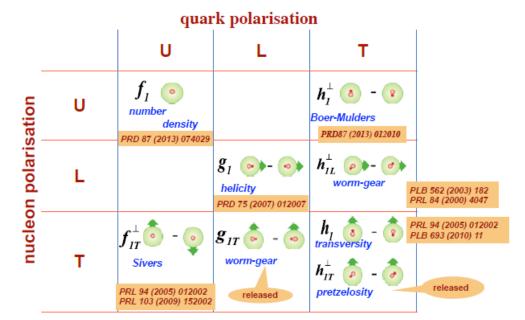
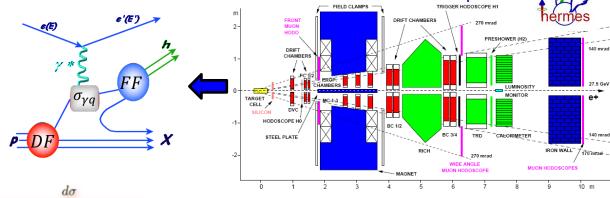

Azimuthal single- and double-spin asymmetries in semi-inclusive deep-inelastic lepton scattering by transversely polarized protons

Luciano L. Pappalardo (for the HERMES Collaboration)


University of Ferrara

pappalardo@fe.infn.it


TMDs in SIDIS

- \blacktriangleright encode flavour-dependent correlations between p_T and the spin orientation of the parent hadron or of the quark itself
- → 3D description of nucleon structure in momentum space
 (→ nucleon tomography)

Semi-inclusive DIS processes (SIDIS)

$$\frac{dz_B}{dx_B} \frac{dy}{dy} \frac{d\psi}{dz_h} \frac{d\phi_h}{d\phi_h} \frac{dP_{h\perp}^2}{dz_h}$$

$$= \frac{\alpha^2}{x_B y Q^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x_B}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} \cos \phi_h F_{UU}^{\cos \phi_h} \right\}$$

+
$$\varepsilon \cos(2\phi_h) F_{UU}^{\cos 2\phi_h} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)} \sin\phi_h F_{LU}^{\sin\phi_h}$$

+
$$S_{\parallel} \sqrt{2 \varepsilon (1 + \varepsilon)} \sin \phi_h F_{UL}^{\sin \phi_h} + \varepsilon \sin(2\phi_h) F_{UL}^{\sin 2\phi_h}$$

+
$$S_{\parallel} \lambda_e \left[\sqrt{1 - \varepsilon^2} \, F_{LL} + \sqrt{2 \, \varepsilon (1 - \varepsilon)} \, \cos \phi_h \, F_{LL}^{\cos \phi_h} \right]$$

$$|S_{\perp}| \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) \right]$$

+
$$\varepsilon \sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h + \phi_S)} + \varepsilon \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h - \phi_S)}$$

+
$$\sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_S\,F_{UT}^{\sin\phi_S} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin(2\phi_h - \phi_S)\,F_{UT}^{\sin(2\phi_h - \phi_S)}$$

+
$$|S_{\perp}|\lambda_e \left[\sqrt{1-\varepsilon^2}\cos(\phi_h-\phi_S)F_{LT}^{\cos(\phi_h-\phi_S)} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_S F_{LT}^{\cos\phi_S}\right]$$

$$+ \sqrt{2 \, \varepsilon (1 - \varepsilon)} \, \cos(2\phi_h - \phi_S) \, F_{LT}^{\cos(2\phi_h - \phi_S)} \bigg] \bigg\}, \quad \text{Bacchetta et al JHEP 08}$$

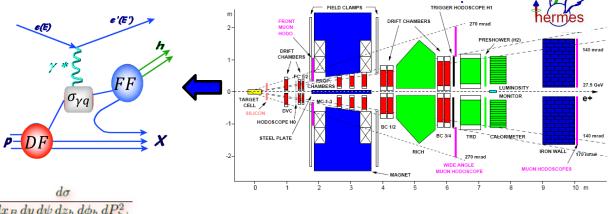
L.L. Pappalardo DIS 2021 April 13, 2021

5 Jul 2020

arXiv:2007.07755v1 [hep-ex]

Prepared for submission to JHEP **DESY Report 20-119**

Azimuthal single- and double-spin asymmetries in semi-inclusive deep-inelastic lepton scattering by transversely polarized protons


The HERMES Collaboration

- A. Airapetian^{13,16} N. Akopov²⁶ Z. Akopov⁶ E.C. Aschenauer⁷ W. Augustyniak²⁵ R. Avakian^{26,a} A. Bacchetta²¹ S. Belostotski^{19,a} V. Bryzgalov²⁰ G.P. Capitani¹¹ E. Cisbani²² G. Ciullo¹⁰ M. Contalbrigo¹⁰ W. Deconinck⁶ R. De Leo² E. De Sanctis¹¹ M. Diefenthaler⁹ P. Di Nezza¹¹ M. Düren¹³ G. Elbakian²⁶ F. Ellinghaus⁵ A. Fantoni¹¹ L. Felawka²³ G. Gavrilov^{6,19,23} V. Gharibyan²⁶ Y. Holler⁶ A. Ivanilov²⁰ H.E. Jackson^{1,a} S. Joosten¹² R. Kaiser¹⁴ G. Karyan^{6,26} E. Kinney⁵ A. Kisselev¹⁹ V. Kozlov¹⁷ P. Kravchenko^{9,19} L. Lagamba² L. Lapikás¹⁸ P. Lenisa¹⁰ W. Lorenzon¹⁶ S.I. Manaenkov¹⁹ B. Marianski^{25,a} H. Marukyan²⁶ Y. Miyachi²⁴ A. Movsisyan^{10,26} V. Muccifora¹¹ Y. Naryshkin¹⁹ A. Nass⁹ G. Nazaryan²⁶ W.-D. Nowak⁷ L.L. Pappalardo¹⁰ P.E. Reimer¹ A.R. Reolon¹¹ C. Riedl^{7,15} K. Rith⁹ G. Rosner¹⁴ A. Rostomyan⁶ J. Rubin¹⁵ D. Ryckbosch¹² A. Schäfer²¹ G. Schnell^{3,4,12} B. Seitz¹⁴ T.-A. Shibata²⁴ V. Shutov⁸ M. Statera¹⁰ A. Terkulov¹⁷ M. Tytgat¹² Y. Van Haarlem¹² C. Van Hulse¹² D. Veretennikov^{3,19} I. Vilardi² S. Yaschenko⁹ D. Zeiler⁹ B. Zihlmann⁶ P. Zupranski²⁵
- ¹Physics Division, Argonne National Laboratory, Argonne, Illinois 60439-4843, USA
- ²Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70124 Bari, Italy
- ³Department of Theoretical Physics, University of the Basque Country UPV/EHU, 48080 Bilbao,
- ⁴IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
- ⁵Nuclear Physics Laboratory, University of Colorado, Boulder, Colorado 80309-0390, USA
- ⁶DESY, 22603 Hamburg, Germany
- ⁷DESY, 15738 Zeuthen, Germany
- ⁸ Joint Institute for Nuclear Research, 141980 Dubna, Russia
- ⁹Physikalisches Institut, Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
- ¹⁰Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, and Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, 44122 Ferrara, Italy
- ¹¹Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, 00044 Frascati, Italy
- ¹²Department of Physics and Astronomy, Ghent University, 9000 Gent, Belgium
- ¹³II. Physikalisches Institut, Justus-Liebig Universität Gießen, 35392 Gießen, Germany

Published in Dec. 2020

[JHEP 12 (2020) 010] arXiv:2007.07755v1

Semi-inclusive DIS processes (SIDIS)

 $dx_B dy d\psi dz_h d\phi_h dP_h^2$

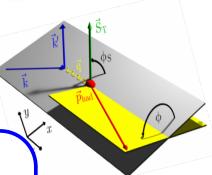
$$= \frac{\alpha^2}{x_B y Q^2} \frac{y^2}{2(1-\varepsilon)} \left(1 + \frac{\gamma^2}{2x_B}\right) \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)} \cos \phi_h F_{UU}^{\cos \phi_h} \right\}$$

+
$$\varepsilon \cos(2\phi_h) F_{UU}^{\cos 2\phi_h} + \lambda_e \sqrt{2\varepsilon(1-\varepsilon)} \sin\phi_h F_{LU}^{\sin\phi_h}$$

+
$$S_{\parallel} \left[\sqrt{2 \varepsilon (1 + \varepsilon)} \sin \phi_h \, F_{UL}^{\sin \phi_h} + \varepsilon \sin(2\phi_h) \, F_{UL}^{\sin 2\phi_h} \right]$$

+
$$S_{\parallel}\lambda_{e} \left[\sqrt{1-\varepsilon^{2}} F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)} \cos\phi_{h} F_{LL}^{\cos\phi_{h}} \right]$$

+
$$|S_{\perp}| \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) \right]$$


+
$$\varepsilon \sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h + \phi_S)} + \varepsilon \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h - \phi_S)}$$

$$-\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_S F_{UT}^{\sin\phi_S} + \sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_h - \phi_S) F_{UT}^{\sin(2\phi_h - \phi_S)}$$

+
$$|S_{\perp}|\lambda_e \sqrt{1-\varepsilon^2}\cos(\phi_h-\phi_S)F_{LT}^{\cos(\phi_h-\phi_S)} + \sqrt{2\,\varepsilon(1-\varepsilon)}\cos\phi_S F_{LT}^{\cos\phi_S}$$

+
$$\sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos(2\phi_h-\phi_S)\,F_{LT}^{\cos(2\phi_h-\phi_S)}$$
 }, Bacc

Bacchetta et al IHEP 08

aDeceased.

The "Hermes TMDs Bible"

PREPARED FOR SUBMISSION TO JHEP

DESY REPORT 20-119

Azimuthal single- and double-spin asymmetries in semi-inclusive deep-inelastic lepton scattering by transversely polarized protons

The HERMES Collaboration

- A. Airapetian^{13,16} N. Akopov²⁶ Z. Akopov⁶ E.C. Aschenauer⁷ W. Augustyniak²⁵ R. Avakian^{26,a} A. Bacchetta²¹ S. Belostotski^{19,a} V. Bryzgalov²⁰ G.P. Capitani¹¹ E. Cisbani²² G. Ciullo¹⁰ M. Contalbrigo¹⁰ W. Deconinck⁶ R. De Leo² E. De Sanctis¹¹ M. Diefenthaler⁹ P. Di Nezza¹¹ M. Düren¹³ G. Elbakian²⁶ F. Ellinghaus⁵ A. Fantoni¹¹ L. Felawka²³ G. Gavrilov^{6,19,23} V. Gharibyan²⁶ Y. Holler⁶ A. Ivanilov²⁰ H.E. Jackson^{1,a} S. Joosten¹² R. Kaiser¹⁴ G. Karyan^{6,26} E. Kinney⁵ A. Kisselev¹⁹ V. Kozlov¹⁷ P. Kravchenko^{9,19} L. Lagamba² L. Lapikás¹⁸ P. Lenisa¹⁰ W. Lorenzon¹⁶ S.I. Manaenkov¹⁹ B. Marianski^{25,a} H. Marukyan²⁶ Y. Miyachi²⁴ A. Movsisyan^{10,26} V. Muccifora¹¹ Y. Naryshkin¹⁹ A. Nass⁹ G. Nazaryan²⁶ W.-D. Nowak⁷ L.L. Pappalardo¹⁰ P.E. Reimer¹ A.R. Reolon¹¹ C. Riedl^{7,15} K. Rith⁹ G. Rosner¹⁴ A. Rostomyan⁶ J. Rubin¹⁵ D. Ryckbosch¹² A. Schäfer²¹ G. Schnell^{3,4,12} B. Seitz¹⁴ T.-A. Shibata²⁴ V. Shutov⁸ M. Statera¹⁰ A. Terkulov¹⁷ M. Tytgat¹² Y. Van Haarlem¹² C. Van Hulse¹² D. Veretennikov^{3,19} I. Vilardi² S. Yaschenko⁹ D. Zeiler⁹ B. Zihlmann⁶ P. Zupranski²⁵
- ¹Physics Division, Argonne National Laboratory, Argonne, Illinois 60439-4843, USA

Published in Dec. 2020

[JHEP 12 (2020) 010] arXiv:2007.07755v1

- Compendium of HERMES TMDs results obtained with transv. Pol. H target (84 pages!)
- ▶ 10 azimuthal modulations (6 $A_{U\perp}$ + 4 $A_{L\perp}$)
- > 7 hadron types
- 2 types of asymmetries:
 - Cross-Section Asymmetries (CSA): entire Fourier amplitude of each cross-section term
 - Structure-Function Asymmetries (SFA): pure ratios of structure functions (NEW!) (corrected for ε -dependent kinematic prefactors)

Advances w.r.t previous analyses:

- > **3D binning in** x, z, $P_{h\perp}$ (before only 1D)
- ho p/\overline{p} asymmetries (in addition to π^{\pm} , π^{0} , K^{\pm})
- Use of a later data production, which includes updated tracking and alignment info
- ightharpoonup Extraction of π^0 asymmetries is improved in various aspects, including background subtr.
- ▶ 1D binning optimized and extended to the high-z ("semi-exclusive") region (0.7 < z < 1.2)
- \triangleright The x range is extended up to 0.6 (before was up to 0.4)

²Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70124 Bari, Italy

³Department of Theoretical Physics, University of the Basque Country UPV/EHU, 48080 Bilbao, Soain

⁴IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain

⁵Nuclear Physics Laboratory, University of Colorado, Boulder, Colorado 80309-0390, USA

⁶DESY, 22603 Hamburg, Germany

⁷DESY, 15738 Zeuthen, Germany

⁸ Joint Institute for Nuclear Research, 141980 Dubna, Russia

⁹Physikalisches Institut, Universität Erlangen-Nürnberg, 91058 Erlangen, Germany

¹⁰Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, and Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, 44122 Ferrara, Italy

¹¹ Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, 00044 Frascati, Italy

¹²Department of Physics and Astronomy, Ghent University, 9000 Gent, Belgium

¹³II. Physikalisches Institut, Justus-Liebig Universität Gießen, 35392 Gießen, Germany

^aDeceased.

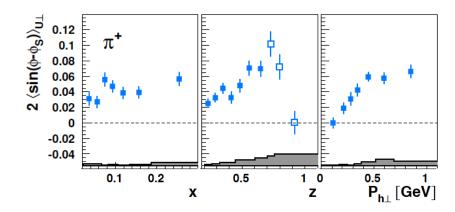
SSA and DSA amplitudes

The relevant asymmetry amplitudes are extracted in an unbinned ML fit of the Fourier decomposition of the cross section in the azimuthal angles ϕ and ϕ_S (separately for CSA and SFA amplitudes)

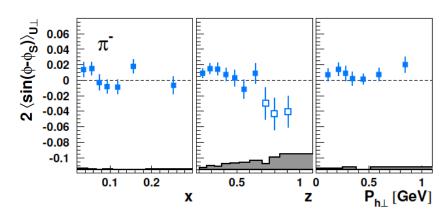
$$-\ln \mathbb{L} = -\sum_{i=1}^{N_h} w_i \ln \mathbb{P}\left(x_i, z_i, P_{h\perp,i}, \phi_i, \phi_{S,i}, P_{l,i}, S_{\perp,i} : 2 \left\langle \sin\left(\phi - \phi_S\right) \right\rangle_{\mathrm{U}\perp}^h, \ldots\right)$$

	Azimuthal modulation		Significant non-vanishing Fourier amplitude						
			π^+	π^-	K^+	K^-	p	π^{0}	$ar{p}$
\longrightarrow	$\sin\left(\phi + \phi_S\right)$	[Collins]	✓	✓	✓		✓		
	$\sin\left(\phi-\phi_S\right)$	[Sivers]	✓		\checkmark	\checkmark	\checkmark	(√)	✓
	$\sin\left(3\phi - \phi_S\right)$	[Pretzelosity]							
	$\sin\left(\phi_S\right)$		(✓)	\checkmark		\checkmark			
	$\sin\left(2\phi-\phi_S\right)$								(√)
	$\sin\left(2\phi+\phi_S\right)$				\checkmark				
	$\cos\left(\phi-\phi_S\right)$	[Worm-gear]	✓	(\checkmark)	(\checkmark)				
	$\cos\left(\phi+\phi_S\right)$								
	$\cos\left(\phi_S\right)$				\checkmark				
	$\cos\left(2\phi - \phi_S\right)$								

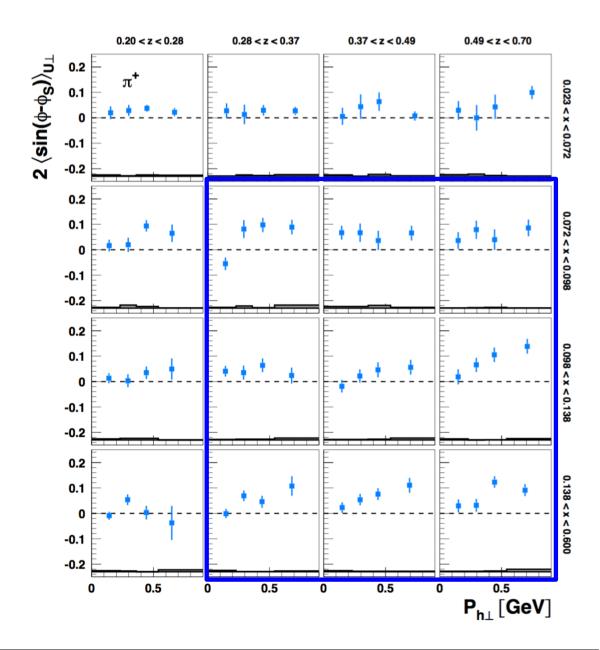
All other 1D SFA results in back-up slides!

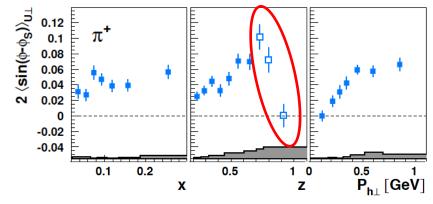

√

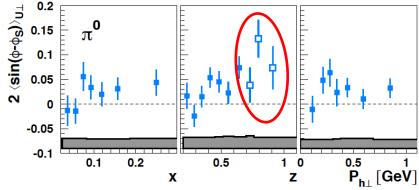
incompatible with NULL hypothesis at 95% CL

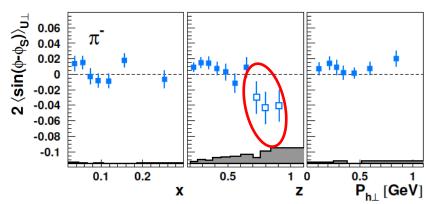

 (\checkmark) : incompatible with NULL hypothesis at 90% CL

L.L. Pappalardo DIS 2021 April 13, 2021

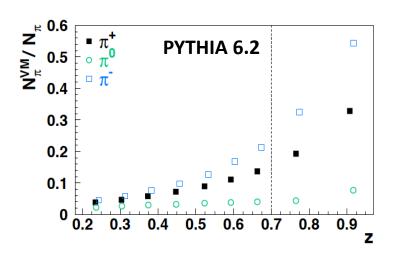

Selected results

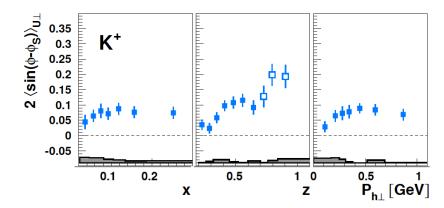


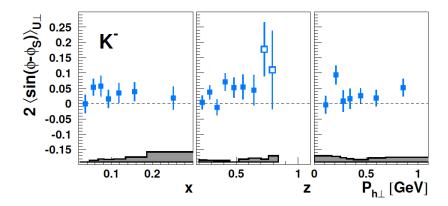

- large positive amplitude \rightarrow clear evidence of non-zero $f_{1T}^{\perp,u}$
- signal rises with x, z and $P_{h\perp}$ in SIDIS region (0.2 < z < 0.7)
- More informative 3D projections confirm and further detail the rise of the amplitude at large x, z and $P_{h\perp}$

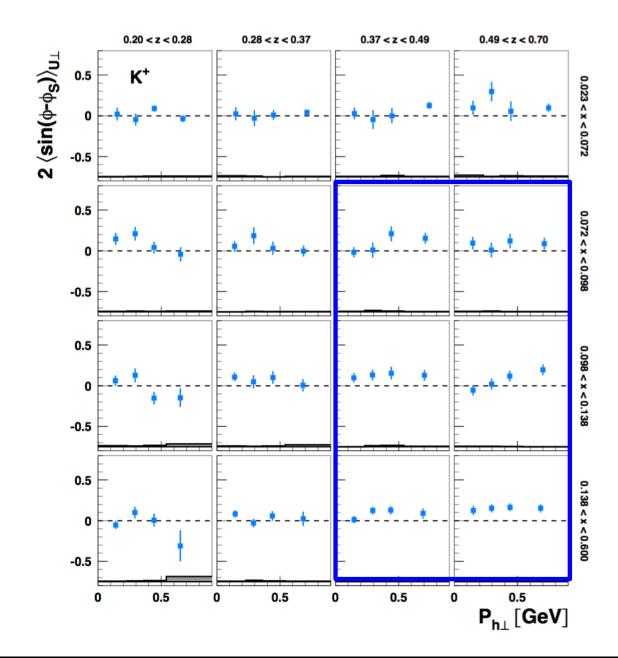


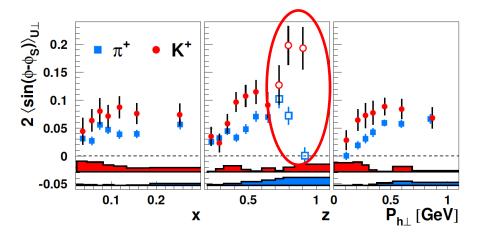
Vanishing due to the cancellation of the opposite Sivers effect for *u* and *d* quarks



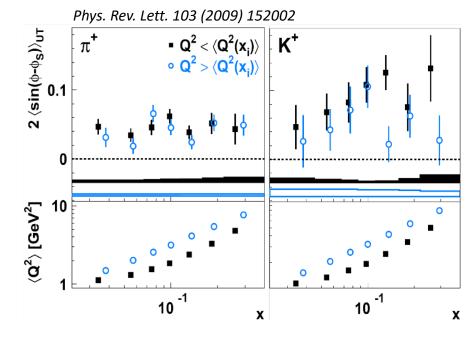



- Sudden drop at large-z (> 0.7) reveals a change of mechanism in this **semi-exclusive region**
- Contributions from decays of exclusively produced ρ^0 into $\pi^+\pi^-$ are large in this region!


- intermediate size between those of π^+ and π^- reflects isospin symmetry at the amplitude level
- π^0 amplitude is much less susceptible to VM decays and no sudden change is observed at large $z \to$ observed positive signal cannot be attributed solely to contributions from VM
- An alternative (concurrent?) explanation: at large z, favored fragmentation $(d \to \pi^-)$ prevails over the disfavored one $(u \to \pi^-) \to$ no cancellation and a non-zero amplitude opposite to that of π^+ is observed.

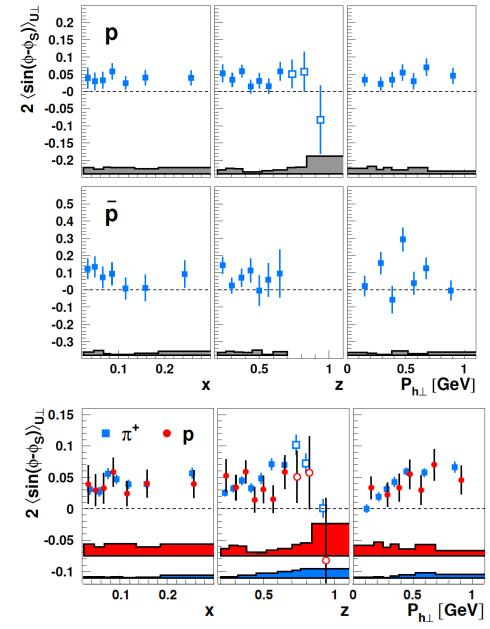

Large positive amplitude, similar kinematic dep. of π^+

Positive amplitude, different than $\pi^ K^-$ is a pure sea object with no valence quarks in common with target proton



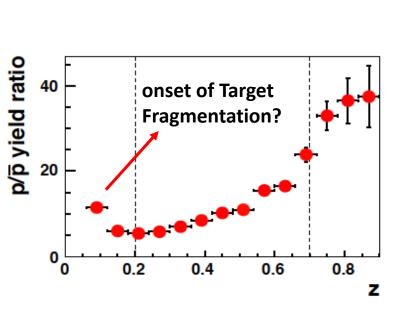
Sivers amplitudes: the K^+ vs. π^+ issue

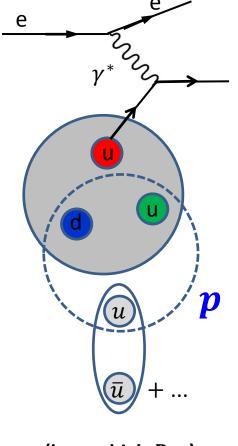
Similar kinematic dependence in SIDIS region but K^+ is substantially larger!


- both expected to be mainly produced from scattering off u-quarks
- but different sea-quark content
- there could be a different k_T dependence of the fragmentation functions for different (sea) quarks flavours (entering the convolution integral)?
- different impact of higher-twist effects?

K⁺ amplitude keeps rising with z in semi-exclusive region (no sudden change) → Contribution from exclusive VM decays much less pronounced for Kaons than for pions.

- $x-Q^2$ strongly correlated \rightarrow split each x bin in two Q^2 regions: $\leq \langle Q^2 \rangle$ of each x bin
- no effect for pions, but hint of suppression at larger Q^2 for kaons

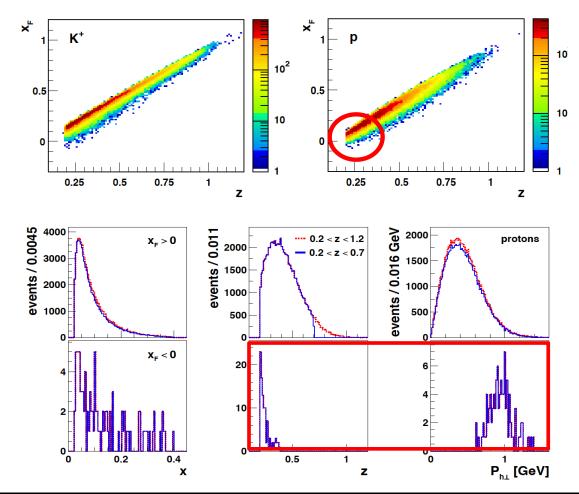

L.L. Pappalardo DIS 2021 April 13, 2021 **10**



First measurement of Sivers asymmetries for p, \overline{p} in SIDIS

Both amplitudes are non-zero and positive

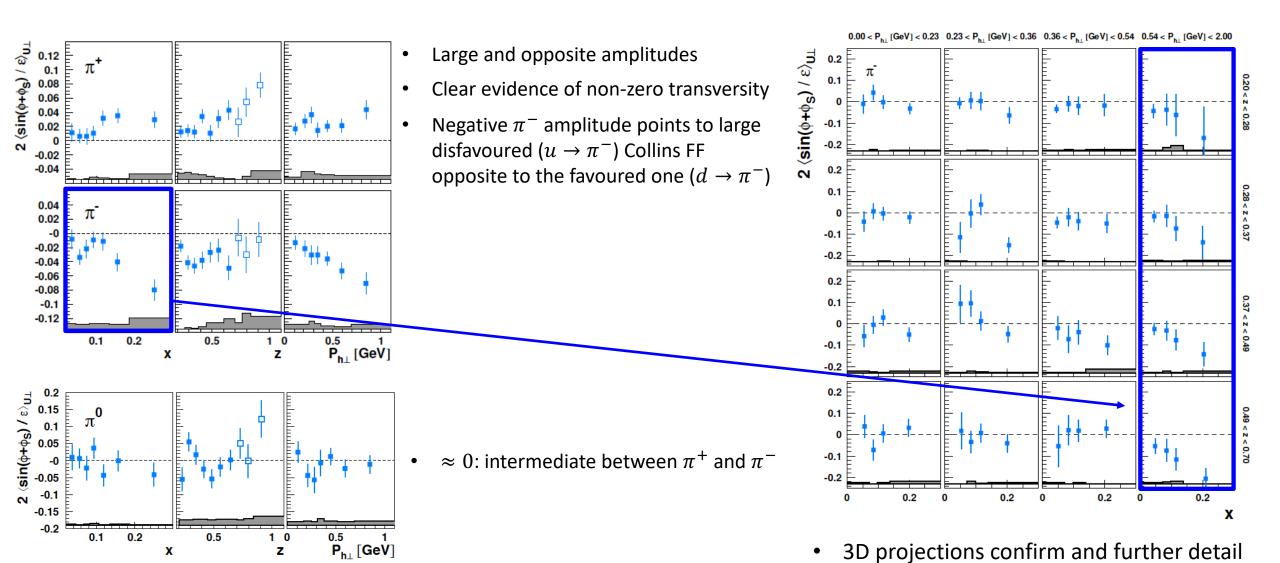
Proton production is particularly susceptible to receive contributions from **Target Fragmentation**



(low z, high $P_{h\perp}$)

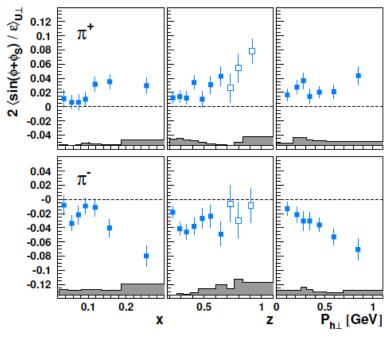
Sivers amplitudes: protons results (CFR vs. TFR)

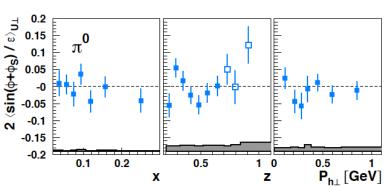
- No generally-accepted recipe exists
- positive values of x_F and rapidity (y_h) are typically associated with hadrons produced from the struck quark (CFR)
- negative values point at target fragmentation (TFR)

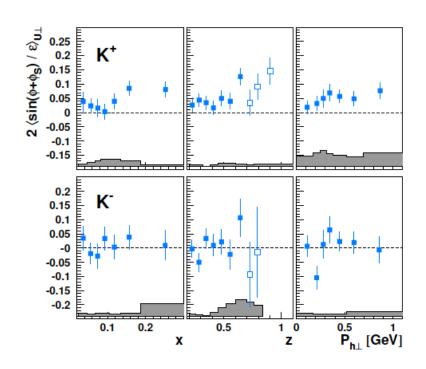


At the selected kinematics the vast majority of protons are compatible with being produced in CFR

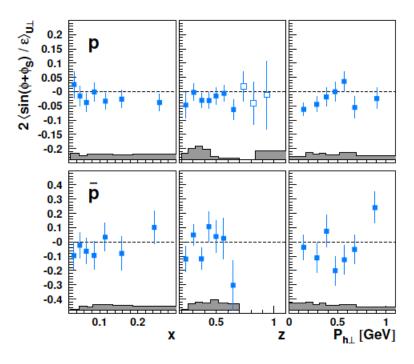
L.L. Pappalardo DIS 2021 April 13, 2021 **12**

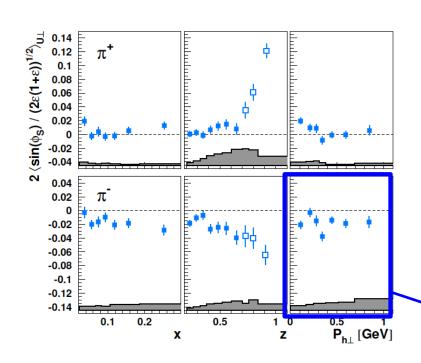

Collins amplitudes: SFA pion results



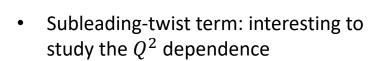

L.L. Pappalardo DIS 2021 April 13, 2021 **13**

the rise of the amplitude at large x and $P_{h\perp}$

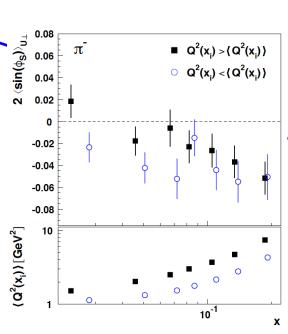

Collins amplitudes: all SFA 1D results

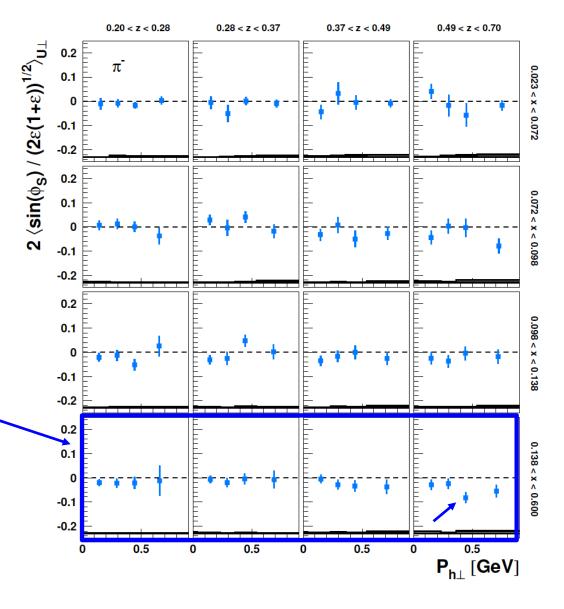


- K^+ exhibits a very similar kinematic dependence as π^+ , but amplitude is twice as large!
- $K^- \approx 0$: only disfavored and opposite $(u \to K^-, d \to K^-)$ fragmentation mechanisms can contribute

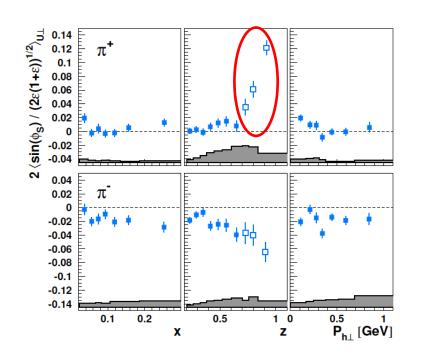


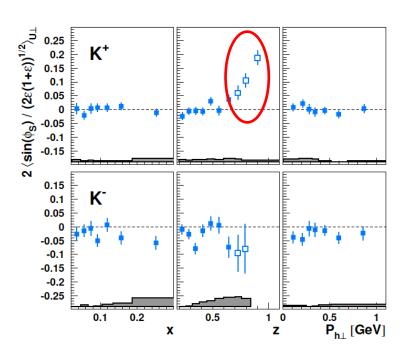
- First measurement of Collins asymm. for protons/antiprotons!
- proton amplitude is non zero (negative)
- antiproton amplitude pprox 0
- Collins effect is a fragmentation process, but too little is known about this effect for spin-1/2 hadron production

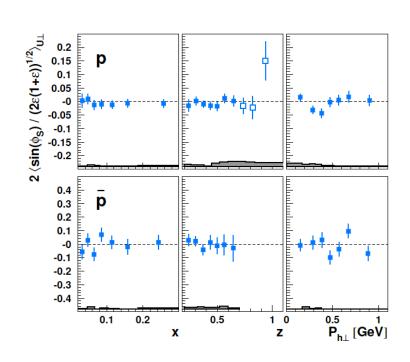

The sub-leading twist $\sin \phi_S$ term: pions SFA results



- Charged pions amplitudes non-zero and opposite
- Negative π^- amplitude increases with x and z
- Overall similar behaviour of Collins asymmetries!


- Split each x-bin in two Q^2 regions
- Hint of suppression at higher Q^2

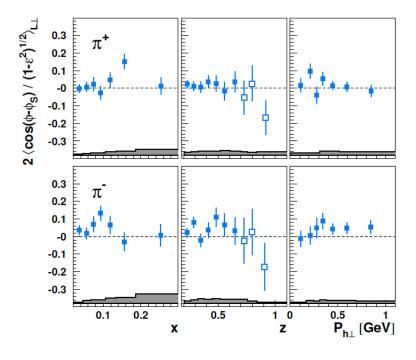


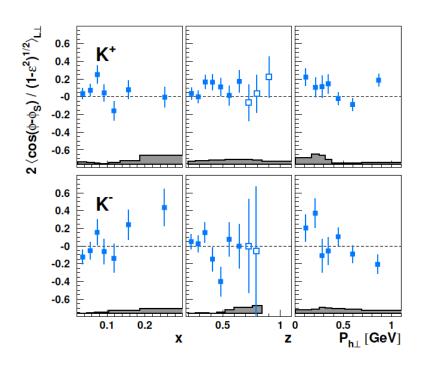


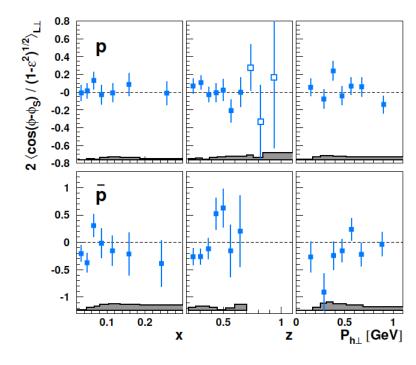

L.L. Pappalardo DIS 2021 April 13, 2021 **15**

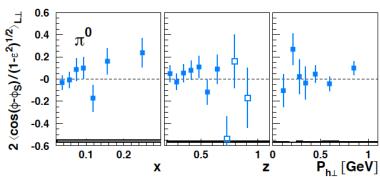
The sub-leading twist $\sin \phi_S$ term: all SFA 1D results

- π^+ and K^+ amplitudes in SIDIS region (0.2 < z < 0.7) are similar: small and positive
- K^- negative and similar to π^-
- π^0 , p, \bar{p} results vanishing
- striking z-dependence in "semi-exclusive region" for π^+/K^+ consistent with large $\sin(\phi_S)$ amplitude observed in exclusive π^+ electroproduction [Phys. Lett. B 682 (2010)]


Conclusions


- > The full collection of leading- and subleading-twist SSAs and DSAs with a transversely polarized H target has now been published, based on an improved analysis including proton/antiproton results, as well as results in a 3D binning and extended to the large-z ("semi-exclusive region") region.
- > A rich phenomenology and surprising effects arise when intrinsic transverse degrees of freedom (spin, momentum) are not integrated out!
- Flavor sensitivity ensured by the excellent hadron ID of the HERMES experiment reveals interesting and unexpected facets of data (e.g. $\pi \leftrightarrow K$)
- > The 3D imaging of the nucleon is a fashinating and fast evolving research field. HERMES has been a pioneer experiment in this fiels and continues to play a key role in these studies.


Backup


The other SFA results...

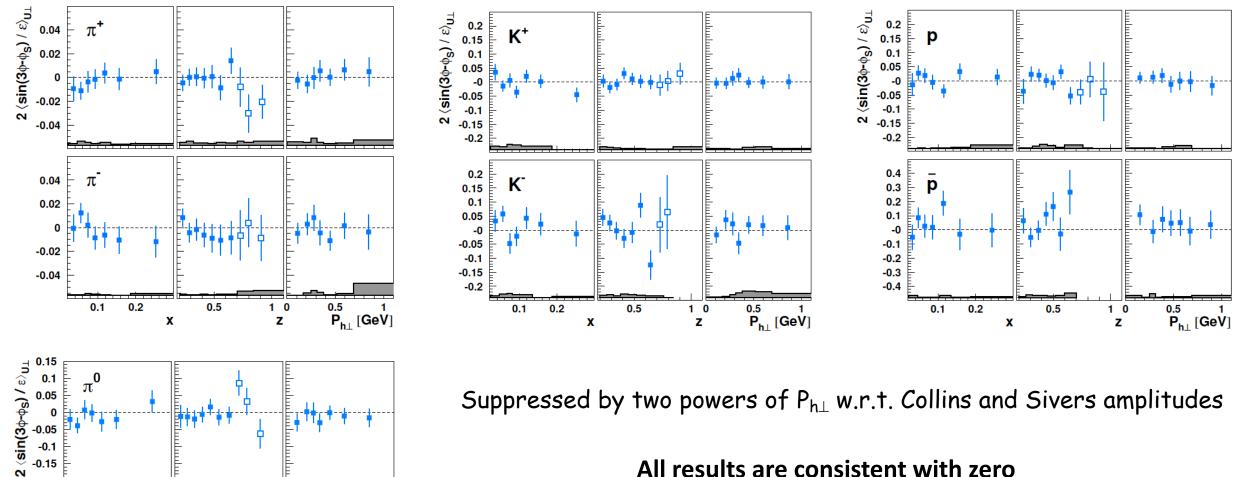
The $cos(\phi - \phi_S)$ DSA: all SFA 1D results

- π^+ , π^- and K^+ amplitudes are non-zero in SIDIS region (0. 2 < z < 0. 7)
- indication of a non-zero worm-gear function $oldsymbol{g}_{1T}$
- amplitudes consistent with zero for all other hadron species
- Larger stat. errors (compared to SSAs) due to low beam polarization

$\langle \sin(3\phi - \phi_S)/\varepsilon \rangle_{U\perp}$ (Pretzelosity): all 1D results

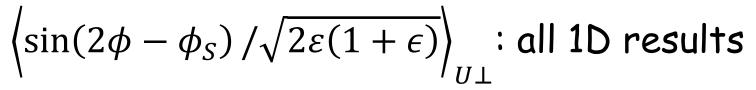
0.5 1 P_{h⊥} [GeV]

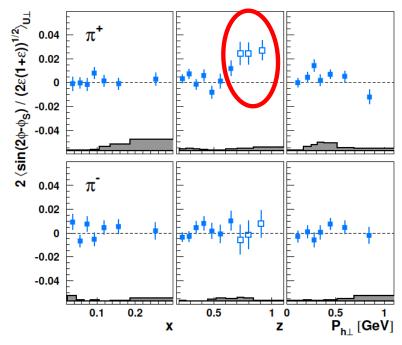
-0.1

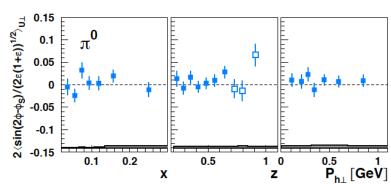

0.2

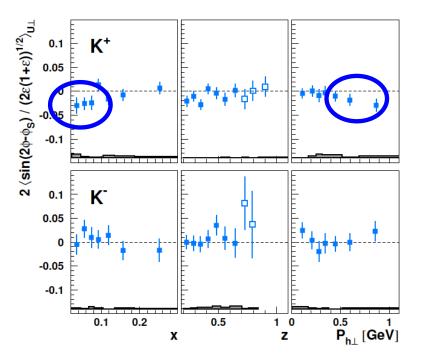
X

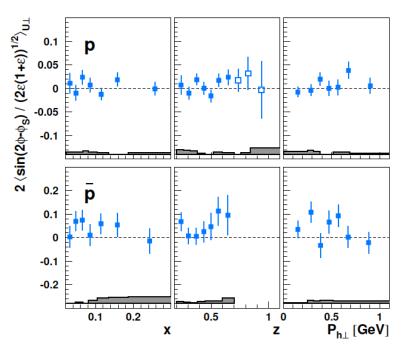
0.1


0.5

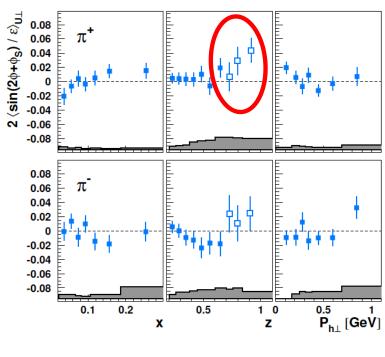

Z

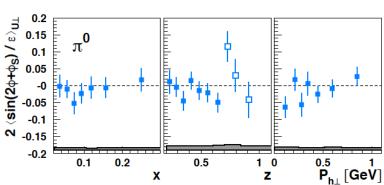


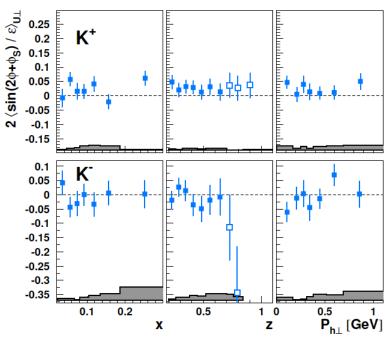

Suppressed by two powers of $P_{h\perp}$ w.r.t. Collins and Sivers amplitudes

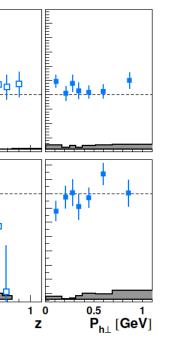

All results are consistent with zero

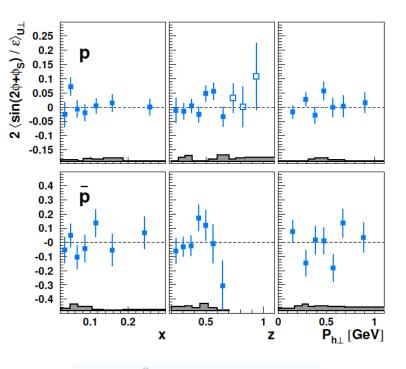
22

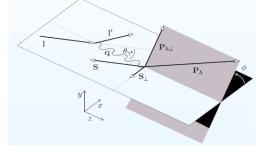

Semi-Inclusive region (0.2 < z < 0.7):


 K^+ : hint of non-zero signal at small x and large $P_{h\perp}$ \bar{p} : hint of positive amplitude rising with z


Semi-Exclusive region (z > 0.7):

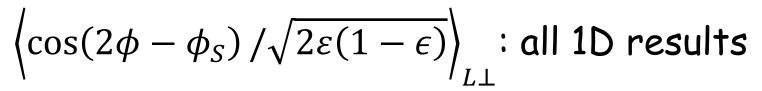

 π^+ : positive amplitude ($\sim 2\%$) \rightarrow consistent with positive $\sin(2\phi - \phi_S)$ amplitude observed for exclusive π^+ electroproduction [Phys. Lett. B 682 (2010)]

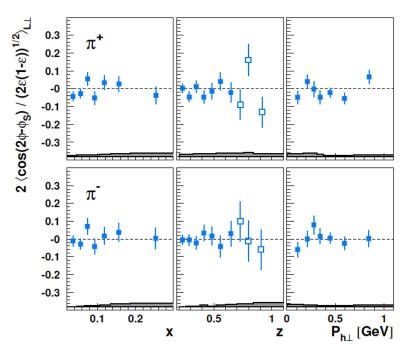

$\langle \sin(2\phi + \phi_S)/\varepsilon \rangle_{U\perp}$: all 1D results

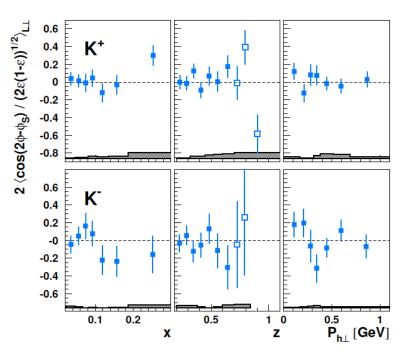


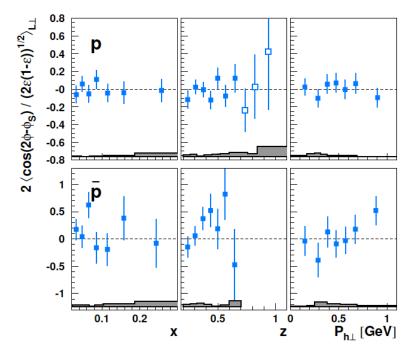
Arises solely from the small longit. target polarization component

Semi-Inclusive region (0.2 < z < 0.7):

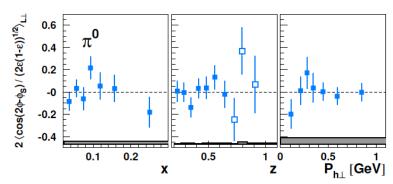

 K^+ : positive amplitude over full z range

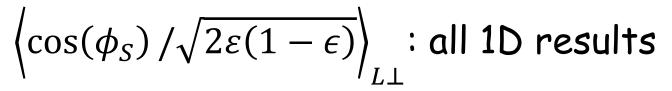

Semi-Exclusive region (z > 0.7):

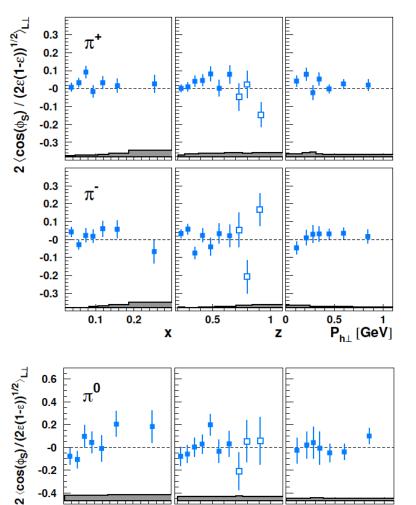



23

 π^+ : positive amplitude rising with $z \to \text{consistent}$ with positive $\sin(2\phi + \phi_S)$ amplitude observed for exclusive π^+ electroproduction [Phys. Lett. B 682 (2010)]

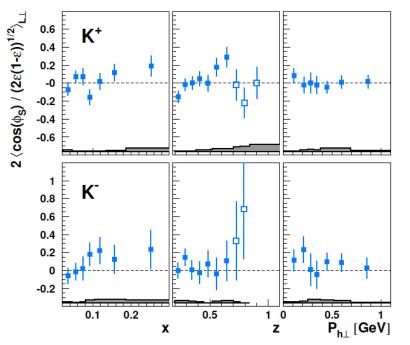


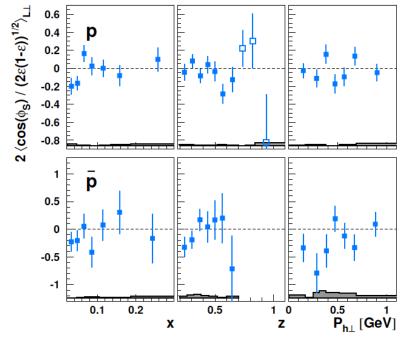



24

All results are consistent with zero

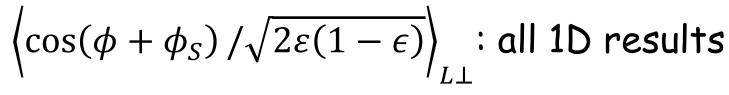
 $\stackrel{0.5}{P_{h\perp}} \stackrel{1}{[\text{GeV}]}$

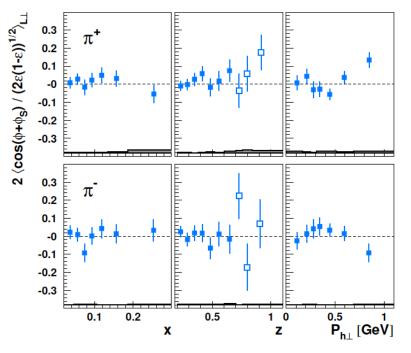

0.5

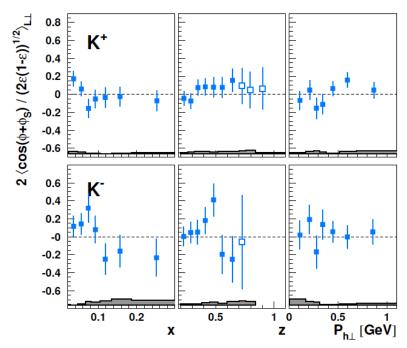

Z

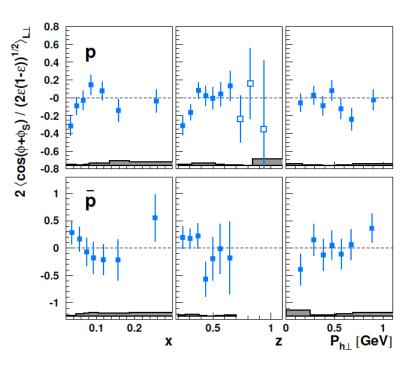
0.2

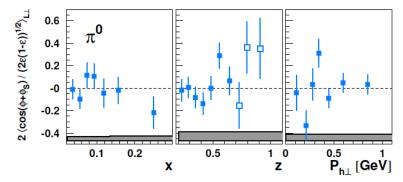
X

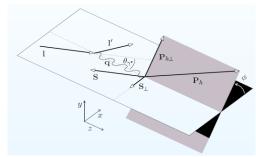

0.1






Can receive contributions from the longitudinal target polarization component


 K^- : small positive amplitude



Arises solely from the small longit. target polarization component

All results consistent with zero

Miscellania

The CSA amplitudes

The probability-density function used for the **CSA decomposition** of the cross section

$$\mathbb{P}\left(x, z, P_{h\perp}, \phi, \phi_S, P_l, S_{\perp} : 2 \left\langle \sin\left(\phi - \phi_S\right) \right\rangle_{\mathbf{U}\perp}^h, \dots 2 \left\langle \cos\left(\phi + \phi_S\right) \right\rangle_{\mathbf{L}\perp}^h \right)$$

$$= \left[1 + S_{\perp} \left(2 \left\langle \sin\left(\phi - \phi_S\right) \right\rangle_{\mathbf{U}\perp}^h \sin\left(\phi - \phi_S\right) + 2 \left\langle \sin\left(\phi + \phi_S\right) \right\rangle_{\mathbf{U}\perp}^h \sin\left(\phi + \phi_S\right) + 2 \left\langle \sin\left(\phi - \phi_S\right) \right\rangle_{\mathbf{U}\perp}^h \sin\left(\phi - \phi_S\right) + 2 \left\langle \sin\left(\phi - \phi_S\right) \right\rangle_{\mathbf{U}\perp}^h \sin\left(\phi - \phi_S\right) + 2 \left\langle \sin\left(\phi - \phi_S\right) \right\rangle_{\mathbf{U}\perp}^h \sin\left(\phi - \phi_S\right) + 2 \left\langle \sin\left(\phi - \phi_S\right) \right\rangle_{\mathbf{U}\perp}^h \sin\left(\phi - \phi_S\right) + 2 \left\langle \sin\left(\phi - \phi_S\right) \right\rangle_{\mathbf{U}\perp}^h \sin\left(\phi - \phi_S\right) + 2 \left\langle \sin\left(\phi - \phi_S\right) \right\rangle_{\mathbf{U}\perp}^h \sin\left(\phi - \phi_S\right) + 2 \left\langle \sin\left(\phi - \phi_S\right) \right\rangle_{\mathbf{U}\perp}^h \sin\left(\phi - \phi_S\right) + 2 \left\langle \sin\left(\phi - \phi_S\right) \right\rangle_{\mathbf{U}\perp}^h \sin\left(\phi - \phi_S\right) + 2 \left\langle \sin\left(\phi - \phi_S\right) \right\rangle_{\mathbf{L}\perp}^h \cos\left(\phi - \phi_S\right) + 2 \left\langle \cos\left(\phi - \phi_S\right) \right\rangle_{\mathbf{L}\perp}^h \cos\left(\phi - \phi_S\right) + 2 \left\langle \cos\left(\phi - \phi_S\right) \right\rangle_{\mathbf{L}\perp}^h \cos\left(\phi - \phi_S\right) + 2 \left\langle \cos\left(\phi - \phi_S\right) \right\rangle_{\mathbf{L}\perp}^h \cos\left(\phi - \phi_S\right) + 2 \left\langle \cos\left(\phi + \phi_S\right) \right\rangle_{\mathbf{L}\perp}^h \cos\left(\phi + \phi_S\right) \right\rangle_{\mathbf{L}\perp}^h \text{DSAs}$$

10 Fourier components:

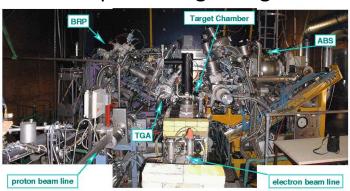
- $6 A_{U\perp}$ SSAs (4 leading-twist + 2 subleading twist)
- 4 A_L DSAs (2 leading-twist + 2 subleading twist)
- $\sin(2\phi + \phi_S)$ and $\cos(\phi + \phi_S)$ terms arise purely from the small but non-vanishing longitudinal target-polarization component (target polarization states are referred to the lepton beam direction)
- The CSA amplitudes include in their definition the ε -dependent kinematic prefactors that enter the various cross section terms

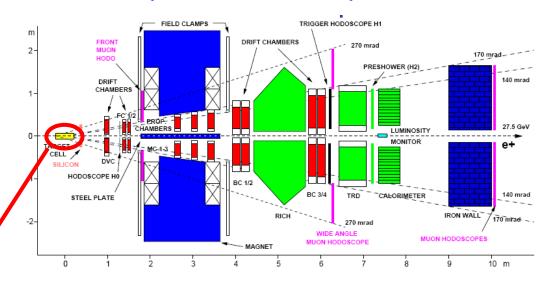
The SFA amplitudes (NEW!)

The probability-density function used for the SFA decomposition of the cross section

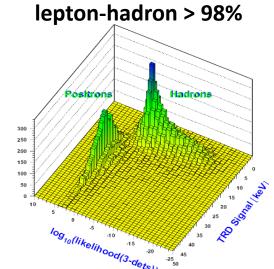
$$\mathbb{P} \Big(x, z, \epsilon, P_{h\perp}, \phi, \phi_S, P_l, S_\perp : 2 \langle \sin{(\phi - \phi_S)} \rangle_{\text{U}\perp}^h, \dots 2 \langle \cos{(\phi + \phi_S)} / \sqrt{2\epsilon(1 - \epsilon)} \rangle_{\text{L}\perp}^h \Big)$$

$$= \Big[1 + S_\perp \Big(2 \langle \sin{(\phi - \phi_S)} \rangle_{\text{U}\perp}^h \sin{(\phi - \phi_S)} + \frac{\epsilon}{\epsilon} 2 \langle \sin{(\phi + \phi_S)} / \epsilon \rangle_{\text{U}\perp}^h \sin{(\phi + \phi_S)} + \frac{\epsilon}{\epsilon} 2 \langle \sin{(\phi + \phi_S)} / \epsilon \rangle_{\text{U}\perp}^h \sin{(\phi + \phi_S)} + \frac{\epsilon}{\epsilon} 2 \langle \sin{(\phi + \phi_S)} / \epsilon \rangle_{\text{U}\perp}^h \sin{(\phi + \phi_S)} + \frac{\epsilon}{\epsilon} 2 \langle \sin{(\phi + \phi_S)} / \epsilon \rangle_{\text{U}\perp}^h \sin{(\phi + \phi_S)} + \frac{\epsilon}{\epsilon} 2 \langle \sin{(\phi + \phi_S)} / \epsilon \rangle_{\text{U}\perp}^h \sin{(\phi + \phi_S)} + \frac{\epsilon}{\epsilon} 2 \langle \sin{(\phi + \phi_S)} / \epsilon \rangle_{\text{U}\perp}^h \sin{(\phi + \phi_S)} + \frac{\epsilon}{\epsilon} 2 \langle \sin{(\phi + \phi_S)} / \epsilon \rangle_{\text{U}\perp}^h \sin{(\phi + \phi_S)} + \frac{\epsilon}{\epsilon} 2 \langle \sin{(\phi + \phi_S)} / \epsilon \rangle_{\text{U}\perp}^h \sin{(\phi + \phi_S)} + \frac{\epsilon}{\epsilon} 2 \langle \sin{(\phi + \phi_S)} / \epsilon \rangle_{\text{U}\perp}^h \sin{(\phi + \phi_S)} + \frac{\epsilon}{\epsilon} 2 \langle \sin{(\phi + \phi_S)} / \epsilon \rangle_{\text{U}\perp}^h \sin{(\phi + \phi_S)} + \frac{\epsilon}{\epsilon} 2 \langle \sin{(\phi + \phi_S)} / \epsilon \rangle_{\text{U}\perp}^h \sin{(\phi + \phi_S)} + \frac{\epsilon}{\epsilon} 2 \langle \sin{(\phi + \phi_S)} / \epsilon \rangle_{\text{U}\perp}^h \sin{(\phi + \phi_S)} + \frac{\epsilon}{\epsilon} 2 \langle \sin{(\phi + \phi_S)} / \epsilon \rangle_{\text{U}\perp}^h \sin{(\phi + \phi_S)} + \frac{\epsilon}{\epsilon} 2 \langle \sin{(\phi + \phi_S)} / \epsilon \rangle_{\text{U}\perp}^h \sin{(\phi + \phi_S)} + \frac{\epsilon}{\epsilon} 2 \langle \sin{(\phi + \phi_S)} / \epsilon \rangle_{\text{U}\perp}^h \sin{(\phi + \phi_S)} + \frac{\epsilon}{\epsilon} 2 \langle \sin{(\phi + \phi_S)} / \epsilon \rangle_{\text{U}\perp}^h \sin{(\phi + \phi_S)} + \frac{\epsilon}{\epsilon} 2 \langle \sin{(\phi + \phi_S)} / \epsilon \rangle_{\text{U}\perp}^h \sin{(\phi + \phi_S)} + \frac{\epsilon}{\epsilon} 2 \langle \sin{(\phi + \phi_S)} / \epsilon \rangle_{\text{U}\perp}^h \sin{(\phi + \phi_S)} + \frac{\epsilon}{\epsilon} 2 \langle \sin{(\phi + \phi_S)} / \epsilon \rangle_{\text{U}\perp}^h \sin{(\phi + \phi_S)} + \frac{\epsilon}{\epsilon} 2 \langle \sin{(\phi + \phi_S)} / \epsilon \rangle_{\text{U}\perp}^h \sin{(\phi + \phi_S)} + \frac{\epsilon}{\epsilon} 2 \langle \sin{(\phi + \phi_S)} / \epsilon \rangle_{\text{U}\perp}^h \sin{(\phi + \phi_S)} + \frac{\epsilon}{\epsilon} 2 \langle \sin{(\phi + \phi_S)} / \epsilon \rangle_{\text{U}\perp}^h \sin{(\phi + \phi_S)} + \frac{\epsilon}{\epsilon} 2 \langle \sin{(\phi + \phi_S)} / \epsilon \rangle_{\text{U}\perp}^h \sin{(\phi + \phi_S)} + \frac{\epsilon}{\epsilon} 2 \langle \sin{(\phi + \phi_S)} / \epsilon \rangle_{\text{U}\perp}^h \sin{(\phi + \phi_S)} + \frac{\epsilon}{\epsilon} 2 \langle \sin{(\phi + \phi_S)} / \epsilon \rangle_{\text{U}\perp}^h \sin{(\phi + \phi_S)} + \frac{\epsilon}{\epsilon} 2 \langle \sin{(\phi + \phi_S)} / \epsilon \rangle_{\text{U}\perp}^h \sin{(\phi + \phi_S)} + \frac{\epsilon}{\epsilon} 2 \langle \sin{(\phi + \phi_S)} / \epsilon \rangle_{\text{U}\perp}^h \sin{(\phi + \phi_S)} + \frac{\epsilon}{\epsilon} 2 \langle \sin{(\phi + \phi_S)} / \epsilon \rangle_{\text{U}\perp}^h \sin{(\phi + \phi_S)} + \frac{\epsilon}{\epsilon} 2 \langle \sin{(\phi + \phi_S)} / \epsilon \rangle_{\text{U}\perp}^h \sin{(\phi + \phi_S)} + \frac{\epsilon}{\epsilon} 2 \langle \sin{(\phi + \phi_S)} / \epsilon \rangle_{\text{U}\perp}^h \sin{(\phi + \phi_S)} + \frac{\epsilon}{\epsilon} 2 \langle \sin{(\phi + \phi_S)} / \epsilon \rangle_{\text{U}\perp}^h \sin{(\phi + \phi_S)} + \frac{\epsilon}{\epsilon} 2 \langle \sin{(\phi + \phi_S)} / \epsilon \rangle_{\text{U}\perp}^h \sin{(\phi + \phi_S)} + \frac{\epsilon}{\epsilon} 2 \langle \sin{(\phi + \phi_S)} / \epsilon \rangle_{\text{U}\perp}^h \sin{(\phi + \phi_S)} + \frac{\epsilon}{\epsilon}$$

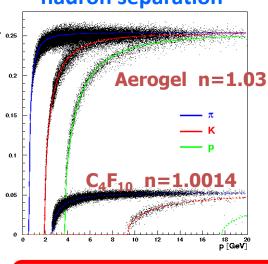

10 Fourier components:


- $6 A_{U\perp}$ SSAs (4 leading-twist + 2 subleading twist)
- $4 A_{L\perp}$ DSAs (2 leading-twist + 2 subleading twist)
- $\sin(2\phi + \phi_S)$ and $\cos(\phi + \phi_S)$ terms arise purely from the small but non-vanishing longitudinal target-polarization component (target polarization states are referred to the lepton beam direction)
- The SFA amplitudes do not include the ε -dependent kinematic prefactors of the various cross section terms.
- They are obtained by including explicitly the ε -dependent kinematic prefactors in the probability-density function separated from the fit parameters.

The HERMES experiment at HERA (1995-2007)



The polarized gas target



TRD, Calorimeter, preshower, RICH:

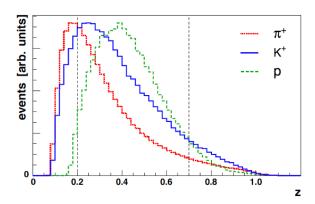
hadron separation

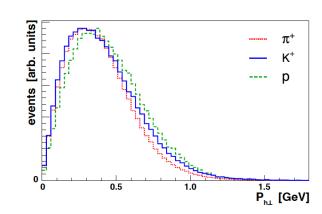
 π ~ 98%, K ~ 88% , P ~ 85%

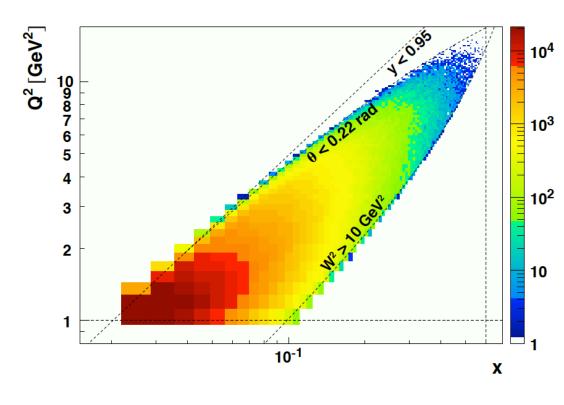
Kinematic coverage

$$\begin{array}{cc} Q^2 &> 1\,\mathrm{GeV}^2 \\ W^2 &> 10\,\mathrm{GeV}^2 \end{array}$$

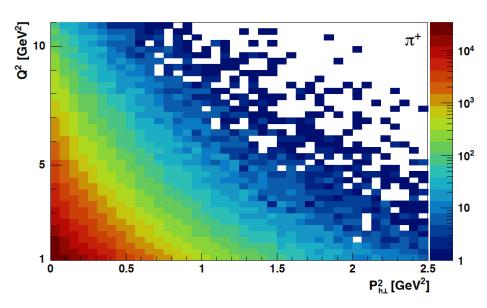
Detected hadrons:

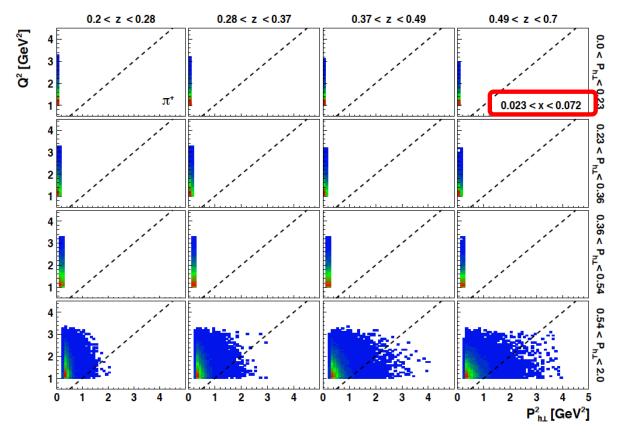

$$2 \, \text{GeV} < |\mathbf{P}_h| < 15 \, \text{GeV}$$
 charged mesons


$$4 \, \text{GeV} < |\mathbf{P}_h| < 15 \, \text{GeV} \quad (\text{anti}) \text{protons}$$


$$|P_h| > 2 \, \text{GeV}$$
 neutral pions

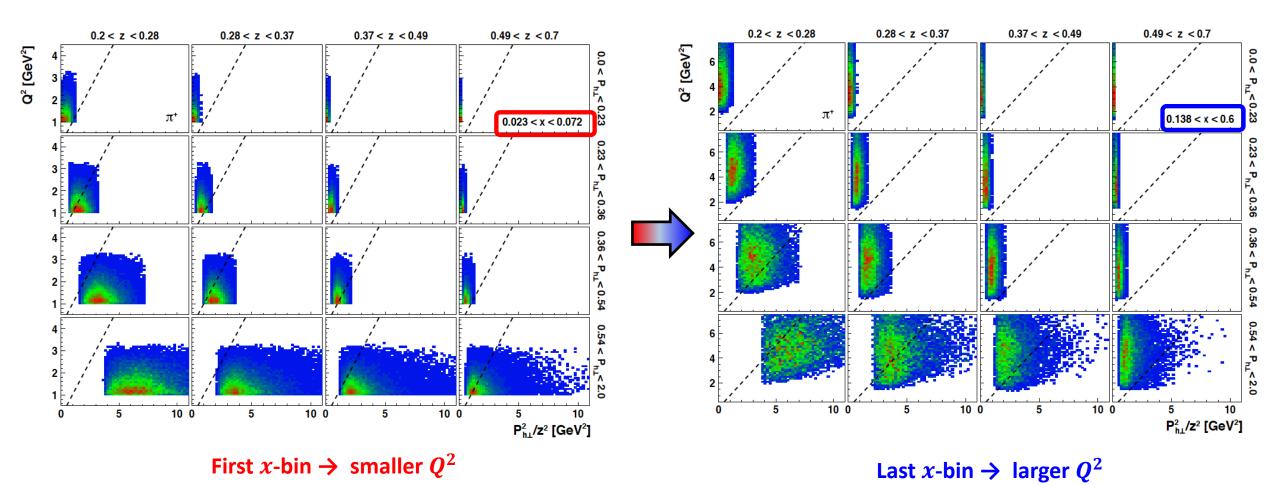
$$P_{h\perp}$$
 < 2 GeV


$$0.2 < z < 0.7$$
 (1.2 for the "semi-exclusive" region)



Kinematic coverage and factorization requirements

- Factorization requirement $P_{h\perp}^2 \ll Q^2$ fulfilled for most of the selected DIS events
- the stricter constraint $P_{h\perp}^2 \ll z^2 Q^2$ is violated at large $P_{h\perp}$ in the region of small x and small z
- detailed studies in appendix B of the paper (and next slides)

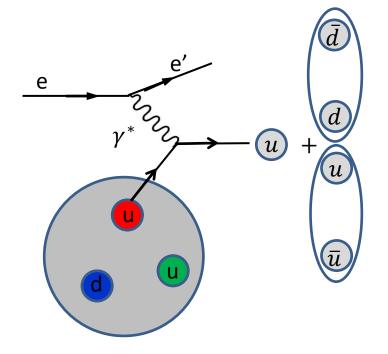

Due to x- Q^2 correlation, the first x bin corresponds to the small Q^2 region, where the TMD-factorization requirement $P_{h\perp}^2 \ll Q^2$ is less favourable.



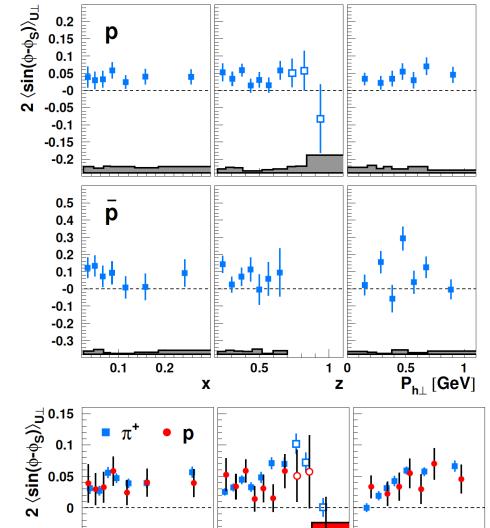
TMD-factorization requirement $P_{h\perp}^2 \ll Q^2$ fulfilled for most of the selected DIS events!

Factorization requirements

Due to the $1/z^2$ factor, which becomes large at small z, the **stricter condition** $P_{h\perp}^2/z^2 \ll Q^2$ is unfulfilled for the majority of the events:



First measurement of Sivers asymmetries for p, \overline{p} in SIDIS


Both amplitudes are non-zero and positive

A naive fragmentation process that can lead to p/\bar{p} :

Similar agreement between \bar{p} and π^+ (but with larger statistical errors)

Let's assume scattering off the up quark (dominance of u-quarks in p/\bar{p} production supported by global fits of FF [Phys.Rev.D76:074033,2007])

0.5

Z

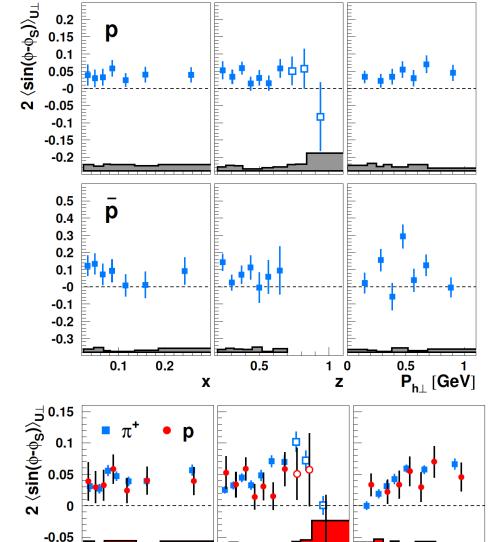
-0.05

-0.1

0.2

X

First measurement of Sivers asymmetries for p, \overline{p} in SIDIS


Both amplitudes are non-zero and positive

A naive fragmentation process that can lead to p/\bar{p} : \bar{d} e (\bar{u})

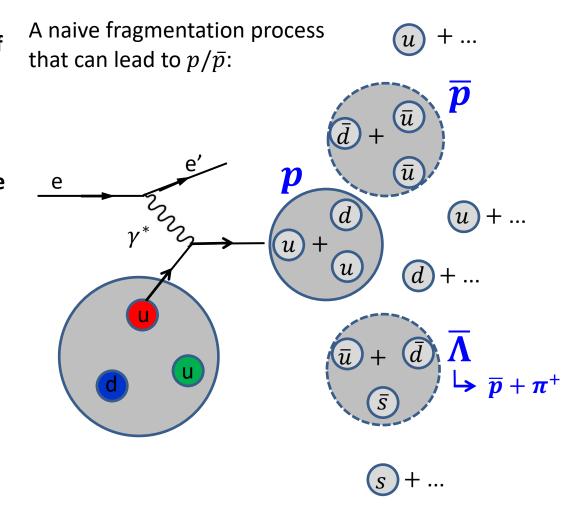
Similar agreement between \bar{p} and π^+ (but with larger statistical errors)

 $\overset{0.5}{P}_{h\perp}^{}[\text{GeV}]$

Let's assume scattering off the up quark (dominance of u-quarks in p/\bar{p} production supported by global fits of FF [Phys.Rev.D76:074033,2007])

0.5

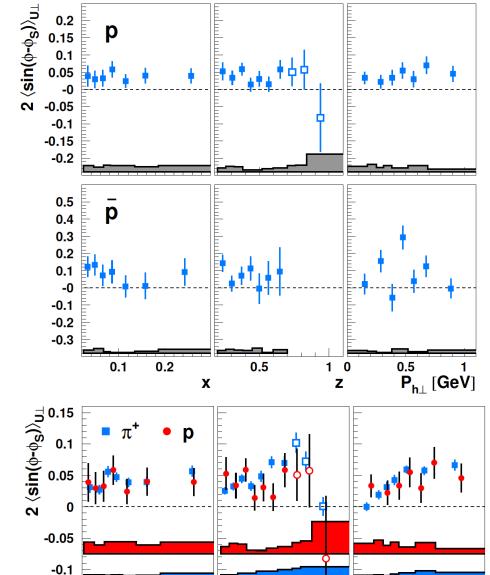
Z


-0.1

0.2

X

First measurement of Sivers asymmetries for p, \overline{p} in SIDIS


Both amplitudes are non-zero and positive

Similar agreement between \bar{p} and π^+ (but with larger statistical errors)

 $\overset{0.5}{P}_{h\perp}^{}[\text{GeV}]$

Let's assume scattering off the up quark (dominance of u-quarks in p/\bar{p} production supported by global fits of FF [Phys.Rev.D76:074033,2007])

0.5

Ζ

0.1

0.2

X

First measurement of Sivers asymmetries for p, \overline{p} in SIDIS

Both amplitudes are non-zero and positive

A naive fragmentation process that can lead to p/\bar{p} : e (u)(d)

...also from TFR (low z, high $P_{h\perp}$)

37

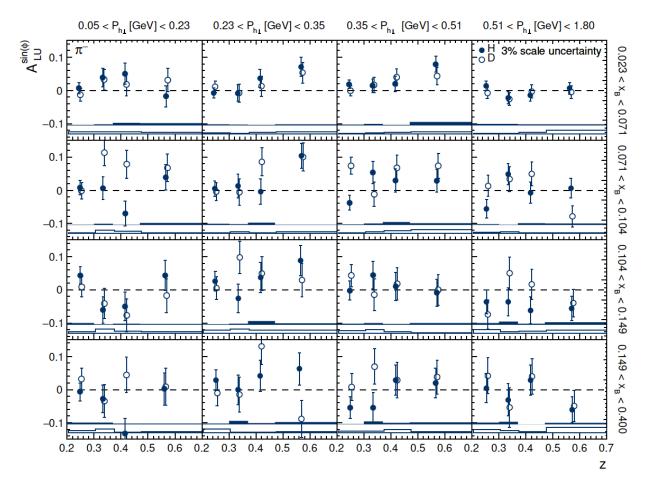
Similar agreement between \bar{p} and π^+ (but with larger statistical errors)

 $\overset{0.5}{P}_{h\perp}^{}[\text{GeV}]$

Other HERMES results

Sub-leading twist $sin(\phi)$ BSA

0.05 π⁺ 3% scale uncertainty 0.05 - π 0.1 -0.10.1 [-0.10.2

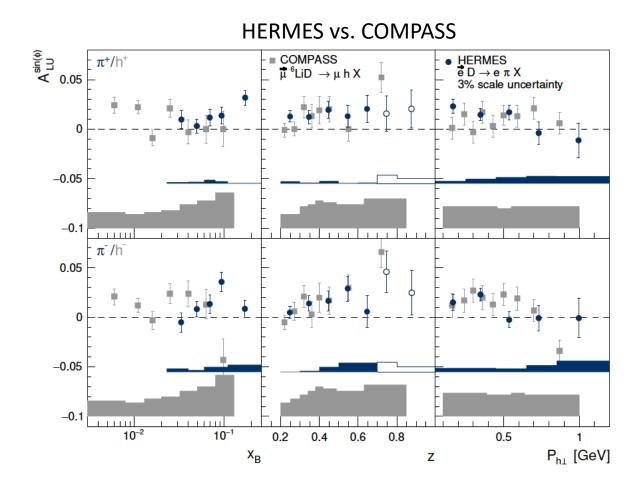

8.0

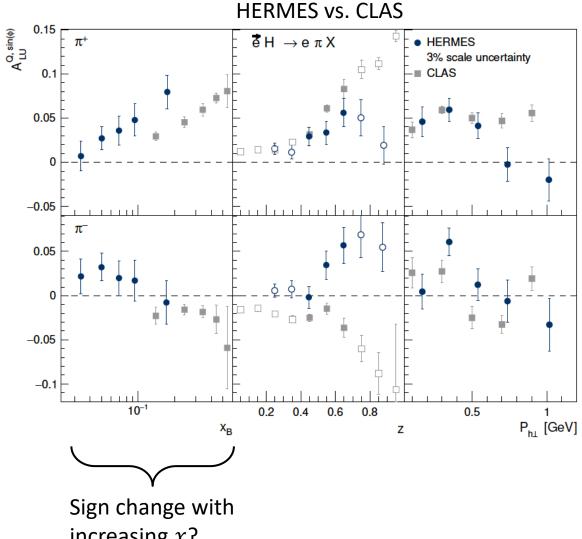
Ζ

0.15

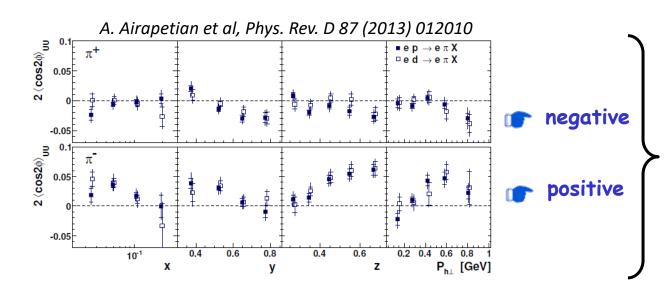
 X_B

Phys. Lett. B 797 (2019) 134886

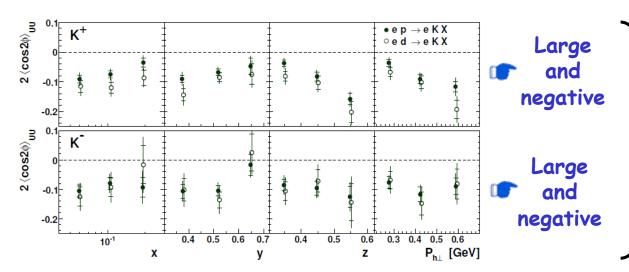



- Large positive amplitudes rising with z for π^+ and π^-
- Small positive amplitude with mild kinematic dep. for K^+

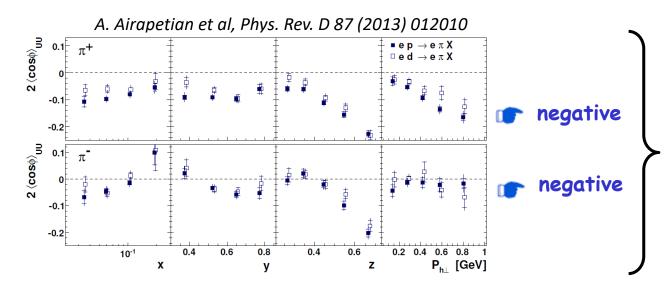
39


• Results compatible with zero for K^- , p and \bar{p}

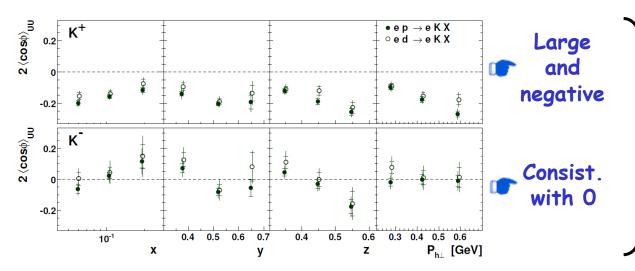
P_h [GeV]


The cos2 ϕ amplitudes $\propto h_1^{\perp}(x, p_T^2) \otimes H_1^{\perp}(z, k_T^2)$

- Amplitudes are significant
- → evidence of BM effect
- similar results for H & D

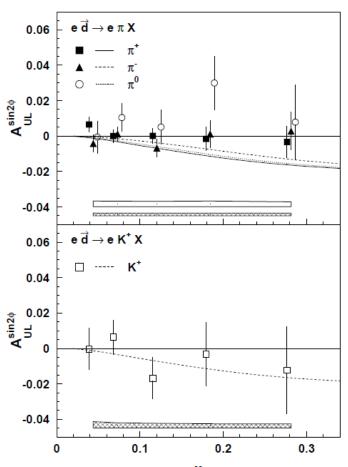

$$\to h_1^{\perp,u} \approx h_1^{\perp,d}$$

- Opposite sign for π^+/π^-
- → opposite signs of fav/unfav Collins FF

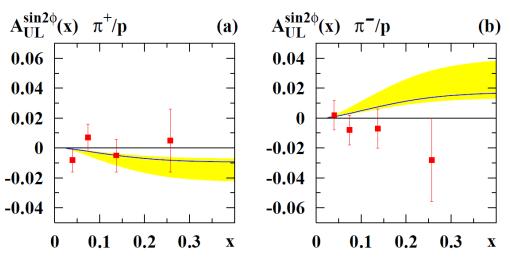


- K^+/K^- amplitudes larger than for pions, have different kinematic dependencies than pions and are both negative
- → different role of Collins FF for pions and kaons?
- → significant contribution from scattering off strange quarks?

The cos ϕ amplitudes $\propto +\frac{1}{Q}[h_1^{\perp} \otimes H_1^{\perp} + f_1 \otimes D_1 \dots]$


- Significant and of same sign \rightarrow Chan effect weekly flavor dependent?
- Clear rise with z for $\pi^+ \& \, \pi^-$ and $P_{h \perp}$ for π^+
- Different $P_{h\perp}$ dependence \rightarrow contrib. of flavor dependent effects (e.g. BM) for π^- ?

- K^+ amplitudes larger than π^+
- \rightarrow different Collins FF for π & K
- $K^- \approx 0$ different than K^+ (in contrast to $\cos 2\phi$)
- Significant contrib from interaction dependent terms?


The sin(2 ϕ) amplitude $\propto h_{1L}^{\perp}(x, p_T^2) \otimes H_1^{\perp}(z, k_T^2)$

Deuterium target

A. Airapetian et al, Phys. Lett. B562 (2003)

Hydrogen target

A. Airapetian et al, Phys. Rev. Lett. 84 (2000)

43

Amplitudes consistent with zero for all mesons and for both H and D targets