

Hard exclusive φ meson leptoproduction at HERMES

Mayya Golembiovskaya (on behalf of HERMES collaboration) DESY Zeuthen

DIS 2012

Outline

Introduction

HERMES experiment

Data sample

 $\Box \phi$ meson SDMEs

 \square Comparison of ϕ and ρ^0 SDMEs

Summary

Cross section and decay angular distribution

 ϕ - azimuthal angle of the K⁺ decay in the ϕ meson rest frame θ polar angle of the K⁺ decay in the ϕ meson rest frame

 $\Phi\,$ angle between ϕ meson-production plane and the lepton scattering plane

Spin density matrix elements & helicity amplitudes $\gamma^*(\lambda_{\gamma})N(\lambda_N) \rightarrow V(\lambda_V)N'(\lambda_{N'})$

 $W(x_B, Q^2, t, \phi_S, \phi, \cos \theta, \Phi)$ can be parameterized by:

- helicity amplitudes $T_{\lambda_V\lambda_\gamma}$ connected with SDMEs; calculated from GPDs
- spin density matrix $r_{\lambda_{V}\lambda_{V}}^{\alpha} \rightarrow \rho(V) = \frac{1}{2} T_{\lambda_{V}\lambda_{Y}} \rho(\gamma) T_{\lambda_{V}\lambda_{Y}}^{*}$ spin density matrix of the vector meson $\rho(\gamma)$ spin density matrix of the virtual photon $r_{\lambda_{V}\lambda_{V}(V)}^{\alpha} = \frac{1}{2N_{\alpha}} \sum_{\lambda_{N},\lambda_{N}\lambda_{Y}\lambda_{Y}} T_{\lambda_{V}\lambda_{N},\lambda_{Y}\lambda_{N}} \sum_{\lambda_{Y}\lambda_{Y}\lambda_{Y}} T_{\lambda_{V}\lambda_{N},\lambda_{Y}\lambda_{N}}^{\alpha} \sum_{\lambda_{V}\lambda_{N},\lambda_{Y}\lambda_{Y}\lambda_{Y}} T_{\lambda_{V}\lambda_{N},\lambda_{Y}\lambda_{N}} \sum_{\lambda_{V}\lambda_{N},\lambda_{Y}\lambda_{N}} \sum_{\lambda_{V}\lambda_{N},\lambda_{N}} \sum_{\lambda_{V}\lambda_{N},\lambda_{N}} \sum_{\lambda_{V}\lambda_{N},\lambda_{N}} \sum_{\lambda_{V}\lambda_{N},\lambda_{N}} \sum_{\lambda_{V}\lambda_{N},\lambda_{N}} \sum_{\lambda_{V}\lambda_{N},\lambda_{N}} \sum_{\lambda_{V}\lambda_{N}} \sum_{\lambda_{V}\lambda_{N},\lambda_{N}} \sum_{\lambda_{V}\lambda_{N},\lambda_{N}} \sum_{\lambda_{V}\lambda_{N}} \sum_{\lambda_{V}\lambda_{N}} \sum_{\lambda_{V}\lambda_{N},\lambda_{N}} \sum_{\lambda_{V}\lambda_{N}} \sum_{\lambda_$
 - $\Sigma^{\alpha}_{\lambda\gamma\lambda\gamma}$ hermitian matrices with α 0÷8 virtual photon polarization 4

Schilling, Wolf

The angular distribution

$$W^{U+L}(\Phi,\phi,\cos\theta) = W^{UU}(\Phi,\phi,\cos\theta) + W^{LU}(\Phi,\phi,\cos\theta)$$

For unpolarized target and beam:

$$W^{UU}(\Phi,\phi,\cos\theta) = \frac{3}{8\pi^2} \left[\frac{1}{2} \left(1 - r_{00}^{04} \right) + \frac{1}{2} \left(3r_{00}^{04} - 1 \right) \cos^2\theta - \sqrt{2} \operatorname{Re}\left\{ r_{10}^{04} \right\} \sin 2\theta \cos\phi - r_{1-1}^{04} \sin^2\theta \cos 2\phi \right]$$

- $\varepsilon \cos 2\Phi \left(r_{11}^{11} \sin^2\theta + r_{00}^{10} \cos^2\theta - \sqrt{2} \operatorname{Re}\left\{ r_{10}^{11} \right\} \sin 2\theta \cos\phi - r_{1-1}^{11} \sin^2\theta \cos 2\phi \right]$
- $\varepsilon \sin 2\Phi \left(\sqrt{2} \operatorname{Im}\left\{ r_{10}^{2} \right\} \sin 2\theta \sin\phi + \operatorname{Im}\left\{ r_{1-1}^{2} \right\} \sin^2\theta \sin 2\phi \right]$
+ $\sqrt{2\varepsilon (1+\varepsilon)} \cos \Phi \left(r_{11}^{5} \sin^2\theta + r_{00}^{5} \cos^2\theta - \sqrt{2} \operatorname{Re}\left\{ r_{10}^{5} \right\} \sin 2\theta \cos\phi - r_{1-1}^{5} \sin^2\theta \cos 2\phi \right]$
+ $\sqrt{2\varepsilon (1+\varepsilon)} \sin \Phi \left(\sqrt{2} \operatorname{Im}\left\{ r_{10}^{6} \right\} \sin 2\theta \sin\phi + \operatorname{Im}\left\{ r_{1-1}^{6} \right\} \sin^2\theta \sin 2\phi \right]$

For unpolarized target and longitudinally polarized beam:

$$W^{LU}(\Phi,\phi,\cos\theta) = \frac{3}{8\pi^2} P_{Beam}[\sqrt{1-\varepsilon^2} \left(\sqrt{2} \operatorname{Im}\left\{r_{10}^3\right\} \sin 2\theta \sin \phi + \operatorname{Im}\left\{r_{1-1}^3\right\} \sin^2 \theta \sin 2\phi\right) + \sqrt{2\varepsilon(1-\varepsilon)} \cos \Phi \left(\sqrt{2} \operatorname{Im}\left\{r_{10}^7\right\} \sin 2\theta \sin \phi + \operatorname{Im}\left\{r_{1-1}^7\right\} \sin^2 \theta \sin 2\phi\right) + \sqrt{2\varepsilon(1-\varepsilon)} \sin \Phi \left(r_{11}^8 \sin^2 \theta + r_{00}^8 \cos^2 \theta - \sqrt{2} \operatorname{Re}\left\{r_{10}^8\right\} \sin 2\theta \cos \phi - r_{1-1}^8 \sin^2 \theta \cos 2\phi\right)]$$

$$\varepsilon = \frac{1-y-y^2 \frac{Q^2}{4v^2}}{1-y+\frac{1}{4}y^2(\frac{Q^2}{v^2}+2)} \quad \text{the ratio of virtual photon fluxes for longitudinal and transverse polarization} 5$$

Vector meson production

VMD model

$$ep \rightarrow e'p'\varphi, \phi \rightarrow K^+K^-$$

$$ep
ightarrow e'p'
ho^0$$
 , $ho^0
ightarrow \pi^+\pi^-$

GPD model

- Four leading-twist GPDs for spin-1/2 targets
- H and \tilde{H} correspond to the nucleon helicity conservation
- E and \tilde{E} correspond to the nucleon helicity flip
- Factorization theorem proved only for σ_L $\gamma_L^* \Rightarrow \varphi_L, \omega_L, \rho_L \Rightarrow H, E$
- $\gamma_T^* \Rightarrow \rho_T^0$ transition can be calculated \widetilde{H}

$$J_q = \frac{1}{2} \lim_{t \to 0} \int_{-1}^{1} dx \, x \left[H_q(x,\xi,t) + E_q(x,\xi,t) \right]$$

$$J_g = \frac{1}{2} \lim_{t \to 0} \int_{0}^{1} dx \left[H_g(x,\xi,t) + E_g(x,\xi,t) \right] \qquad 6$$

Properties of vector meson production

S-channel helicity conservation (SCHC) Helicity conserving amplitudes : $T_{\lambda\lambda'}$, $\lambda_{\rm V} = \lambda_{\rm v}$ >>

S-channel helicity non-conservation Helicity flip amplitudes:

 $T_{\lambda\lambda'}$, $\lambda_{\nu}\neq\lambda_{\nu}$

Theoretically predicted amplitudes hierarchy for HEMES kinematics for φ $|T_{00}| \sim |T_{11}| \gg |T_{01}|, |T_{10}| \approx |T_{-11}| \approx 0.$

Theoretically predicted amplitudes hierarchy for HEMES kinematics for ρ^0 $|T_{00}|^2 \sim |T_{11}|^2 \gg |T_{01}|^2 > |T_{10}|^2 \sim |T_{-11}|^2$

HERMES at **HERA**

Beam

Longitudinally polarized lepton beam with energy $27.6 \text{ GeV}, P_{\text{beam}} \sim 40 - 60\%$

Target

Internal gas target:

•Unpolarized H, D, ⁴He, N, Ne, Kr, Xe

•Polarized: longitudinally H, D, transversely H

The HERMES spectrometer

- Acceptance $40 < \theta < 220$ mrad, $|\theta_x| < 170$ mrad, $40 < |\theta_y| < 140$ mrad
- Momentum resolution $\frac{\Delta P}{P} \le 1\%$, angular resolution $\frac{\Delta \theta}{\theta} \le 0.6$ mrad

- $1 < Q^2 < 7 \text{ GeV}^2$, $< Q^2 > = 1.95 \text{ GeV}^2$
- $W^2 > 9 \text{ GeV}^2$, $\langle W^2 \rangle = 21.89 \text{ GeV}^2$
- 1.012 GeV< M_{KK} <1.028 GeV

- $-t' < 0.4 \text{ GeV}^2$
- $\Delta E < 0.6 \text{ GeV}$
- $< x_B > = 0.088$

SDMEs for ϕ meson production

Unpolarized (white areas) and beam-polarized (green areas) SDMEs

Are shown for the first time for the whole RICH data set

SDMEs for $\boldsymbol{\phi}$ meson production

Unpolarized (white areas) and beam-polarized (green areas) SDMEs

Are shown for the first time for the whole RICH data set

- no statistically significant difference between proton and deuteron
- s-channel helicity conservation $r_{1-1}^1 = -\operatorname{Im}\{r_{1-1}^2\}$, -fulfilled $\operatorname{Re}\{r_{10}^5\} = -\operatorname{Im}\{r_{10}^6\}$, -fulfilled $\operatorname{Re}\{r_{10}^8\} = \operatorname{Im}\{r_{10}^7\}$, -large uncertainties
- s-channel helicity violation

 ϕ SDMEs classes C, D, E are compatible with 0 supporting SCHC, except from r_{00}^5

Amplitudes hierarchy for φ meson: $|T_{00}| \sim |T_{11}| \gg |T_{01}|, |T_{10}| \approx |T_{-11}| \approx 0.$

SDMEs for ρ^0 meson production

Unpolarized (white areas) and beam-polarized (green areas) SDMEs

 no statistically significant difference between proton and deuteron

s-channel helicity conservation (conservation the helicity of γ^* in $\gamma_I^* \to \rho_I^0$ and $\gamma_T^* \to \rho_T^0)$ non-zero SDMEs of classes A,B $r_{1-1}^1 = -Im\{r_{1-1}^2\},$ $Re\{r_{10}^5\} = -Im\{r_{10}^6\},\$ $Re\{r_{10}^8\} = Im\{r_{10}^7\}$ - fulfilled s-channel helicity violation significant $\gamma_T^* \rightarrow \rho_I^0$ - non-zero elements of class C, not so significant $\gamma_{-T}^* \rightarrow \rho_T^0$ and $\gamma_L^* \rightarrow \rho_T^0$

- non-zero elements of classes D,E

Hierarchy of amplitudes at HERMES kinematics for ρ^0 : $|T_{00}|^2 \sim |T_{11}|^2 \gg |T_{01}|^2 > |T_{10}|^2 \sim |T_{-11}|^2$

Comparison of ϕ and ρ^0 SDMEs

Unpolarized (white areas) and beam-polarized (green areas) SDMEs

- r_{00}^{04} is 10-20% larger for ϕ than for ρ^0
- SDMEs of class B are compatible for $\boldsymbol{\phi}$ and
- SDMEs of class C shows pronounced differences between ϕ and ρ^0
- For classes D and E no significant differences are seen.

Summary

- Unpolarized and beam-polarized SDMEs are extracted on proton and deuteron targets for ϕ (preliminary result) and ρ^0 (published result)
- \bullet Compatible results on proton and deuteron targets for ϕ and ρ^0
- Helicity amplitudes hierarchy for ϕ and ρ^0 mesons tested
- Pronounced s-channel helicity violation for ρ^0
- Less pronounced s-channel helicity violation for $\boldsymbol{\phi}$