \right]$$

+
$$S_L = \left[\sqrt{2\epsilon (1+\epsilon)} \sin (\phi) F_{\mathrm{UL}}^{\sin (\phi)} + \epsilon \sin (2\phi) F_{\mathrm{UL}}^{\sin (2\phi)}\right]$$

+
$$S_L \lambda_l \left[\sqrt{1 - \epsilon^2} F_{\rm LL} + \sqrt{2\epsilon (1 - \epsilon)} \cos(\phi) F_{\rm LL}^{\cos(\phi)} \right]$$

+
$$S_T$$
 $\left[\sin (\phi - \phi_S) \left(F_{\mathrm{UT},\mathrm{T}}^{\sin (\phi - \phi_S)} + \epsilon F_{\mathrm{UT},\mathrm{L}}^{\sin (\phi - \phi_S)} \right) \right.$
+ $\epsilon \sin (\phi + \phi_S) F_{\mathrm{UT}}^{\sin (\phi + \phi_S)} + \epsilon \sin (3\phi - \phi_S) F_{\mathrm{UT}}^{\sin (3\phi - \phi_S)} \right.$
+ $\sqrt{2\epsilon (1 + \epsilon)} \sin (\phi_S) F_{\mathrm{UT}}^{\sin (\phi_S)} \left.$
+ $\sqrt{2\epsilon (1 + \epsilon)} \sin (2\phi - \phi_S) F_{\mathrm{UT}}^{\sin (2\phi - \phi_S)} \right]$

+
$$S_T \lambda_l \left[\sqrt{1 - \epsilon^2} \cos(\phi - \phi_S) F_{LT}^{\cos(\phi - \phi_S)} + \sqrt{2\epsilon (1 - \epsilon)} \cos(\phi_S) F_{LT}^{\cos(\phi_S)} + \sqrt{2\epsilon (1 - \epsilon)} \cos(2\phi - \phi_S) F_{LT}^{\cos(2\phi - \phi_S)} \right]$$

$$\frac{d\sigma^{h}}{dx\,dy\,d\phi_{S}\,dz\,d\phi\,d\mathbf{P}_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\epsilon)}\left(1+\frac{\gamma^{2}}{2x}\right)$$

$$\left\{\begin{array}{c}\left[F_{\mathrm{UU},\mathrm{T}}+\epsilon F_{\mathrm{UU},\mathrm{L}}\right.\\\left.+\sqrt{2\epsilon(1+\epsilon)}\cos\left(\phi\right)F_{\mathrm{UU}}^{\cos\left(\phi\right)}+\epsilon\cos\left(2\phi\right)F_{\mathrm{UU}}^{\cos\left(2\phi\right)}\right]\right.\\\left.+\sqrt{2\epsilon(1+\epsilon)}\sin\left(\phi\right)F_{\mathrm{LU}}^{\sin\left(\phi\right)}\right]\right.\\\left.+S_{L}\left[\sqrt{2\epsilon(1-\epsilon)}\sin\left(\phi\right)F_{\mathrm{UL}}^{\sin\left(\phi\right)}+\epsilon\sin\left(2\phi\right)F_{\mathrm{UL}}^{\sin\left(2\phi\right)}\right]\right.\\\left.+S_{L}\lambda_{l}\left[\sqrt{1-\epsilon^{2}}F_{\mathrm{LL}}+\sqrt{2\epsilon(1-\epsilon)}\cos\left(\phi\right)F_{\mathrm{LL}}^{\cos\left(\phi\right)}\right]\right.\\\left.+S_{T}\left[\sin\left(\phi-\phi_{S}\right)\left(F_{\mathrm{UT},\mathrm{T}}^{\sin\left(\phi-\phi_{S}\right)}+\epsilon F_{\mathrm{UT},\mathrm{L}}^{\sin\left(\phi-\phi_{S}\right)}\right)\right.\\\left.+\epsilon\sin\left(\phi+\phi_{S}\right)F_{\mathrm{UT}}^{\sin\left(\phi+\phi_{S}\right)}+\epsilon\sin\left(3\phi-\phi_{S}\right)F_{\mathrm{UT}}^{\sin\left(3\phi-\phi_{S}\right)}\right.\\\left.+\sqrt{2\epsilon(1+\epsilon)}\sin\left(2\phi-\phi_{S}\right)F_{\mathrm{UT}}^{\sin\left(2\phi-\phi_{S}\right)}\right]\right]$$

+
$$S_T \lambda_l \left[\sqrt{1 - \epsilon^2} \cos(\phi - \phi_S) F_{LT}^{\cos(\phi - \phi_S)} + \sqrt{2\epsilon (1 - \epsilon)} \cos(\phi_S) F_{LT}^{\cos(\phi_S)} + \sqrt{2\epsilon (1 - \epsilon)} \cos(2\phi - \phi_S) F_{LT}^{\cos(2\phi - \phi_S)} \right] \right\}$$

		quark		
		U	L	Т
n	U	f_1 \bigcirc		h_1^{\perp} (*) - ()
C	L		g_1 (\bigcirc - (\bigotimes)	h_{1L}^{\perp} () - ()
l e o n	т	f_{1T}^{\perp}	g_{1T}^{\perp} · · · · · · · · · · · · · · · · · · ·	$\begin{array}{c} h_1 \bullet \bullet$

$$\frac{d\sigma^{h}}{dx\,dy\,d\phi_{S}\,dz\,d\phi\,d\mathbf{P}_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2\left(1-\epsilon\right)}\left(1+\frac{\gamma^{2}}{2x}\right)$$

$$\left\{ \begin{bmatrix} F_{\mathrm{UU,T}}+\epsilon F_{\mathrm{UU,L}}\\ +\sqrt{2\epsilon\left(1+\epsilon\right)}\cos\left(\phi\right)F_{\mathrm{UU}}^{\cos\left(\phi\right)}+\epsilon\cos\left(2\phi\right)F_{\mathrm{UU}}^{\cos\left(2\phi\right)} \end{bmatrix}\right\}$$

+ $\lambda_l \left[\sqrt{2\epsilon (1-\epsilon)} \sin (\phi) F_{\rm LU}^{\sin (\phi)} \right]$

+ $S_L = \left[\sqrt{2\epsilon (1+\epsilon)} \sin (\phi) F_{\text{UL}}^{\sin (\phi)} + \epsilon \sin (2\phi) F_{\text{UL}}^{\sin (2\phi)} \right]$

+
$$S_L \lambda_l \left[\sqrt{1 - \epsilon^2} F_{\rm LL} + \sqrt{2\epsilon (1 - \epsilon)} \cos(\phi) F_{\rm LL}^{\cos(\phi)} \right]$$

+
$$S_T$$
 $\left[\sin (\phi - \phi_S) \left(F_{\mathrm{UT},\mathrm{T}}^{\sin (\phi - \phi_S)} + \epsilon F_{\mathrm{UT},\mathrm{L}}^{\sin (\phi - \phi_S)} \right) \right.$
+ $\epsilon \sin (\phi + \phi_S) F_{\mathrm{UT}}^{\sin (\phi + \phi_S)} + \epsilon \sin (3\phi - \phi_S) F_{\mathrm{UT}}^{\sin (3\phi - \phi_S)} \right.$
+ $\sqrt{2\epsilon (1 + \epsilon)} \sin (\phi_S) F_{\mathrm{UT}}^{\sin (\phi_S)} \left.$
+ $\sqrt{2\epsilon (1 + \epsilon)} \sin (2\phi - \phi_S) F_{\mathrm{UT}}^{\sin (2\phi - \phi_S)} \right]$

$$+ S_T \lambda_l \left[\sqrt{1 - \epsilon^2} \cos (\phi - \phi_S) F_{LT}^{\cos (\phi - \phi_S)} \right. \\ \left. + \sqrt{2\epsilon (1 - \epsilon)} \cos (\phi_S) F_{LT}^{\cos (\phi_S)} \right. \\ \left. + \sqrt{2\epsilon (1 - \epsilon)} \cos (2\phi - \phi_S) F_{LT}^{\cos (2\phi - \phi_S)} \right] \right\}$$

		quark		
		U	L	Т
n	U	f_1 \bigcirc		h_1^{\perp} (*) - ()
C	L		g_1) -)	h_{1L}^{\perp}
e o n	т	f_{1T}^{\perp} - $()$	g_{1T}^{\perp}	$h_1 - \bigcirc \bullet \bullet \bigcirc \bullet$ $h_{1T}^{\perp} - \bigcirc \bullet - \bullet \bigcirc \bullet$

$$\begin{aligned} \frac{d\sigma^{h}}{dx\,dy\,d\phi_{S}\,dz\,d\phi\,d\mathbf{P}_{h\perp}^{2}} &= \frac{\alpha^{2}}{xyQ^{2}2(1-\epsilon)} \left(1 + \frac{\gamma^{2}}{2x}\right) \\ \left\{ \begin{bmatrix} F_{\mathrm{UU},\mathrm{T}} + \epsilon F_{\mathrm{UU},\mathrm{L}} \\ + \sqrt{2\epsilon(1+\epsilon)}\cos(\phi)F_{\mathrm{UU}}^{\cos(\phi)} + \epsilon\cos(2\phi)F_{\mathrm{UU}}^{\cos(2\phi)} \end{bmatrix} \\ + \lambda_{l} \left[\sqrt{2\epsilon(1-\epsilon)}\sin(\phi)F_{\mathrm{LU}}^{\sin(\phi)} \right] \\ + S_{L} \left[\sqrt{2\epsilon(1+\epsilon)}\sin(\phi)F_{\mathrm{UL}}^{\sin(\phi)} + \epsilon\sin(2\phi)F_{\mathrm{UL}}^{\sin(2\phi)} \right] \\ + S_{L} \lambda_{l} \left[\sqrt{1-\epsilon^{2}}F_{\mathrm{LL}} + \sqrt{2\epsilon(1-\epsilon)}\cos(\phi)F_{\mathrm{LL}}^{\cos(\phi)} \right] \\ + S_{T} \left[\sin(\phi-\phi_{S}) \left(F_{\mathrm{UT},\mathrm{T}}^{\sin(\phi-\phi_{S})} + \epsilon F_{\mathrm{UT},\mathrm{L}}^{\sin(\phi-\phi_{S})} \right) \\ + \epsilon\sin(\phi+\phi_{S})F_{\mathrm{UT}}^{\sin(\phi+\phi_{S})} + \epsilon\sin(3\phi-\phi_{S})F_{\mathrm{UT}}^{\sin(3\phi-\phi_{S})} \\ + \sqrt{2\epsilon(1+\epsilon)}\sin(2\phi-\phi_{S})F_{\mathrm{UT}}^{\sin(\phi+\phi_{S})} \\ + \sqrt{2\epsilon(1+\epsilon)}\sin(2\phi-\phi_{S})F_{\mathrm{UT}}^{\cos(\phi-\phi_{S})} \\ + \sqrt{2\epsilon(1-\epsilon)}\cos(\phi_{S})F_{\mathrm{LT}}^{\cos(\phi-\phi_{S})} \\ + \sqrt{2\epsilon(1-\epsilon)}\cos(2\phi-\phi_{S})F_{\mathrm{LT}}^{\cos(2\phi-\phi_{S})} \right] \right\} \end{aligned}$$

A AL		quark		
U	5	U	L	Т
n	U	f_1 \bigcirc		h_1^{\perp} (*) - ()
C	L		g_1 (\bigcirc - (\bigotimes)	h_{1L}^{\perp}
e o n	т	f_{1T}^{\perp}	g_{1T}^{\perp}	$h_1 - \bullet \bullet \bullet$ $h_{1T}^{\perp} - \bullet \bullet - \bullet \bullet \bullet$

		quark		
		U	L	Т
n	U	f_1 \bigcirc		h_1^{\perp} (*) - ()
C	L		g_1 (\bigcirc - (\bigcirc)	h_{1L}^{\perp} · · · ·
e o n	т	f_{1T}^{\perp}	g_{1T}^{\perp}	$h_1 - \bigcirc \bullet \bigcirc \bullet$ $h_{1T}^{\perp} - \bigcirc \bullet \bigcirc \bullet$

How can we disentangle all these contributions ?

EXPERIMENT: setting the proper beam and target polarization states (U, L, T)

ANALYSIS: e.g. fitting the cross section asymmetry for opposite spin states and extracting the relevant Fourier components based on their peculiar azimuthal dependences.

Selected results from A_{UT} SSAs

The Sivers effect

$$\frac{d\sigma^{h}}{dx \, dy \, d\phi_{S} \, dz \, d\phi \, d\mathbf{P}_{h\perp}^{2}} = \frac{\alpha^{2} \, y^{2}}{xyQ^{2} \, 2(1-\epsilon)} \left(1+\frac{\gamma^{2}}{2x}\right)$$

$$\left\{ \begin{bmatrix} F_{\mathrm{UU,T}} + \epsilon F_{\mathrm{UU,L}} \\ +\sqrt{2\epsilon (1+\epsilon)} \cos (\phi) F_{\mathrm{UU}}^{\cos (\phi)} + \epsilon \cos (2\phi) F_{\mathrm{UU}}^{\cos (2\phi)} \end{bmatrix} \right.$$

$$\left. + \lambda_{l} \left[\sqrt{2\epsilon (1-\epsilon)} \sin (\phi) F_{\mathrm{LU}}^{\sin (\phi)} \right]$$

$$+ S_{L} \left[\sqrt{2\epsilon (1-\epsilon)} \sin (\phi) F_{\mathrm{UL}}^{\sin (\phi)} + \epsilon \sin (2\phi) F_{\mathrm{UL}}^{\sin (2\phi)} \right]$$

$$+ S_{L} \lambda_{l} \left[\sqrt{1-\epsilon^{2}} F_{\mathrm{LL}} + \sqrt{2\epsilon (1-\epsilon)} \cos (\phi) F_{\mathrm{LL}}^{\cos (\phi)} \right]$$

$$+ S_{T} \left[\sin (\phi - \phi_{S}) \left(F_{\mathrm{UT,T}}^{\sin (\phi - \phi_{S})} + \epsilon F_{\mathrm{UT,L}}^{\sin (\phi - \phi_{S})} \right) \right.$$

$$\left. + \epsilon \sin (\phi + \phi_{S}) F_{\mathrm{UT}}^{\sin (\phi - \phi_{S})} + \epsilon \sin (3\phi - \phi_{S}) F_{\mathrm{UT}}^{\sin (3\phi - \phi_{S})} \right]$$

+
$$S_T \lambda_l \left[\sqrt{1 - \epsilon^2} \cos (\phi - \phi_S) F_{LT}^{\cos (\phi - \phi_S)} + \sqrt{2\epsilon (1 - \epsilon)} \cos (\phi_S) F_{LT}^{\cos (\phi_S)} + \sqrt{2\epsilon (1 - \epsilon)} \cos (2\phi - \phi_S) F_{LT}^{\cos (2\phi - \phi_S)} \right]$$

		quark		
		U	L	Т
n	U	f_1 \bigcirc		h_1^{\perp} (*) - ()
c l e o n	L		$g_1 \underbrace{\circ}{\circ} - \underbrace{\circ}{\circ}$	h_{1L}^{\perp} $\textcircled{\bullet}$ – $\textcircled{\bullet}$
	т	f_{1T}^{\perp} - $()$	g_{1T}^{\perp}	$h_1 - \bigcirc \bigcirc +$ $h_{1T}^{\perp} - \bigcirc + \bigcirc +$

$$\propto f_{1T}^{\perp}(x, p_T^2) \otimes D_1(z, k_T^2)$$

• correlation between parton transverse momentum and nucleon transverse polarization

• requires orbital angular momentum

null signal for π^- indicates that d-quark Sivers DF > 0 (cancellation) confirmed by phenomenological fits (Torino group) and several theoretical predictions!

Sivers kaons amplitudes [Airapetian et al., Phys. Rev. Lett. 103 (2009) 152002]

- significantly positive
- r clear rise with z
- $m{r}$ rise at low $P_{h\perp}$, plateau at high $P_{h\perp}$
- slightly positive

Sivers kaons amplitudes: open questions

10⁻¹

Х

impact of different k_T dependence of FFs in the convolution integral

Sivers kaons amplitudes: open questions

Higher-twist contrib. for Kaons

The Collins effect

$$\frac{d\sigma^{h}}{dx \, dy \, d\phi_{S} \, dz \, d\phi \, d\mathbf{P}_{h\perp}^{2}} = \frac{\alpha^{2} \, y^{2}}{xyQ^{2} \, 2 \, (1-\epsilon)} \left(1 + \frac{\gamma^{2}}{2x}\right) \left\{ \begin{bmatrix} F_{\mathrm{UU},\mathrm{T}} + \epsilon F_{\mathrm{UU},\mathrm{L}} \\ + \sqrt{2\epsilon \, (1+\epsilon)} \cos \left(\phi\right) F_{\mathrm{UU}}^{\cos \left(\phi\right)} + \epsilon \cos \left(2\phi\right) F_{\mathrm{UU}}^{\cos \left(2\phi\right)} \end{bmatrix} \right. \\ \left. + \lambda_{l} \left[\sqrt{2\epsilon \, (1-\epsilon)} \sin \left(\phi\right) F_{\mathrm{LU}}^{\sin \left(\phi\right)} \right] \right. \\ \left. + S_{L} \left[\sqrt{2\epsilon \, (1-\epsilon)} \sin \left(\phi\right) F_{\mathrm{UL}}^{\sin \left(\phi\right)} + \epsilon \sin \left(2\phi\right) F_{\mathrm{UL}}^{\sin \left(2\phi\right)} \right] \right. \\ \left. + S_{L} \lambda_{l} \left[\sqrt{1-\epsilon^{2}} F_{\mathrm{LL}} + \sqrt{2\epsilon \, (1-\epsilon)} \cos \left(\phi\right) F_{\mathrm{LL}}^{\cos \left(\phi\right)} \right] \right. \\ \left. + S_{T} \left[\frac{\sin \left(\phi - \phi_{S}\right) \left(F_{\mathrm{UT}}^{\sin \left(\phi - \phi_{S}\right)} + \epsilon F_{\mathrm{UT},\mathrm{L}}^{\sin \left(\phi - \phi_{S}\right)} \right) \right. \\ \left. + \epsilon \sin \left(\phi + \phi_{S}\right) F_{\mathrm{UT}}^{\sin \left(\phi + \phi_{S}\right)} + \epsilon \sin \left(3\phi - \phi_{S}\right) F_{\mathrm{UT}}^{\sin \left(3\phi - \phi_{S}\right)} \right. \\ \left. + \sqrt{2\epsilon \, (1+\epsilon)} \sin \left(2\phi - \phi_{S}\right) F_{\mathrm{UT}}^{\sin \left(2\phi - \phi_{S}\right)} \right] \right] \\ \left. + S_{T} \lambda_{l} \left[\sqrt{1-\epsilon^{2}} \cos \left(\phi - \phi_{S}\right) F_{\mathrm{UT}}^{\cos \left(\phi - \phi_{S}\right)} \right] \right]$$

$$+ S_T \lambda_l \left[\sqrt{1 - \epsilon^2} \cos (\phi - \phi_S) F_{LT}^{\cos (\phi - \phi_S)} + \sqrt{2\epsilon (1 - \epsilon)} \cos (\phi_S) F_{LT}^{\cos (\phi_S)} + \sqrt{2\epsilon (1 - \epsilon)} \cos (2\phi - \phi_S) F_{LT}^{\cos (2\phi - \phi_S)} \right] \right\}$$

		quark		
		U	L	Т
n	U	f_1 \bigcirc		h_1^{\perp} (*) - (.)
u c l e o n	L		<i>g</i> ₁ 🜔 – 🛞	h_{1L}^{\perp} $\textcircled{\bullet}$ - $\textcircled{\bullet}$
	т		g_{1T}^{\perp}	h1
				h_{1T}^{\perp}

<u>Collins effect</u>

•
$$\propto h_1(x, p_T^2) \otimes H_1^{\perp}(z, k_T^2)$$

 correlation between parton transverse polarization in a transversely polarized nucleon and transverse momentum of the produced hadron

Collins pions amplitudes

[Airapetian et al., Phys. Lett. B 693 (2010) 11-16]

Collins kaons amplitudes [Airapetian et al., Phys. Lett. B 693 (2010) 11-16]

significantly positive rise with x and z

consistent with zero

The "pretzelosity"

$$\frac{d\sigma^{h}}{dx \, dy \, d\phi_{S} \, dz \, d\phi \, d\mathbf{P}_{h\perp}^{2}} = \frac{\alpha^{2} \, y^{2}}{xyQ^{2} \, 2(1-\epsilon)} \left(1 + \frac{\gamma^{2}}{2x}\right) \left\{ \begin{bmatrix} F_{\mathrm{UU},\mathrm{T}} + \epsilon F_{\mathrm{UU},\mathrm{L}} \\ + \sqrt{2\epsilon (1+\epsilon)} \cos (\phi) F_{\mathrm{UU}}^{\cos (\phi)} + \epsilon \cos (2\phi) F_{\mathrm{UU}}^{\cos (2\phi)} \end{bmatrix} \right. \\ \left. + \lambda_{l} \left[\sqrt{2\epsilon (1-\epsilon)} \sin (\phi) F_{\mathrm{LU}}^{\sin (\phi)} \right] \right. \\ \left. + S_{L} \left[\sqrt{2\epsilon (1+\epsilon)} \sin (\phi) F_{\mathrm{UL}}^{\sin (\phi)} + \epsilon \sin (2\phi) F_{\mathrm{UL}}^{\sin (2\phi)} \right] \right. \\ \left. + S_{L} \lambda_{l} \left[\sqrt{1-\epsilon^{2}} F_{\mathrm{LL}} + \sqrt{2\epsilon (1-\epsilon)} \cos (\phi) F_{\mathrm{LL}}^{\cos (\phi)} \right] \right. \\ \left. + S_{T} \left[\sin (\phi - \phi_{S}) \left(F_{\mathrm{UT},\mathrm{T}}^{\sin (\phi - \phi_{S})} + \epsilon F_{\mathrm{UT},\mathrm{L}}^{\sin (\phi - \phi_{S})} \right) \right. \\ \left. + \epsilon \sin (\phi + \phi_{S}) F_{\mathrm{UT}}^{\sin (\phi + \phi_{S})} + \left[\sin (3\phi - \phi_{S}) F_{\mathrm{UT}}^{\sin (3\phi - \phi_{S})} \right] \right. \\ \left. + S_{T} \lambda_{l} \left[\sqrt{1-\epsilon^{2}} \cos (\phi - \phi_{S}) F_{\mathrm{UT}}^{\cos (\phi - \phi_{S})} \right] \right] \right. \\ \left. + S_{T} \lambda_{l} \left[\sqrt{1-\epsilon^{2}} \cos (\phi - \phi_{S}) F_{\mathrm{LT}}^{\cos (\phi - \phi_{S})} \right] \right]$$

$$S_T \lambda_l \left[\sqrt{1 - \epsilon^2} \cos (\phi - \phi_S) F_{LT}^{\cos (\phi - \phi_S)} + \sqrt{2\epsilon (1 - \epsilon)} \cos (\phi_S) F_{LT}^{\cos (\phi_S)} + \sqrt{2\epsilon (1 - \epsilon)} \cos (2\phi - \phi_S) F_{LT}^{\cos (2\phi - \phi_S)} \right] \right\}$$

		quark		
		U	L	Т
n	U	f_1 \bigcirc		h_1^{\perp} (*) - ()
u c l e o n	L		g_1 (\odot) - (\odot)	h_{1L}^{\perp} $\textcircled{\bullet}$ – $\textcircled{\bullet}$
	т	f [⊥]		h_1
			911	h_{1T}^{\perp}

pretzelosity

$$\propto h_{1T}^{\perp}(x, p_T^2) \otimes H_1^{\perp}(z, k_T^2)$$

 \bullet characterizes the $p_{\rm T}$ dependence of the transverse quark polarization in a transversely polarized nucleon.

• can be linked to the nonspherical shape of the nucleon resulting from substantial quark orbital angular momentum

The $sin(3\phi-\phi_S)$ Fourier component

All amplitudes consistent with zero

...suppressed by two powers of $P_{h\perp}$ w.r.t. Collins and Sivers amplitudes

The worm-gear g_{1T}^{\perp}

$$\frac{d\sigma^{h}}{dx \, dy \, d\phi_{S} \, dz \, d\phi \, d\mathbf{P}_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}2(1-\epsilon)} \left(1+\frac{\gamma^{2}}{2x}\right)$$

$$\left\{ \begin{bmatrix} F_{\mathrm{UU,T}} + \epsilon F_{\mathrm{UU,L}} \\ +\sqrt{2\epsilon(1+\epsilon)}\cos(\phi)F_{\mathrm{UU}}^{\cos(\phi)} + \epsilon\cos(2\phi)F_{\mathrm{UU}}^{\cos(2\phi)} \end{bmatrix} \right.$$

$$\left. + \lambda_{l} \left[\sqrt{2\epsilon(1-\epsilon)}\sin(\phi)F_{\mathrm{LU}}^{\sin(\phi)} \right]$$

$$+ S_{L} \left[\sqrt{2\epsilon(1-\epsilon)}\sin(\phi)F_{\mathrm{UL}}^{\sin(\phi)} + \epsilon\sin(2\phi)F_{\mathrm{UL}}^{\sin(2\phi)} \right]$$

$$+ S_{L} \lambda_{l} \left[\sqrt{1-\epsilon^{2}}F_{\mathrm{LL}} + \sqrt{2\epsilon(1-\epsilon)}\cos(\phi)F_{\mathrm{LL}}^{\cos(\phi)} \right]$$

$$+ S_{T} \left[\sin(\phi-\phi_{S}) \left(F_{\mathrm{UT,T}}^{\sin(\phi-\phi_{S})} + \epsilon F_{\mathrm{UT,L}}^{\sin(\phi-\phi_{S})} \right) \right.$$

$$\left. + \epsilon\sin(\phi+\phi_{S})F_{\mathrm{UT}}^{\sin(\phi+\phi_{S})} + \epsilon\sin(3\phi-\phi_{S})F_{\mathrm{UT}}^{\sin(3\phi-\phi_{S})} \right.$$

$$\left. + \sqrt{2\epsilon(1+\epsilon)}\sin(\phi_{S})F_{\mathrm{UT}}^{\sin(\phi-\phi_{S})} \right]$$

+
$$S_T \lambda_l \left[\sqrt{1 - \epsilon^2} \cos(\phi - \phi_S) F_{LT}^{\cos(\phi - \phi_S)} + \sqrt{2\epsilon (1 - \epsilon)} \cos(\phi_S) F_{LT}^{\cos(\phi_S)} + \sqrt{2\epsilon (1 - \epsilon)} \cos(2\phi - \phi_S) F_{LT}^{\cos(2\phi - \phi_S)} \right]$$

		quark		
		U	L	Т
n	U	f_1 \bigcirc		h_1^{\perp} (*) - ()
u c l e o n	L		$g_1 \underbrace{\circ}{\circ} - \underbrace{\circ}{\circ}$	h_{1L}^{\perp} $\textcircled{\bullet}$ - $\textcircled{\bullet}$
	т	f_{1T}^{\perp} ()	g_{1T}^{\perp}	$h_1 - \bigcirc \bullet \bigcirc \bullet$ $h_{1T}^{\perp} - \bigcirc \bullet \bigcirc \bullet$

Worm-gear

$$\propto g_{1T}^{\perp}(x,p_T^2) \otimes D_1(z,k_T^2)$$

 describes the probability to find longitudinally polarized quarks in a transversely polarized nucleon (→ "trans-helicity")

- accessible in LT DSAs through the leading-twist $\cos(\phi - \phi_S)$ Fourier component

The worm-gear g_{1T}^{\perp}

- The only TMD that is both chiral-even and naïve-T-even
- requires interference between wave funct. components that differ by 1 unit of OAM

 \Rightarrow related to quark orbital motion inside nucleons

- > Many models support simple relations among g_{1T}^{\perp} and other TMDs:
- $g_{1T}^q = -h_{1L}^{\perp q}$ (also supported by Lattice QCD and first data)

•
$$g_{1T}^{q(1)}(x) \overset{WW-type}{\approx} x \int_{x}^{1} \frac{dy}{y} g_{1}^{q}(y)$$
 (Wandzura-Wilczek appr.

The $cos(\phi-\phi_S)$ Fourier component

The $cos(\phi-\phi_S)$ Fourier component

The $cos(\phi-\phi_S)$ Fourier component

The $cos(\phi_S)$ Fourier component

The $cos(2\phi-\phi_S)$ Fourier component

Conclusions

The existence of an intrinsic **quark transverse motion** gives origin to azimuthal asymmetries in the hadron production direction in SIDIS

- significant Collins amplitudes observed for charged pions and K⁺
- → preliminary results enabled first extraction of transversity and Collins FF (by Torino group)
- significant Sivers amplitudes observed for π^+ and K⁺
- \rightarrow clear evidence of non-zero T-odd Sivers function
- \rightarrow (indirect) evidence for non-zero quark orbital angular momentum
- \rightarrow hint of non-trivial role of sea quarks and of higher-twist contrib. for positive kaons

• new results on A_{LT} DSAs sensitive to worm-gear g_{1T}^{\perp}

 \rightarrow non-zero amplitudes observed for the $\cos(\phi - \phi_S)$ Fourier component for π^- (π^+, K^+ ?)

Back-up slides

The HERMES experiment at HERA

Cherenkov Photons C₄F₁₀ Aerogel Mirror

Photon Detector

hadron separation

Accessing the polarized cross section through SSAs Full HERMES transverse data (02-05 data with $\langle P_T \rangle \approx 73\%$)

The relevant Fourier components were extracted through a ML fit of the hadron yields for opposite target transverse spin states, alternately binned in x, z, and $P_{h\perp}$, but unbinned in ϕ and ϕ_s (\rightarrow acceptance effects on azimuthal angles cancel out)

 $Q^{2} > 1 \text{ GeV}^{2}$ $W^{2} > 10 \text{ GeV}^{2}$ 0.023 < x < 0.4 y < 0.95 0.2 < z < 0.7 $2 \text{ GeV} < P_{h} < 15 \text{ GeV}$

$$L = \prod_{i}^{N^{h}} P_{i} \left(\phi_{i}, \phi_{s,i}, P_{T,i}; 2 \left\langle \sin(m\phi \pm n\phi_{s}) \right\rangle_{UT}^{h} \right) = \prod_{i}^{N^{h}} \left[1 + P_{T,i} \left(2 \left\langle \sin(m\phi \pm n\phi_{s}) \right\rangle_{UT}^{h} \sin(m\phi_{i} \pm n\phi_{s,i}) \right) \right]$$
probability of i_{th} SIDIS event
free parameter
This is equivalent to
perform a Fourier
decomposition of
the cross section
asymmetry in the
limit of vanishingly
small ϕ and ϕ_{s} bins
$$A_{UT}^{h} (\phi, \phi_{s}) = \frac{1}{|P_{T}|} \frac{d\sigma^{h}(\phi, \phi_{s}) - d\sigma^{h}(\phi, \phi_{s} + \pi)}{d\sigma^{h}(\phi, \phi_{s}) + d\sigma^{h}(\phi, \phi_{s} + \pi)}$$

$$\sim \sin(\phi + \phi_{s}) \sum_{q} e_{q}^{2} \mathcal{I} \left[\frac{k_{T} \hat{P}_{h\perp}}{M_{h}} h_{1}^{q}(x, p_{T}^{2}) H_{1}^{\perp, q}(z, k_{T}^{2}) \right]$$

$$+ \sin(\phi - \phi_{s}) \sum_{q} e_{q}^{2} \mathcal{I} \left[\frac{p_{T} \hat{P}_{h\perp}}{M} f_{1T}^{\perp, q}(x, p_{T}^{2}) D_{1}^{q}(z, k_{T}^{2}) \right] + \dots$$

I [...]: convolution integral over initial (p_T) and final (k_T) quark transverse momenta

The pion-difference asymmetry

Contribution by decay of exclusively produced vector mesons (ρ^{0}, ω, ϕ) is not negligible (6-7% for pions and 2-3% for kaons), though substatially limited by the requirement z<0.7.

- significantly positive Sivers and Collins amplitudes are obtained
- measured amplitudes are not generated by exclusive VM contribution 40

The pion-difference asymmetry

Contribution by decay of exclusively produced vector mesons (ρ^{0}, ω, ϕ) is not negligible (6-7% for pions and 2-3% for kaons), though substatially limited by the requirement z<0.7.

2-D Collins pions amplitudes

Kinematic dependencies often don't factorize \rightarrow correlations among variables bin in as many independent variables as possibles (multidim. analysis)

X vs. Z

٥

-0.1

0

-0.1

-0.2

0.2

n

0.2

0

0.2

n

0.2

0

0.2

х

 $2 (sin(\phi+\phi_S))_{UT}^{\pi}$

0.15 < x < 0.22

0.5

10

0.22 < x < 0.40

 $\langle Q^2 \rangle = 6.2 \text{ GeV}^2$

2002-2005

A4

0.5

 $P_{h\perp}$ [GeV]

1

8.1 % scale uncertainty

2-D Sivers pions amplitudes

Kinematic dependencies often don't factorize \rightarrow correlations among variables bin in as many independent variables as possibles (multidim. analysis)

X vs. Z

0.2

0

0

0.2

n

0.2

0.2

n

0.2

х

0

0.2

0

0.2

٥

0.2

٥

0.2

0

X vs. $P_{h\perp}$

0.2

2-D moments for π^{\pm} : z vs. $P_{h\perp}$

Collins: Z vs. Phi

Sivers: Z vs. Ph1

Collins amplitudes: twist-4 contrib?

Siver amplitudes: additional studies

 No systematic shifts observed between high and low Q² amplitudes for both π⁺ and K⁺

No indication of important contributions from exclusive VM

test presence of 1/Q²-suppressed contributions

separate each x-bin in two Q^2 bins

hint of higher-twist contributions to the K⁺ amplitude

Probing g_{1T}^{\perp} through Double Spin Asymmetries

$$\begin{split} F_{LT}^{\cos(\phi_h-\phi_S)} &= \mathcal{C}\left[\frac{\hat{h}\cdot p_T}{M}\mathcal{G}_{1T}\mathcal{D}_1\right] \\ F_{LT}^{\cos\phi_S} &= \frac{2M}{Q} \mathcal{C}\left\{-\left(xg_T D_1 + \frac{M_h}{M}h_1\frac{\tilde{E}}{z}\right) \\ &+ \frac{k_T \cdot p_T}{2MM_h}\left[\left(xe_T H_1^{\perp} - \frac{M_h}{M}\mathcal{G}_{1T}\frac{\tilde{D}^{\perp}}{z}\right) + \left(xe_T^{\perp}H_1^{\perp} + \frac{M_h}{M}f_{1T}^{\perp}\frac{\tilde{G}^{\perp}}{z}\right)\right]\right\} \\ F_{LT}^{\cos(2\phi_h-\phi_S)} &= \frac{2M}{Q} \mathcal{C}\left\{-\frac{2(\hat{h}\cdot p_T)^2 - p_T^2}{2M^2}\left(xg_T^{\perp}D_1 + \frac{M_h}{M}h_{1T}^{\perp}\frac{\tilde{E}}{z}\right) \\ &+ \frac{2(\hat{h}\cdot k_T)(\hat{h}\cdot p_T) - k_T \cdot p_T}{2MM_h}\left[\left(xe_T H_1^{\perp} - \frac{M_h}{M}\mathcal{G}_{1T}\frac{\tilde{D}^{\perp}}{z}\right) \\ &- \left(xe_T^{\perp}H_1^{\perp} + \frac{M_h}{M}f_{1T}^{\perp}\frac{\tilde{G}^{\perp}}{z}\right)\right]\right\} \end{split}$$

The simplest way to probe worm-gear g_{1T}^{\perp} is through the $\cos(\phi - \phi_s)$ Fourier component

$$2\left\langle\cos\left(\phi-\phi_{S}\right)\right\rangle_{\mathrm{LT}}^{h} \equiv \sqrt{1-\varepsilon^{2}}\frac{F_{LT}^{\cos\left(\phi_{h}-\phi_{S}\right)}}{F_{UU,T}} = \frac{\mathcal{C}\left[-\frac{\hat{\mathbf{h}}\cdot\mathbf{p}_{T}}{M}g_{1\mathrm{T}}^{\perp,q}\left(x,\mathbf{p}_{T}^{2}\right)D_{1}^{q}\left(z,z^{2}\mathbf{k}_{T}^{2}\right)\right]}{\mathcal{C}\left[f_{1}^{q}\left(x,\mathbf{p}_{T}^{2}\right)D_{1}^{q}\left(z,z^{2}\mathbf{k}_{T}^{2}\right)\right]}$$

 A. Kotzinian et al. (2006) arXiv:hep-ph/0603194v5
 Wandzura-Wilczek app.

- LO GRV98 (unpol. DFs)
 LO GRV2000 (pol. DFs)
- LO GRV2000 (pol. DFs)

R. Jakob et al. Nucl. Phys. A 626 937 (1997) Spectator model

H. Avakian et al. (2010) Phys. Rev. D 81 074035 Bag model

> B. Pasquini et al. (2008) Phys. Rev. D 78 034025 Light cone constituent quark model

dashed line:

Wandzura-Wilczek app.

Model predictions for $A_{LT}^{\cos(\phi-\phi_S)}$

Proton $A_{LT}^{\cos(\phi_h - \phi_s)}$

0.1

A. Kotzinian et al. (2006) arXiv:hep-ph/0603194v5

- Wandzura-Wilczek app. •
- LO GRV98 (unpol. DFs) .
- LO GRV2000 (pol. DFs) .
- **Kretzer FFs**

0.2

0.25

х

0.3

S. Boffi et al. (2009) Phys. Rev. D 79 094012 Light cone constituent quark model

A. Bacchetta et al. (2010) Eur.Phys.J. A45 373-388 diquark spectator model Pt-weighted asymmetry

J. Zhu and B0-Qiang Ma , Phys. Let. B 696 (2011) 246 Light-cone guark-diguark model

0.4

Two different prescriprions Similar predictions for n and d targets and for COMPASS and JLAB

0.35

$$d\sigma = d\sigma_{UU}^0 + \cos 2\phi d\sigma_U^1$$

 $\sin 2\phi \, d\sigma_{UL}^4$

1

$$+ \frac{S}{T} \left\{ \sin(\phi - \phi_s) \ d\sigma_{UT}^8 + \sin(\phi - \phi_s) \right\}$$

+**S**

$$+\frac{1}{Q}$$
$$+\lambda_{e}\left[\cos(\phi - \phi_{S}) d\sigma_{LT}^{13} + \frac{1}{Q}\right]$$

<u>Worm-gear (UL)</u> (Kotzinian-Mulders)

•
$$\propto h_{1L}^{\perp}(x, p_T^2) \otimes H_1^{\perp}(z, k_T^2)$$

• describes the probability to find transversely polarized quarks in a longitudinally polarized nucleon

• accessible in UT measurements through sin($2\phi+\phi_S$) Fourier component

The sin($2\phi + \phi_S$) Fourier component

 arises solely from longitudinal (w.r.t. virtual photon direction) component of the target spin

- related to $\langle \sin(2\phi) \rangle_{UL}$ Fourier comp: $2 \langle \sin(2\phi + \phi_S) \rangle_{UT}^h \propto \frac{1}{2} \sin(\vartheta_{l\gamma^*}) 2 \langle \sin(2\phi) \rangle_{UL}^h$
- sensitive to worm-gear h_{1L}^\perp
- $\boldsymbol{\cdot}$ suppressed by one power of $P_{h\perp}$ w.r.t. Collins and Sivers amplitudes
- no significant signal observed (except maybe for K+)

$$d\sigma \stackrel{\bullet}{=} d\phi^0_{UU} + \cos 2\phi \, d\sigma^1_{UU}$$

$$+ \frac{\mathsf{S}}{\mathsf{L}} \left\{ \sin 2\phi \, d\sigma_{UL}^4 + \right. \right.$$

$$+ \mathop{\mathsf{S}}_{\mathsf{T}} \left\{ \sin(\phi - \phi_{\mathsf{S}}) \ d\sigma_{UT}^{\mathsf{8}} + \sin(\phi_{\mathsf{S}}) \right\}$$

$$+\frac{1}{Q}\sin(2\phi-\phi_{S}) d\sigma_{UT}^{11} + \frac{1}{Q}\sin\phi_{S}d\sigma_{UT}^{12}$$
$$+\lambda_{e}\left[\cos(\phi-\phi_{S}) d\sigma_{LT}^{13} + \frac{1}{Q}\right]$$

Worm-gear (LT)

•
$$\propto g_{1T}^{\perp}(x, p_T^2) \otimes D_1(z, k_T^2)$$

- describes the probability to find longitudinally polarized quarks in a transversely polarized nucleon
- accessible in UT measurements through sub-leading $sin(2\phi-\phi_S)$ Fourier comp.

The subleading-twist $sin(2\phi-\phi_S)$ Fourier component

• sensitive to worm-gear g_{1T}^{\perp} , Pretzelosity and Sivers function:

$$\begin{split} \propto & \mathcal{W}_1(\mathbf{p_T}, \mathbf{k_T}, \mathbf{P_{h\perp}}) \left(\mathbf{x} \mathbf{f_T^{\perp}} \mathbf{D_1} - \frac{\mathbf{M_h}}{\mathbf{M}} \mathbf{h_{1T}^{\perp}} \frac{\tilde{\mathbf{H}}}{\mathbf{z}} \right) \\ & - \mathcal{W}_2(\mathbf{p_T}, \mathbf{k_T}, \mathbf{P_{h\perp}}) \left[\left(\mathbf{x} \mathbf{h_T} \mathbf{H_1^{\perp}} + \frac{\mathbf{M_h}}{\mathbf{M}} \mathbf{g_{1T}} \frac{\tilde{\mathbf{G}^{\perp}}}{\mathbf{z}} \right) \right. \\ & \left. + \left(\mathbf{x} \mathbf{h_T^{\perp}} \mathbf{H_1^{\perp}} - \frac{\mathbf{M_h}}{\mathbf{M}} \mathbf{f_{1T}^{\perp}} \frac{\tilde{\mathbf{D}^{\perp}}}{\mathbf{z}} \right) \right] \end{split}$$

- suppressed by one power of $\mathsf{P}_{h\perp}$ w.r.t. Collins and Sivers amplitudes
- no significant non-zero signal observed

The subleading-twist $sin(\phi_S)$ Fourier component

- sensitive to worm-gear g_{1T}^{\perp} , Sivers function, Transversity, etc
- significant non-zero signal observed for π^- and K⁻ !

- low-Q² amplitude larger
- hint of Q² dependence for π^-

An alternative access to transversity: the di-hadron SSA

azimuthal orientation of relative transv. momentum of the 2 had.

Di-hadron FF

(does not depend on quark transv. momentum)

Chiral-odd T- odd

Correlation between transverse spin of the fragmenting quark and the relative orbital angular momentum of the hadron pair.

Describes Spin-orbit correlation in fragmentation

azimuthal asymmetries in the direction of the outgoing hadron pairs.

- significantly positive amplitudes
- 1st evidence of non zero dihadron FF (can be measured at e^+e^- colliders)
- independent way to access transversity
- no convolution integral involved
- limited statistical power (v.r.t. 1 hadron)

$$\frac{|\mathbf{v} - \mathbf{v}||_{L}}{|\mathbf{v} - \mathbf{v}||_{L}} = \frac{|\mathbf{v} - \mathbf{v}||_{L}}{|\mathbf{v} - \mathbf{v}||_{L}} = \frac{|\mathbf{v} - \mathbf{v}||_{L}}{|\mathbf{v} - \mathbf{v} - \mathbf{v}||_{L}} = \frac{|\mathbf{v} - \mathbf{v}||_{L}}{|\mathbf{v} - \mathbf{v}||_{L}}} = \frac{|\mathbf{v} - \mathbf{v}||_{L}}{|\mathbf{v} - \mathbf{v}||_{L}} = \frac{|\mathbf{v} - \mathbf{v}||_{L}}{|\mathbf{v} - \mathbf{v}||_{L}}} = \frac{|\mathbf{v} - \mathbf{v}||_{L}}{|\mathbf{v} - \mathbf{v}||_{L}}} = \frac{|\mathbf{v} - \mathbf{v}||_{L}}{|\mathbf{v} - \mathbf{v}||_{L}}}{|\mathbf{v} - \mathbf{v}||_{L}} = \frac{|\mathbf{v} - \mathbf{v}||_{L}}{|\mathbf{v} - \mathbf{v}||_{L}}} = \frac{|\mathbf{v} - \mathbf{v}||_{L}}{|\mathbf{v} - \mathbf{v}||_{L}}}{|\mathbf{v} - \mathbf{v}||_{L}}} = \frac{|\mathbf{v} - \mathbf{v}||_{L}}{|\mathbf{v} - \mathbf{v}||_{L}}}{|\mathbf{v} - \mathbf{v}||_{L}}} = \frac{|\mathbf{v} - \mathbf{v}||_{L}}{|\mathbf{v} - \mathbf{v}||_{L}}}{|\mathbf{v} - \mathbf{v}||_{L}}} = \frac{|\mathbf{v} - \mathbf{v}||_{L}}{|\mathbf{v} - \mathbf{v}||_{L}}}{|$$

The Boer-Mulders effect

$$\frac{d^5\sigma}{dx\,dy\,dz\,d\phi_h dP_{h\perp}} \propto \left\{ F_{UU,T} + \varepsilon F_{UU,L} + 2\sqrt{\varepsilon(1+\varepsilon)}\cos\phi_h F_{UU}^{\cos\phi_h} + \varepsilon\cos 2\phi_h F_{UU}^{\cos2\phi_h} \right\}$$

Twist-2:
$$d\sigma_{UU}^{Cos2\phi} \propto \cos 2\phi \cdot \sum_{q} e_{q}^{2} I \begin{bmatrix} \frac{2(\hat{P}_{h\perp} \cdot \vec{k}_{T})(\hat{P}_{h\perp} \cdot \vec{p}_{T}) - \vec{k}_{T} \cdot \vec{p}_{T}}{MM_{h}} & \mathbf{Cahn} \\ \mathbf{Boer-Mulders effect} & \mathbf{effect} \\ \mathbf{Fwist-3:} & d\sigma_{UU}^{Cos\phi} \propto \cos \phi \cdot \sum_{q} e_{q}^{2} \frac{2M}{Q} I \begin{bmatrix} -\frac{(\hat{P}_{h\perp} \cdot \vec{p}_{T})}{M_{h}} x \begin{pmatrix} \hat{P}_{h\perp} \cdot \vec{k}_{T} \end{pmatrix} \\ MH_{h} & \mathbf{M}_{h} \end{pmatrix} x \begin{pmatrix} \hat{P}_{h\perp} \cdot \vec{k}_{T} \end{pmatrix} \\ MH_{h} & \mathbf{M}_{h} \end{pmatrix} = \frac{1}{M} \left[-\frac{(\hat{P}_{h\perp} \cdot \vec{p}_{T})}{M_{h}} x \begin{pmatrix} \hat{P}_{h\perp} \cdot \vec{k}_{T} \end{pmatrix} \\ MH_{h} & \mathbf{M}_{h} \end{pmatrix} \right]$$

Accessed through azimuthal modulations in SIDIS with unpol. H and D targets

$$\left\langle \cos n\phi \right\rangle \left(x, y, z, P_{h\perp}\right) = \frac{\int \cos n\phi \ \sigma^{(5)} d\phi}{\int \sigma^{(5)} d\phi} \propto \frac{F_{UU}^{\cos n\phi}}{F_{UU,T} + \varepsilon F_{UU,L}}$$

Analysis

Full-differential unfolding of detector and radiative effects

Extraction method checks:

- Stable versus time and major target magnet and IP geometry variations
- Stable versus beam charge and misalignment
- Unphysical cos(3φ) and cos(4φ) terms consistent with zero
- Stable with different xsec models and binning schemes

Unpolarized cross-section

Difference in pion charge

Proton vs Deuteron Target

Quark d vs u contribution ? DATA support Boer-Mulders of same sign for u and d

The kaon signal

The kaon signal

