

Selected results from the HERMES experiment

Luciano Pappalardo pappalardo@fe.infn.it (for the HERMES Collaboration)

ANKE/PAX Workshop on Spin Physics Dubna, 20-26 June 2009

The nucleon spin structure

The nucleon spin structure

The nucleon spin structure

Can be studied by measuring azimuthal asymmetries in SIDIS

$$d\boldsymbol{\sigma} = d\boldsymbol{\sigma}_{UU}^{0} + \cos 2\phi \, d\boldsymbol{\sigma}_{UU}^{1} + \frac{1}{Q} \cos\phi \, d\boldsymbol{\sigma}_{UU}^{2} + \boldsymbol{\lambda}_{e} \frac{1}{Q} \sin\phi \, d\boldsymbol{\sigma}_{LU}^{3}$$
$$+ \mathbf{S}_{L} \left\{ \sin 2\phi \, d\boldsymbol{\sigma}_{UL}^{4} + \frac{1}{Q} \sin\phi \, d\boldsymbol{\sigma}_{UL}^{5} + \boldsymbol{\lambda}_{e} \left[d\boldsymbol{\sigma}_{LL}^{6} + \frac{1}{Q} \cos\phi \, d\boldsymbol{\sigma}_{LL}^{7} \right] \right\}$$

$$+ \mathbf{S}_{\mathsf{T}} \Big\{ \sin(\phi - \phi_{S}) \ d\sigma_{UT}^{8} + \sin(\phi + \phi_{S}) \ d\sigma_{UT}^{9} + \sin(3\phi - \phi_{S}) \ d\sigma_{UT}^{10} \Big\}$$

$$+\frac{1}{Q}\sin(2\phi-\phi_s) \ d\sigma_{UT}^{11} + \frac{1}{Q}\sin\phi_s d\sigma_{UT}^{12}$$

$$+\lambda_{e} \left[\cos(\phi - \phi_{S}) \ d\sigma_{LT}^{13} + \frac{1}{Q} \cos\phi_{S} d\sigma_{LT}^{14} + \frac{1}{Q} \cos(2\phi - \phi_{S}) d\sigma_{LT}^{15} \right] \right\}$$

8 leading-twist terms

$$d\sigma = \frac{d\sigma_{UU}^{0} + \cos 2\phi \, d\sigma_{UU}^{1}}{+ \frac{1}{Q} \cos \phi \, d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q} \sin \phi \, d\sigma_{LU}^{3}} + \frac{1}{Q} \sin \phi \, d\sigma_{LU}^{3}} + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^{4} + \frac{1}{Q} \cos \phi \, d\sigma_{LL}^{7}} + \frac{1}{Q} \cos \phi \, d\sigma_{UL}^{7}}{+ \frac{1}{Q} \sin \phi \, d\sigma_{UL}^{5} + \lambda_{e} \left[\frac{d\sigma_{LL}^{6}}{+ \frac{1}{Q} \cos \phi \, d\sigma_{LL}^{7}} \right] \right\}} + \frac{1}{Q} \sin (\phi - \phi_{S}) \, d\sigma_{UT}^{8} + \sin(\phi + \phi_{S}) \, d\sigma_{UT}^{9} + \sin(3\phi - \phi_{S}) \, d\sigma_{UT}^{10}} + \frac{1}{Q} \sin(2\phi - \phi_{S}) \, d\sigma_{UT}^{11} + \frac{1}{Q} \sin \phi_{S} \, d\sigma_{UT}^{12}} + \frac{1}{Q} \cos(\phi - \phi_{S}) \, d\sigma_{LT}^{13}} + \frac{1}{Q} \cos \phi_{S} \, d\sigma_{LT}^{14} + \frac{1}{Q} \cos(2\phi - \phi_{S}) \, d\sigma_{LT}^{15}} \right]$$

	Beam Tar pol. po	$ \underline{\sigma}_{BT}^{ep \to ehX} = $	$=\sum_{q} OF \otimes \sigma^{e}$	eq→e	$q \otimes FF$
1 2	ŬŰ	$\frac{1}{\cos(2\phi_h^l)}$	$f_1 = \bullet$ $h_1^{\perp} = \bullet^- \bullet$	\otimes	$D_1 = \bullet$ $H_1^{\perp} = \bullet^- \bullet$
3	UL	$\sin(2\phi_h^l)$	$h_{1L}^{\perp} = \textcircled{\bullet} \bullet - \textcircled{\bullet} \bullet$	\otimes	$H_1^{\perp} = \textcircled{\bullet}^-$
4 5	UT	$\frac{\sin(\phi_h^l + \phi_S^l)}{\sin(\phi_h^l - \phi_S^l)}$	$h_1 = \textcircled{\bullet}^{-} \textcircled{\bullet}^{+}$ $f_{1T}^{\perp} = \textcircled{\bullet}^{-} \textcircled{\bullet}^{-}$	\otimes	$H_1^{\perp} = \textcircled{\bullet}^{-} \textcircled{\bullet}$ $D_1 = \textcircled{\bullet}$
6		$\sin(3\phi_h^l - \phi_S^l)$	$h_{1T}^{\perp} = \bullet^{-\bullet} \bullet$	\otimes	$H_1^{\perp} = \textcircled{\bullet}^- \textcircled{\bullet}$
7	LL	1	$g_1 = \bullet $	\otimes	$D_1 = \bullet$
8	LT	$\cos(\phi_h^l-\phi_S^l)$	$g_{1T} = \bullet \bullet \bullet \bullet \bullet$	\otimes	$D_1 = \bullet$

$$\sigma_{\mathsf{BT}}^{ep \to ehX} = \sum_{q} \bigoplus_{v \to v} \sigma^{eq \to eq} \otimes FF$$

$$\int_{\mathsf{T}} = \underbrace{\circ}_{q} \bigoplus_{v \to v} \otimes f_{v} \bigoplus_{v \to v} \bigoplus_{v \to v$$

Difference of probabilities to find quarks with spin aligned or anti-aligned to the nucleon transverse spin

Chiral-odd

requires spin flip of the quark

Difference of probabilities to find quarks with spin aligned or anti-aligned to the nucleon transverse spin

Chiral-odd

requires spin flip of the quark

Transversity

Difference of probabilities to find quarks with spin aligned or anti-aligned to the nucleon transverse spin

Chiral-odd

requires spin flip of the quark

Sivers function

 $f_{1T}^{\perp q}(x, p_T^2)$

Chiral-even T- odd

Probability to find unpolarized quarks with transverse momentum p_T in a transversely pol. nucleon.

describes spin-orbit correlation in the nucleon

Requires non-zero orbital angular momentum!

azimuthal asymmetries in the direction of the outgoing hadrons.

h

 p_{T}

Collins function

 $H_1^{\perp}(z,k_T^2)$

Chiral-odd T- odd

Correlation between transverse spin of the fragmenting quark and transverse momentum of the produced hadron

describes spin-orbit correlation in fragmentation

Analyzer of fragmenting quark's transv. polarization

azimuthal asymmetries in the direction of the outgoing hadrons.

$$d\sigma = d\sigma_{UU}^{0} + \cos 2\phi \, d\sigma_{UU}^{1} + \frac{1}{Q} \cos \phi \, d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q} \sin \phi \, d\sigma_{LU}^{3} \\ + \mathbf{S}_{L} \left\{ \sin 2\phi \, d\sigma_{UL}^{4} + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^{5} + \lambda_{e} \left[d\sigma_{LL}^{6} + \frac{1}{Q} \cos \phi \, d\sigma_{LL}^{7} \right] \right\} \\ + \mathbf{S}_{T} \left\{ \frac{\sin(\phi - \phi_{S}) \, d\sigma_{UT}^{8}}{Q_{UT}} + \frac{\sin(\phi + \phi_{S}) \, d\sigma_{UT}^{9}}{Q_{UT}} + \sin(3\phi - \phi_{S}) \, d\sigma_{UT}^{10} \\ + \frac{1}{Q} \sin(2\phi - \phi_{S}) \, d\sigma_{UT}^{11} + \frac{1}{Q} \sin \phi_{S} d\sigma_{UT}^{12} \\ + \lambda_{e} \left[\cos(\phi - \phi_{S}) \, d\sigma_{LT}^{13} + \frac{1}{Q} \cos \phi_{S} d\sigma_{LT}^{14} + \frac{1}{Q} \cos(2\phi - \phi_{S}) d\sigma_{LT}^{15} \right] \right\} \\ d\sigma_{UT}^{Sivers} \propto |S_{T}| \, \sin(\phi - \phi_{S}) \cdot \sum_{q} e_{q}^{2} I \left[\frac{\vec{p}_{T} \cdot \hat{P}_{hL}}{M_{h}} \int_{T_{T}}^{L^{4}} (x, p_{T}^{2}) \otimes D_{1}^{q}(z, k_{T}^{2}) \right]$$

$$d\boldsymbol{\sigma}_{UT}^{Collins} \propto \left| S_T \right| \; \sin(\phi + \phi_S) \cdot \sum_q e_q^2 I \left[\frac{\vec{k}_T \cdot \hat{P}_{h\perp}}{M_h} h_1(x, p_T^2) \otimes H_1^{\perp q}(z, k_T^2) \right]$$

I[...] =convolution integral over intrinsic (\vec{p}_T) and fragmentation (\vec{k}_T) transverse momenta 15

$$d\sigma = d\sigma_{UU}^{0} + \cos 2\phi \, d\sigma_{UU}^{1} + \frac{1}{Q} \cos \phi \, d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q} \sin \phi \, d\sigma_{LU}^{3} + \mathbf{S}_{L} \left\{ \sin 2\phi \, d\sigma_{UL}^{4} + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^{5} + \lambda_{e} \left[d\sigma_{LL}^{6} + \frac{1}{Q} \cos \phi \, d\sigma_{LL}^{7} \right] \right\} + \mathbf{S}_{T} \left\{ \frac{\sin(\phi - \phi_{S}) \, d\sigma_{UT}^{8}}{\sin(\phi - \phi_{S}) \, d\sigma_{UT}^{8}} + \frac{\sin(\phi + \phi_{S}) \, d\sigma_{UT}^{9}}{\sin(\phi - \phi_{S}) \, d\sigma_{UT}^{10}} + \frac{1}{Q} \sin(2\phi - \phi_{S}) \, d\sigma_{UT}^{11} + \frac{1}{Q} \sin \phi_{S} d\sigma_{UT}^{12} + \lambda_{e} \left[\cos(\phi - \phi_{S}) \, d\sigma_{LT}^{13} + \frac{1}{Q} \cos \phi_{S} d\sigma_{LT}^{14} + \frac{1}{Q} \cos(2\phi - \phi_{S}) \, d\sigma_{LT}^{15} \right] \right\} \\ d\sigma_{UT}^{\text{Sivers}} \approx |S_{T}| \frac{\sin(\phi - \phi_{S})}{q} e_{q}^{2} l \left[\frac{\vec{p}_{T} \cdot \hat{P}_{h,1}}{M_{h}} f_{T} \frac{f_{T}^{\perp q}(x, p_{T}^{2}) \otimes D_{I}^{q}(z, k_{T}^{2})}{M_{h}} \right]$$
Two distinctive signatures if $\phi_{S} \neq 0$ (transversely polarized target) $d\sigma_{UT}^{\text{colling}} \propto |S_{T}| \frac{\sin(\phi + \phi_{S})}{q} \sum_{q} e_{q}^{2} l \left[\frac{\vec{k}_{T} \cdot \hat{P}_{h,1}}{M_{h}} h_{I}(x, p_{T}^{2}) \otimes H_{I}^{\perp q}(z, k_{T}^{2}) \right]$

I[...] =convolution integral over intrinsic (\vec{p}_T) and fragmentation (\vec{k}_T) transverse momenta 16

hadron separation

TRD, Calorimeter, preshower, RICH: lepton-hadron > 98%

Full HERMES transverse data set (2002-2005)

(transversely polarized hydrogen target: $\langle P \rangle \approx 73 \%$)

	inclusive DIS	semi-inclusive DIS
Four momentum transfer	$Q^2 > 1{ m GeV^2}$	$Q^2 > 1 \mathrm{GeV^2}$
Squared mass of final hadronic state	$W^2 > 4{ m GeV^2}$	$W^2 > 10 \mathrm{GeV^2}$
Fractional energy transfer	0.1 < y < 0.95	<i>y</i> < 0.95
Bjorken scaling variable	0.023 < <i>x</i> < 0.4	0.023 < x < 0.4
Virtual_photon – hadron angle		$ heta_{\gamma^*h} > 0.02 \mathrm{rad}$
Hadron momentum		$2 \mathrm{GeV} < P_h < 15 \mathrm{GeV}$
Energy fraction		0.2 < z < 0.7

Full HERMES transverse data set (2002-2005)

(transversely polarized hydrogen target: $\langle P \rangle \approx 73 \%$)

	inclusive DIS	semi-inclusive DIS
Four momentum transfer	$Q^2 > 1{ m GeV^2}$	$Q^2 > 1 \mathrm{GeV^2}$
Squared mass of final hadronic state	$W^2 > 4{ m GeV^2}$	$W^2 > 10 { m GeV^2}$
Fractional energy transfer	0.1 < y < 0.95	<i>y</i> < 0.95
Bjorken scaling variable	0.023 < <i>x</i> < 0.4	0.023 < x < 0.4
Virtual_photon – hadron angle		$ heta_{\gamma^*h} > 0.02 \mathrm{rad}$
Hadron momentum		$2 \mathrm{GeV} < P_h < 15 \mathrm{GeV}$
Energy fraction		0.2 < z < 0.7

The selected SIDIS events are used to extract the Collins and Sivers amplitudes through a Maximum Likelihood fit using the PDF: /

$$L = \prod_{i} (F_{i})^{w_{i}}$$

$$F_{i} \left(\left\langle \sin(\phi \pm \phi_{s}) \right\rangle_{UT}^{h}, P_{t}, \phi, \phi_{s} \right) \propto 1 + P_{t} \left[2 \left\langle \sin(\phi + \phi_{s}) \right\rangle_{UT}^{h} \sin(\phi + \phi_{s}) + 2 \left\langle \sin(\phi - \phi_{s}) \right\rangle_{UT}^{h} \sin(\phi - \phi_{s}) + 2 \left\langle \sin(\phi - \phi_{s}) \right\rangle_{UT}^{h} \sin(\phi - \phi_{s}) \right\rangle_{UT}^{h} \sin(\phi - \phi_{s}) + 2 \left\langle \sin(\phi - \phi_{s}) \right\rangle_{UT}^{h} \sin(\phi - \phi_{s}) \left\langle \sin(\phi - \phi_{s}) \right\rangle_{UT}^{h} \sin(\phi - \phi_{s}) \right\rangle_{UT}^{h} \left\langle \sin(\phi -$$

Results and interpretation

Collins moments for pions (2002-2005)

- positive amplitude for π^+
- ~ 0 amplitude for π^0
- negative amplitude for π^-

$$\begin{cases} u \Rightarrow \pi^{+}; d \Rightarrow \pi^{-} (fav) \\ u \Rightarrow \pi^{-}; d \Rightarrow \pi^{+} (unfav) \end{cases}$$

the large negative π^- amplitude suggests disfavored Collins function with opposite sign:

$$H_{1}^{\perp,\mathrm{unfav}}\left(z\right)\approx-H_{1}^{\perp,\mathrm{fav}}\left(z\right)$$

→ measurement at e⁺e⁻ collider machines

 $\propto I[h_{1'}(x)H_{1}^{\perp q}(z)]$

Collins moments for pions (2002-2005)

- positive amplitude for π^+
- ~ 0 amplitude for π^0
- negative amplitude for π^-

$$\begin{cases} u \Rightarrow \pi^{+}; d \Rightarrow \pi^{-} (fav) \\ u \Rightarrow \pi^{-}; d \Rightarrow \pi^{+} (unfav) \end{cases}$$

the large negative π^- amplitude suggests disfavored Collins function with opposite sign:

$$H_{1}^{\perp,\mathrm{unfav}}\left(z\right)\approx-H_{1}^{\perp,\mathrm{fav}}\left(z\right)$$

→ measurement at e⁺e⁻ collider machines

 $\propto I[h_{1'}(x)H_{1}^{\perp q}(z)] \neq 0$ Transversity & Collins FF $\neq 0$

Collins moments: Pion-kaon comparison

- K^+ and π^+ amplitudes consistent (u-quark dominance)
- K^- and π^- amplitudes with opposite sign (but $K^-(\overline{u}s)$ originates from fragmentation of sea quarks)

Sivers moments for pions (2002-2005)

- positive amplitude for π^+
- positive amplitude for π^0
- amplitude ~ 0 for π^-

Sivers moments: Pion-kaon comparison

• K⁺ amplitude is larger than for π⁺ conflicts with usual expectations based on u-quark dominance

$$\pi^+ \equiv (u, \overline{d}) \qquad K^+ \equiv (u, \overline{s})$$

suggests substantial magnitudes of the Sivers function for the sea quarks

• Both K^- and π^- amplitudes are consistent with zero

The extraction of the Distribution Functions

$$\left\langle \sin(\phi + \phi_S) \right\rangle_{UT}^h = \frac{\int d\phi_S d^2 \vec{P}_{h\perp} \sin(\phi + \phi_S) \ d\sigma_{UT}}{\int d\phi_S d^2 \vec{P}_{h\perp} d\sigma_{UU}} \sim \left[\frac{\vec{k}_T \cdot \hat{P}_{h\perp}}{M_h} h_1(x, p_T^2) H_1^{\perp q}(z, k_T^2) \right]$$

Convolution integral on transverse momenta p_T and k_T

Experiment: Extraction of h_1 requires a full integration over $P_{h\perp}$ (from 0 to ∞)

Due to the partial experimental coverage in $P_{h\perp}$ acceptance effects need to be well under control.

Theory: difficult to solve \implies Gaussian ansatz

$$h_1(x, p_T^2) \approx \frac{h_1(x)}{\pi \langle p_T^2(x) \rangle} e^{-\frac{p_T^2}{\langle p_T^2(x) \rangle}} \qquad H_1^{\perp q}(z, k_T^2) \approx \frac{H_1^{\perp q}(z)}{\pi \langle k_T^2(z) \rangle} e^{-\frac{k_T^2}{\langle k_T^2(z) \rangle}}$$

(extraction assumption-dependent)

An alternative channel to access transversity

Interference FF

(does not depend on quark transv. momentum)

Chiral-odd T- odd

Correlation between transverse spin of the fragmenting quark and the relative orbital angular momentum of the hadron pair.

Describes Spin-orbit correlation in fragmentation

azimuthal asymmetries in the direction of the outgoing hadron pairs.

An alternative channel to access transversity

Interference FF

(does not depend on quark transv. momentum)

Chiral-odd T- odd

Correlation between transverse spin of the fragmenting quark and the relative orbital angular momentum of the hadron pair.

Describes Spin-orbit correlation in fragmentation

azimuthal asymmetries in the direction of the outgoing hadron pairs.

- Independent way to access transversity
- No complications due to convolution integral \rightarrow interpretation more transparent
- ...but limited statistical power (v.r.t. single-hadron SSAs)
- published on JHEP 06 (2008) 017

The unpolarized cross section

 $d\sigma = d\sigma_{UU}^{0} + \cos 2\phi \, d\sigma_{UU}^{\cos 2\phi} + \frac{1}{Q} \cos \phi \, d\sigma_{UU}^{\cos \phi} + \text{ [polarized part]}$

The unpolarized cross section

$$d\sigma = d\sigma_{UU}^{0} + \cos 2\phi \ d\sigma_{UU}^{\cos 2\phi} + \frac{1}{Q} \cos \phi \ d\sigma_{UU}^{\cos \phi} + \text{[polarized part]}$$

$$\vec{k} = \frac{1}{Q} \cos \phi \ d\sigma_{UU}^{\cos \phi} + \text{[polarized part]}$$

$$\vec{k} = \frac{1}{Q} \cos \phi \ d\sigma_{UU}^{\cos \phi} + \text{[polarized part]}$$

$$\vec{k} = \frac{1}{Q} \cos \phi \ d\sigma_{UU}^{\cos \phi} + \frac{1}{Q} \cos \phi \ d\sigma_{U}^{\cos \phi} +$$

Boer-Mulders effect

I[...] =convolution integral over intrinsic (\vec{p}_T) and fragmentation (\vec{k}_T) transverse momenta 34

The unpolarized cross section

$$d\sigma = d\sigma_{UU}^{0} + \cos 2\phi \ d\sigma_{UU}^{\cos 2\phi} + \frac{1}{Q} \cos \phi \ d\sigma_{UU}^{\cos \phi} + \text{ [polarized part]}$$

$$\vec{k} = \frac{1}{Q} \cos \phi \ d\sigma_{UU}^{\cos \phi} + \text{ [polarized part]}$$

$$\vec{k} = \frac{1}{Q} \cos \phi \ d\sigma_{UU}^{\cos \phi} + \text{ [polarized part]}$$

$$\vec{k} = \frac{1}{Q} \cos \phi \ d\sigma_{UU}^{\cos \phi} + \text{ [polarized part]}$$

$$\vec{k} = \frac{1}{Q} \cos \phi \ d\sigma_{UU}^{\cos \phi} + \text{ [polarized part]}$$

$$\vec{k} = \frac{1}{Q} \cos \phi \ d\sigma_{UU}^{\cos \phi} + \frac{1}{Q} \cos \phi \ d\sigma_{U}^{\cos \phi} + \frac{1}{Q} \cos \phi \ d\sigma_$$

I[...] =convolution integral over intrinsic (\vec{p}_T) and fragmentation (\vec{k}_T) transverse momenta 35

Т

Boer-Mulders function (unpolarized cross section)

UÚ	1	$f_1 = \bullet$	\otimes	$D_1 = \bullet$
	$\cos(2\phi_h^l)$	$h_1^{\perp} = ^{-} $	\otimes	$H_1^{\perp} = \textcircled{\bullet}^{-} \textcircled{\bullet}$
UL	$\sin(2\phi_h^l)$	$h_{1L}^{\perp} = {}^{-} ^{+}$	\otimes	$H_1^{\perp} = \textcircled{\bullet}^- \textcircled{\bullet}$
UT	$\frac{\sin(\phi_h^l + \phi_S^l)}{\sin(\phi_h^l - \phi_S^l)}$	$h_1 = \underbrace{\bullet}_{-} \underbrace{\bullet}$	\otimes	$H_1^{\perp} = \textcircled{\bullet}^{-} \textcircled{\bullet}$ $D_1 = \textcircled{\bullet}$
	$\sin(3\phi_h^l-\phi_S^l)$	$h_{1T}^{\perp} = \bullet^{-\bullet}$	\otimes	$H_1^{\perp} = \textcircled{\bullet}^- \textcircled{\bullet}$

Boer-Mulders function: correlation between transverse momentum and transverse spin of the quark in an unpolarized nucleon

Boer-Mulders function (unpolarized cross section)

UU	1	$f_1 = \bullet$	\otimes	$D_1 = \bullet$
	$\cos(2\phi_h^l)$	$h_1^{\perp} = ^{-} $	\otimes	$H_1^{\perp} = \textcircled{\bullet}^{-} \textcircled{\bullet}$
UL	$\sin(2\phi_h^l)$	$h_{1L}^{\perp} = {}^{\bullet} - {}^{\bullet}$	\otimes	$H_1^{\perp} = \textcircled{\bullet}^- \textcircled{\bullet}$
UT	$\sin(\phi_h^l + \phi_S^l)$ $\sin(\phi_h^l - \phi_S^l)$	$h_1 = \underbrace{\bullet}_{-} \underbrace{\bullet}$	\otimes	$H_1^{\perp} = \textcircled{\bullet}^{-} \textcircled{\bullet}$ $D_1 = \textcircled{\bullet}$
	$\sin(3\phi_h^l-\phi_S^l)$	$h_{1T}^{\perp} = \textcircled{\bullet}^{-} \textcircled{\bullet}$	\otimes	$H_1^{\perp} = ^{-} $

Boer-Mulders function: correlation between transverse momentum and transverse spin of the quark in an unpolarized nucleon

Accessible through azimuthal asymmetries in SIDIS with unpolarized hydrogen and deuterium targets

Boer-Mulders function (unpolarized cross section)

Boer-Mulders function: corre	lation
between transverse momentur	n and
transverse spin of the quark	in an
unpolarized nucleon	

Accessible through azimuthal asymmetries in SIDIS with unpolarized hydrogen and deuterium targets

UÚ	1	$f_1 = \bullet$	\otimes	$D_1 = \bullet$
	$\cos(2\phi_h^l)$	$h_1^{\perp} = ^{-} $	\otimes	$H_1^{\perp} = \textcircled{\bullet}^{-} \textcircled{\bullet}$
UL	$\sin(2\phi_h^l)$	$h_{1L}^{\perp} = {}^{\bullet} \overset{\bullet}{\longrightarrow} \overset{\bullet}{\longrightarrow}$	\otimes	$H_1^{\perp} = \textcircled{\bullet}^- \textcircled{\bullet}$
UT	$\sin(\phi_h^l + \phi_S^l)$ $\sin(\phi_h^l - \phi_S^l)$	$h_1 = \underbrace{\bullet}^{-} \underbrace{\bullet}^{+}$ $f_{1T}^{\perp} = \underbrace{\bullet}^{-} \underbrace{\bullet}^{-} \underbrace{\bullet}^{-}$	\otimes	$H_1^{\perp} = \textcircled{\bullet}^{-} \textcircled{\bullet}$ $D_1 = \textcircled{\bullet}$
	$\sin(3\phi_h^l-\phi_S^l)$	$h_{1T}^{\perp} = \textcircled{\bullet}^{-} \textcircled{\bullet}^{-}$	\otimes	$H_1^{\perp} = \textcircled{\bullet}^{-} \textcircled{\bullet}$

• analysis based on a multidimensional unfolding of data to correct for acceptance, smearing and QED effects

- amplitudes $\neq 0 \rightarrow$ Boer-Mulders function non-zero!
- amplitudes of opposite sign for hadrons of opposite sign
- no significant differences between H and D targets

The transverse structure of the nucleon

Δ Δ

0.1 0.2 0.30.2 0.3 0.4 0.5 0.6 0.2 0.4 0.6 0.8 1 X Z P_{h1} [GeV]

-0.05 -0.1 -0.15

- extraction of "P_{h⊥}-weighted" Collins and Sivers amplitudes
 model-independent interpretation in terms of DF and FF
 Extraction of the Sivers function with method of *purities*
- extraction of ⟨cos(φ)⟩, ⟨cos(2φ)⟩ for identified hadrons
 full statistics (+ 5 Million SIDIS events for H e D targets)
 new binning

Conclusions

• significant Collins amplitudes observed for π -mesons

- \rightarrow enabled first extraction of transversity
- significant Sivers amplitudes observed for π^+ and K⁺
- \rightarrow clear evidence of non-zero Sivers function
- \rightarrow (indirect) evidence for non-zero quark orbital angular momentum
- Current extractions of transversity and Sivers function based on unweighted moments (need Gaussian ansatz)
- Assumption-free extractions can be achieved in the future from P_{h_1} weighted moments.

significant di-hadron amplitudes observed

- \rightarrow clear evidence of non-zero Interference Fragmentation Function
- \rightarrow more transparent interpretation in terms of DF and FF (no convol. integral)

Non-zero Boer-Mulders effect observed for h⁺ and h⁻

 \rightarrow clear evidence of non-zero Boer-Mulders function

Back-up slides

2-D Collins moments for π^{\pm}

X vs. Z

X vs. $P_{h\perp}$

2-D Sivers moments for π^{\pm}

X vs. Z

2-D moments for π^{\pm} : Z VS. $P_{h\perp}$

Collins

Sivers

Exclusive Vector Meson contribution

Contribution by decay of exclusively produced vector mesons is not negligible

Exclusive Vector Meson contribution

Contribution by decay of exclusively produced vector mesons is not negligible

To evaluate the impact of this contribution on the extracted azimuthal moments, a new observable was regarded which does not experience contributions from the ρ^0 : the **pion-difference target-spin asymmetry**

$$A_{UT}^{\pi^{+}-\pi^{-}}(\phi,\phi_{S}) \equiv \frac{1}{S_{T}} \frac{(\sigma_{U\uparrow}^{\pi^{+}}-\sigma_{U\uparrow}^{\pi^{-}}) - (\sigma_{U\downarrow}^{\pi^{+}}-\sigma_{U\downarrow}^{\pi^{-}})}{(\sigma_{U\uparrow}^{\pi^{+}}-\sigma_{U\uparrow}^{\pi^{-}}) + (\sigma_{U\downarrow}^{\pi^{+}}-\sigma_{U\downarrow}^{\pi^{-}})}$$

Pion-difference asymmetry

$$A_{UT}^{\pi^+ - \pi^-} (\phi, \phi_S) \equiv \frac{1}{S_T} \frac{(\sigma_{U\uparrow}^{\pi^+} - \sigma_{U\uparrow}^{\pi^-}) - (\sigma_{U\downarrow}^{\pi^+} - \sigma_{U\downarrow}^{\pi^-})}{(\sigma_{U\uparrow}^{\pi^+} - \sigma_{U\uparrow}^{\pi^-}) + (\sigma_{U\downarrow}^{\pi^+} - \sigma_{U\downarrow}^{\pi^-})}$$

Contribution from exclusive $\,\rho^{0}\,$ largely cancels out

Significantly positive amplitudes are obtained as a function of $x, z, P_{h\perp}$.

the underlying (Collins and Sivers) asymmetry amplitudes are not generated by vector meson contribution.

Pion-difference asymmetry

$$A_{UT}^{\pi^+ - \pi^-} (\phi, \phi_S) = \frac{1}{S_T} \frac{(\sigma_{U\uparrow}^{\pi^+} - \sigma_{U\uparrow}^{\pi^-}) - (\sigma_{U\downarrow}^{\pi^+} - \sigma_{U\downarrow}^{\pi^-})}{(\sigma_{U\uparrow}^{\pi^+} - \sigma_{U\uparrow}^{\pi^-}) + (\sigma_{U\downarrow}^{\pi^+} - \sigma_{U\downarrow}^{\pi^-})}$$

Contribution from exclusive ρ^0 largely cancels out

Significantly positive amplitudes are obtained as a function of $x, z, P_{h\perp}$.

the underlying (Collins and Sivers) asymmetry amplitudes are not generated by vector meson contribution.

The extraction of the Distribution Functions

$$\left\langle \sin(\phi + \phi_{S}) \right\rangle_{UT}^{h} = \frac{\int d\phi_{S} d^{2} \vec{P}_{h\perp} \sin(\phi + \phi_{S}) \ d\sigma_{UT}}{\int d\phi_{S} d^{2} \vec{P}_{h\perp} d\sigma_{UU}} \propto \left[\frac{\vec{k}_{T} \cdot \hat{P}_{h\perp}}{M_{h}} h_{1}(x, p_{T}^{2}) H_{1}^{\perp q}(z, k_{T}^{2}) \right]$$

$$(Convolution integral on transverse momenta \ p_{T} \ and \ k_{T})$$

$$\left\langle \sin(\phi - \phi_{S}) \right\rangle_{UT}^{h} = \frac{\int d\phi_{S} d^{2} \vec{P}_{h\perp} \sin(\phi - \phi_{S}) \ d\sigma_{UT}}{\int d\phi_{S} d^{2} \vec{P}_{h\perp} d\sigma_{UU}} \propto \left[\frac{\vec{p}_{T} \cdot \hat{P}_{h\perp}}{M} \int_{T}^{\perp q} (x, p_{T}^{2}) D_{1}^{q}(z, k_{T}^{2}) \right]$$

Experiment: only partial coverage of the full $P_{h\perp}$ range (acceptance effects) **Theory:** difficult to solve \implies Gaussian ansatz

$$h_1(x, p_T^2) \approx \frac{h_1(x)}{\pi \left\langle p_T^2(x) \right\rangle} e^{-\frac{p_T^2}{\left\langle p_T^2(x) \right\rangle}} \qquad H_1^{\perp q}(z, k_T^2) \approx \frac{H_1^{\perp q}(z)}{\pi \left\langle k_T^2(z) \right\rangle} e^{-\frac{k_T^2}{\left\langle k_T^2(z) \right\rangle}}$$

(extraction assumption-dependent)

Alternatively one can use the so-called $P_{h\perp}$ -weighted moments (don't require any assumption on transverse momenta distributions)

$$\begin{pmatrix}
\frac{P_{h\perp}}{zM}\sin(\phi-\phi_{S}) \\
\frac{P_{h\perp}}{zM}\sin(\phi-\phi_{S}) \\
\frac{P_{h\perp}}{y} = \frac{\int d\phi_{S} d^{2}\vec{P}_{h\perp}\sin(\phi-\phi_{S}) \frac{P_{h\perp}}{zM} d^{6}\sigma_{UT}}{\int d\phi_{S} d^{2}\vec{P}_{h\perp} d^{6}\sigma_{UU}}$$

$$P_{hT}\text{-weighted} \qquad \propto -\left|\vec{S}_{T}\right| \sum_{q\bar{q}} P_{q}^{h}(x,z) f_{1T}^{\perp(1)q}(x) \rightarrow \begin{array}{c} \text{Sivers} \\ \text{function} \end{array}$$

$$P_{q}^{h}(x,z) \equiv \frac{e_{q}^{2}q(x)D_{1}^{q\to h}(z)}{\sum_{q'\bar{q}'} e_{q'}^{2}q'(x)D_{1}^{q'\to h}(z)} \qquad \begin{array}{c} \text{purities} \\ \text{(based on known quantities)} \end{array}$$

Extraction above requires, in principle, a full integration over $P_{h\perp}$ (from 0 to ∞)

Due to the partial experimental coverage in $P_{h\perp}$ the evaluation of acceptance effects is of crucial importance.