Study of Spin Density Matrix in Exclusive Diffractive ρ^0 Meson Production at HERMES

S. I. Manayenkov on behalf of HERMES collaboration, Petersburg Nuclear Physics Institute

QCD06 Conference, 3-7 July 2006, Montpellier, France

CONTENTS

- Physics Motivation
- Reaction $e + N \rightarrow e' + \rho^0 + N$
- The HERMES Experiment
- Method of Data Processing

Results:

- \bullet Spin Density Matrix Elements $r^{\alpha}_{\lambda_{\rho}\lambda'_{\rho}}$
- Longitudinal-to-Transverse Cross-Section Ratio
- *t*′-dependence of SDMEs
- Test of Unnatural-Parity Exchange
- Summary & Outlook

Physics Motivation

- $\gamma^* + N \to \rho^0 + N'$ is a perfect reaction to study the spin structure of ρ^0 QCD production mechanism: spin state of γ^* is known; decay $\rho^0 \to \pi^+ + \pi^-$ is self-analysing.
- Measurement of s-channel helicity violation shows itself in spin-flip amplitudes.
- Hierarchy of spin non-flip amplitudes is measured via σ_L/σ_T ratio. For spin-flip amplitudes it can be estimated via SCHC violating spin density matrix elements (SDMEs).
- ρ^0 production mechanisms can be tested by comparing resulting SDMEs with calculations, where two-gluon (Pomeron) exchange dominates.
- ullet $qar{q}$ -exchange with isospin 1 can be observed in case of difference between proton and deuteron data.
- Observation of unnatural parity $(P = -(-1)^J)$ exchange points to importance of $q\bar{q}$ -exchange mediated by pion.

Reaction $e + N \rightarrow e' + \rho^0 + N'$

Photon-Nucleon CMS

ρ⁰ Rest Frame

- First: $e \rightarrow e' + \gamma^*$ (QED) Spin-density matrix of the virtual photon $\rho(\gamma^*)$
- Second: $\gamma^* + N \rightarrow \rho^0 + N$ (QCD) Helicity amplitudes in CMS of γ^*N $T_{\lambda_\rho\lambda'_N;\lambda_\gamma\lambda_N} = T_{\lambda_\rho\lambda_\gamma}$ Vector-meson (VM) spin-density matrix $\rho(V) = T \; \rho(\gamma^*) \; T^+$

Free parameters
$$\rho^{\alpha}(V) = T \; \Sigma^{\alpha} \; T^+$$
 If contributions of transverse and longitudinal photons are not distinguished $\rho^{\alpha}(V) \Rightarrow r^{\alpha}(V)$

• Third: $|\rho^0; 1m> \rightarrow |\pi^+\pi^-; 1m> \Rightarrow Y_{1m}(\theta, \phi)$

Kinematics of Exclusive ρ^0 Production

- $\nu = 5 \div 24 \text{ GeV}$, $< \nu > = 13.3 \text{ GeV}$
- $Q^2 = 1.0 \div 5.0 \text{ GeV}^2$, $< Q^2 >= 2.3 \text{ GeV}^2$
- $W = 3.0 \div 6.5 \text{ GeV}, < W >= 4.9 \text{ GeV}$
- $x_{Bj} = 0.01 \div 0.35$, $\langle x_{Bj} \rangle = 0.07$

$$\Delta E = \frac{M_X^2 - M_p^2}{2M_p}$$
 with $M_X^2 = (p + q - v)^2$

Clean exclusive peak

Background is subtracted with the help of MC (PYTHIA)

Data Processing using Maximum Likelihood Method in MINUIT

- Monte Carlo Events: 3-dimensional matrix of fully reconstructed MC events at initial uniform angular distribution.
- Binned Maximum Likelihood Method: $8 \times 8 \times 8$ bins of $\cos(\Theta), \phi, \Phi$. Simultaneous fit of 23 SDMEs for data with negative and positive beam helicity ($< P_b >= 53.5\%$).

→ agreement of fitted angular distributions with data

RESULTS: Spin Density Matrix Elements $r^{\alpha}_{\lambda_{\rho}\lambda'_{\rho}}$

- No statistically significant difference between proton and deuteron.
- S-Channel Helicity Conservation (SCHC): Non-zero: T_{11} , T_{-1-1} , T_{00} .
- Violation of SCHC: enlarged points $(2 \div 5 \sigma)$. Linear contribution of spin-flip amplitudes T_{01}, T_{10}, T_{1-1} .
- Indication on hierarchy of amplitudes:

$$T_{00} \sim T_{11} \gg T_{01} > T_{10} \sim T_{1-1}$$

Longitudinal-to-Transverse Cross-section Ratio

$$R = \sigma_L/\sigma_T$$

$$\sigma_L = \frac{1}{2} \sum_{\lambda_N \lambda_N'} [|T_{00}|^2 + |T_{10}|^2 + |T_{-10}|^2]$$

$$\sigma_T = \frac{1}{2} \sum_{\lambda_N \lambda_N'} [|T_{11}|^2 + |T_{01}|^2 + |T_{-11}|^2]$$
Second order contribution of spin-flip amplitudes (violating SCHC).

SCHC approximation

$$R^{SCHC} = |T_{00}|^2 / |T_{11}|^2 \approx \frac{r_{00}^{04}}{\epsilon (1 - r_{00}^{04})}$$

L-T Cross-Section Ratio at SCHC and NPE

- SCHC approximation: $R^{SCHC} = \frac{1}{\epsilon} \left\{ \frac{1}{1 r_{00}^{04}} 1 \right\}$
- Natural Parity Exchange Dominance: $R^{NPE}=\frac{1}{\epsilon}\Big\{\frac{1}{2r_{1-1}^1-r_{00}^1}-1\Big\}$ R^{NPE} has statistical errors greater than R^{SCHC}
- R^{NPE} is the upper limit for R $(R \le R^{NPE})$

Calculations of Kinematic Dependences

- Model 1. (I. P. Ivanov and N. N. Nikolaev, JETP Lett. **69** (1999) 294; I. P. Ivanov, PhD thesis, Bonn University, 2003, hep-ph/0303053) pQCD. Two-gluon (Pomeron) exchange, ρ -meson wave function with S- and D-waves (Coulomb-like and Gaussian functions). Amplitudes: T_{00} , T_{11} , T_{01} , T_{10} , T_{1-1} .
- Model 2. (S. V. Goloskokov and P. Kroll, Eur.Phys.J. C **42** (2005) 281; hep-ph/0501242) Generalized Parton Distributions (GPD), Gaussian ρ -meson wave function (S-wave). Amplitudes: T_{00} , T_{11} , T_{01} .
- Model 3. (S.Manayenkov, Eur.Phys.J. C **33** (2004) 397) Regge Phenomenology. Exchanges with Pomeron, ρ , ω , f, A_2 . Parton-hadron duality. Amplitudes: T_{00} , T_{11} , T_{01} , T_{10} , T_{1-1} .
- Special calculations for the HERMES kinematics.

t'-Dependence of SDMEs Compared with Calculations

- Reasonable agreement for a majority of SDMEs at low t'.
- The most crucial disagreement with data for Models 2, 3: r_{00}^{04} , r_{1-1}^{1} , $\operatorname{Im}\{r_{10}^{2}\}$, and for Model $\operatorname{1Re}\{r_{10}^{5}\}$, $\operatorname{Im}\{r_{10}^{6}\}$.
- No model describes well all unpolarized SDMEs.
- Quark-exchange or/and many-Pomeron exchanges are probably important.
- Extraction of amplitudes from the data is needed.

Test of Unnatural-Parity Exchange

$$U_1 = 0.112 \pm 0.033_{stat} \pm 0.049_{syst}$$
 (H),

$$U_1 = 0.059 \pm 0.026_{stat} \pm 0.047_{syst}$$
 (D)

 Natural and Unnatural Parity Exchanges

NPE: $P = (-1)^J$ UPE: $P = -(-1)^J$

NPE in the t-channel (Pomeron, ρ , ω , f_2 , A_2 , ...) dominate and UPE (π, A_1, \ldots) are suppressed at high energies

- $\begin{array}{l} \bullet \ \, T_{\lambda_\rho\lambda'_N;\lambda_\gamma\lambda_N} = \\ T_{\lambda_\rho\lambda'_N;\lambda_\gamma\lambda_N}^N + T_{\lambda_\rho\lambda'_N;\lambda_\gamma\lambda_N}^U \\ \text{No interference between NPE and UPE contributions to SDMEs } r_{\lambda_\rho\lambda'_\rho}^\alpha \\ \text{for unpolarized target} \end{array}$
- $U_1 = 1 r_{00}^{04} + 2r_{1-1}^{04} 2r_{11}^{1} 2r_{1-1}^{1}$ $U_1 = \sum_{\lambda_N \lambda'_N} (2\epsilon |T_{10}^U|^2 + |T_{11}^U + T_{-11}^U|^2) / (\sigma_T + \epsilon \sigma_L)$

Summary

- 15 unpolarized and, for the first time, 8 polarized SDMEs are obtained.
- Violation of SCHC is observed both for proton and deuteron data with $2 \div 5 \sigma$.
- Kinematic dependences of SDMEs are measured for 4 bins in Q^2 and t'. No statistically significant difference between proton and deuteron data is found. No noticeable natural-parity $q\bar{q}$ -exchange with I=1 is observed.
- $R = \sigma_L/\sigma_T$ is obtained under assumption of SCHC and NPE, and is in agreement with world data.
- t'-dependence of SDMEs is compared to theoretical models. Agreement is found for the majority of the unpolarized matrix elements, but no model describes well all SDMEs.
- Unnatural parity exchange is seen for the proton with 2σ .

Outlook

- Extraction of helicity amplitudes from the data is in progress.
- ullet Factor of \sim 4 in the experimental statistics is expected.