

Recent Hermes results for SSAs and DSAs

Luciano L. Pappalardo

University of Ferrara

The phase-space distribution of partons

The full phase-space distribution of the partons encoded in the Wigner function

The phase-space distribution of partons

The full phase-space distribution of the partons encoded in the Wigner function ...but $\Delta x \Delta p \geq \frac{\hbar}{2} \rightarrow$ no simultaneous knowledge of momentum and position cannot be directly accessed experimentally \rightarrow integrated quantities

The non-collinear structure of the nucleon

The full phase-space distribution of the partons encoded in the Wigner function

...but $\Delta x \Delta p \geq \frac{\hbar}{2} \rightarrow$ no simultaneous knowledge of momentum and position

cannot be directly accessed experimentally \rightarrow integrated quantities

- TMDs depend on x and p_T
- Describe correlations between p_T and quark or nucleon spin (spin-orbit correlations)
- Provide a 3-dim picture of the nucleon in momentum space (nucleon tomography)

The non-collinear structure of the nucleon

Mostly investigated in **SIDIS**: detection of transverse momentum of produced hadrons gives access to p_T

- TMDs depend on x and p_T
- Describe correlations between p_T and quark or nucleon spin (spin-orbit correlations)
- Provide a 3-dim picture of the nucleon in momentum space (nucleon tomography)

The SIDIS cross-section

$$\begin{split} \frac{d\sigma^{h}}{dx\,dy\,d\phi_{S}\,dz\,d\phi\,d\mathbf{P}_{h\perp}^{2}} &= \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2\left(1-\epsilon\right)}\left(1+\frac{\gamma^{2}}{2x}\right) \\ \left\{ \begin{array}{c} \left[F_{\mathrm{UU,T}}+\epsilon F_{\mathrm{UU,L}}\right.\\ &+\sqrt{2\epsilon\left(1+\epsilon\right)}\cos\left(\phi\right)F_{\mathrm{UU}}^{\cos\left(\phi\right)}+\epsilon\cos\left(2\phi\right)F_{\mathrm{UU}}^{\cos\left(2\phi\right)}\right] \\ + &\lambda_{l}\left[\sqrt{2\epsilon\left(1-\epsilon\right)}\sin\left(\phi\right)F_{\mathrm{LU}}^{\sin\left(\phi\right)}\right] \\ + &S_{L}\left[\sqrt{2\epsilon\left(1+\epsilon\right)}\sin\left(\phi\right)F_{\mathrm{UL}}^{\sin\left(\phi\right)} + \epsilon\sin\left(2\phi\right)F_{\mathrm{UL}}^{\sin\left(2\phi\right)}\right] \\ + &S_{L}\lambda_{l}\left[\sqrt{1-\epsilon^{2}}F_{\mathrm{LL}}+\sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(\phi\right)F_{\mathrm{LL}}^{\sin\left(\phi-\phi_{S}\right)}\right] \\ + &S_{T}\left[\sin\left(\phi-\phi_{S}\right)\left(F_{\mathrm{UT,T}}^{\sin\left(\phi-\phi_{S}\right)}+\epsilon F_{\mathrm{UT,L}}^{\sin\left(\phi-\phi_{S}\right)}\right)\right.\\ &\left. + \epsilon\sin\left(\phi+\phi_{S}\right)F_{\mathrm{UT}}^{\sin\left(\phi+\phi_{S}\right)}+\epsilon\sin\left(3\phi-\phi_{S}\right)F_{\mathrm{UT}}^{\sin\left(3\phi-\phi_{S}\right)} \\ &\left. + \sqrt{2\epsilon\left(1+\epsilon\right)}\sin\left(2\phi-\phi_{S}\right)F_{\mathrm{UT}}^{\sin\left(2\phi-\phi_{S}\right)}\right] \\ + &S_{T}\lambda_{l}\left[\sqrt{1-\epsilon^{2}}\cos\left(\phi-\phi_{S}\right)F_{\mathrm{LT}}^{\cos\left(\phi-\phi_{S}\right)} \\ &\left. + \sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(\phi_{S}\right)F_{\mathrm{LT}}^{\cos\left(\phi-\phi_{S}\right)} \\ &\left. + \sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(2\phi-\phi_{S}\right)F_{\mathrm{LT}}^{\cos\left(2\phi-\phi_{S}\right)}\right]\right. \\ \end{array} \right\} \end{split}$$

The SIDIS cross-section

$$\frac{d\sigma^{h}}{dx\,dy\,d\phi_{S}\,dz\,d\phi\,d\mathbf{P}_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2\left(1-\epsilon\right)}\left(1+\frac{\gamma^{2}}{2x}\right)$$

$$\begin{cases}
 \left[F_{\text{UU,T}} + \epsilon F_{\text{UU,L}} + \sqrt{2\epsilon (1+\epsilon)} \cos(\phi) F_{\text{UU}}^{\cos(\phi)} + \epsilon \cos(2\phi) F_{\text{UU}}^{\cos(2\phi)} \right]
\end{cases}$$

+
$$\lambda_l \left[\sqrt{2\epsilon (1 - \epsilon)} \sin(\phi) F_{\text{LU}}^{\sin(\phi)} \right]$$

+
$$S_L$$
 $\left[\sqrt{2\epsilon (1+\epsilon)} \sin(\phi) F_{\text{UL}}^{\sin(\phi)} + \epsilon \sin(2\phi) F_{\text{UL}}^{\sin(2\phi)}\right]$

+
$$S_L \lambda_l \left[\sqrt{1 - \epsilon^2} F_{LL} + \sqrt{2\epsilon (1 - \epsilon)} \cos(\phi) F_{LL}^{\cos(\phi)} \right]$$

$$+ S_{T} \left[\sin \left(\phi - \phi_{S} \right) \left(F_{\text{UT},\text{T}}^{\sin \left(\phi - \phi_{S} \right)} + \epsilon F_{\text{UT},\text{L}}^{\sin \left(\phi - \phi_{S} \right)} \right) \right. \\
\left. + \epsilon \sin \left(\phi + \phi_{S} \right) F_{\text{UT}}^{\sin \left(\phi + \phi_{S} \right)} + \epsilon \sin \left(3\phi - \phi_{S} \right) F_{\text{UT}}^{\sin \left(3\phi - \phi_{S} \right)} \right. \\
\left. + \sqrt{2\epsilon \left(1 + \epsilon \right)} \sin \left(\phi_{S} \right) F_{\text{UT}}^{\sin \left(\phi_{S} \right)} \\
\left. + \sqrt{2\epsilon \left(1 + \epsilon \right)} \sin \left(2\phi - \phi_{S} \right) F_{\text{UT}}^{\sin \left(2\phi - \phi_{S} \right)} \right]$$

$$+ S_{T} \lambda_{l} \left[\sqrt{1 - \epsilon^{2}} \cos (\phi - \phi_{S}) F_{LT}^{\cos (\phi - \phi_{S})} + \sqrt{2\epsilon (1 - \epsilon)} \cos (\phi_{S}) F_{LT}^{\cos (\phi_{S})} + \sqrt{2\epsilon (1 - \epsilon)} \cos (2\phi - \phi_{S}) F_{LT}^{\cos (2\phi - \phi_{S})} \right] \right\}$$

beam polarization

target polarization

beam and target polarization

target polarization $F_{XY,Z} = F_{XY,Z}(x,y,z)$ beam $\bigvee_{\text{larization}} \bigvee_{\text{virtual photon}} \bigvee_{\text{polarization}} \bigvee_{\text{polar$

Selected leading-twist 1-hadron SIDIS results

Boer-Mulders function

$$\frac{d\sigma^{h}}{dx\,dy\,d\phi_{S}\,dz\,d\phi\,dP_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}} \frac{y^{2}}{2\left(1-\epsilon\right)} \left(1 + \frac{\gamma^{2}}{2x}\right)$$

$$\left\{ \begin{bmatrix} F_{\text{UU,T}} + \epsilon F_{\text{UU,L}} \\ + \sqrt{2\epsilon\left(1+\epsilon\right)}\cos\left(\phi\right) F_{\text{UU}}^{\cos\left(\phi\right)} + \epsilon\cos\left(2\phi\right) F_{\text{UU}}^{\cos\left(2\phi\right)} \end{bmatrix} \right.$$

$$+ \lambda_{l} \left[\sqrt{2\epsilon\left(1-\epsilon\right)}\sin\left(\phi\right) F_{\text{LU}}^{\sin\left(\phi\right)} \right]$$

$$+ S_{L} \left[\sqrt{2\epsilon\left(1+\epsilon\right)}\sin\left(\phi\right) F_{\text{UL}}^{\sin\left(\phi\right)} + \epsilon\sin\left(2\phi\right) F_{\text{UL}}^{\sin\left(2\phi\right)} \right]$$

$$+ S_{L} \lambda_{l} \left[\sqrt{1-\epsilon^{2}} F_{\text{LL}} + \sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(\phi\right) F_{\text{LL}}^{\cos\left(\phi\right)} \right]$$

$$+ S_{T} \left[\sin\left(\phi-\phi_{S}\right) \left(F_{\text{UT,T}}^{\sin\left(\phi-\phi_{S}\right)} + \epsilon F_{\text{UT,L}}^{\sin\left(\phi-\phi_{S}\right)} \right) + \epsilon \sin\left(\phi+\phi_{S}\right) F_{\text{UT}}^{\sin\left(\phi+\phi_{S}\right)} + \epsilon \sin\left(3\phi-\phi_{S}\right) F_{\text{UT}}^{\sin\left(3\phi-\phi_{S}\right)} + \sqrt{2\epsilon\left(1+\epsilon\right)}\sin\left(\phi_{S}\right) F_{\text{UT}}^{\sin\left(\phi+\phi_{S}\right)} + \sqrt{2\epsilon\left(1+\epsilon\right)}\sin\left(2\phi-\phi_{S}\right) F_{\text{UT}}^{\cos\left(\phi-\phi_{S}\right)} \right]$$

$$+ S_{T} \lambda_{l} \left[\sqrt{1-\epsilon^{2}}\cos\left(\phi-\phi_{S}\right) F_{\text{LT}}^{\cos\left(\phi-\phi_{S}\right)} + \sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(\phi_{S}\right) F_{\text{LT}}^{\cos\left(\phi-\phi_{S}\right)} + \sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(2\phi-\phi_{S}\right) F_{\text{LT}}^{\cos\left(\phi-\phi_{S}\right)} \right] \right\}$$

$$F_{UU}^{\cos 2\phi_h} = \mathcal{C}\left[-\frac{2\left(\hat{\boldsymbol{h}}\cdot\boldsymbol{k}_T\right)\left(\hat{\boldsymbol{h}}\cdot\boldsymbol{p}_T\right) - \boldsymbol{k}_T\cdot\boldsymbol{p}_T}{MM_h}h_1^{\perp}H_1^{\perp}\right]$$

Describes correlation between quark transverse momentum and transverse spin in unpolarized nucleon

Distribution Functions

4	-			quark		
6			U	L	Т	
n u	U	f_1	0	21,	h_1^{\perp} \bigcirc \bigcirc	
C	L		- 1	g ₁ 👸 - 👸	h_{1L}^{\perp} \bullet $ \bullet$	
e o n	Т	f_{1T}^{\perp})	g_{1T}^{\perp} \bullet \bullet \bullet	h_1 h_{1T} h_{1T}	

Fragmentation Functions

	Trasmentation randions						
34			quark				
6			U	L	Т		
h	U	D_1	0	101	H_1^{\perp} - \blacksquare		

The cos2 ϕ amplitudes $\propto h_1^{\perp}(x, p_T^2) \otimes H_1^{\perp}(z, k_T^2)$

- Amplitudes are significant
- → clear evidence of BM effect
- similar results for H & D indicate $\ h_1^{\perp,u} pprox h_1^{\perp,d}$
- Opposite sign for π^+/π^- consistent with opposite signs of fav/unfav Collins

The cos2 ϕ amplitudes $\propto h_1^{\perp}(x, p_T^2) \otimes H_1^{\perp}(z, k_T^2)$

- Amplitudes are significant
- → clear evidence of BM effect
- similar results for H & D indicate $h_1^{\perp,u} \approx h_1^{\perp,d}$
- Opposite sign for π^+/π^- consistent with opposite signs of fav/unfav Collins

- K^+/K^- amplitudes are larger than for pions , have different kinematic dependencies than pions and have same sign
- different role of Collins FF for pions and kaons?
- Significant contribution from scattering off strange quarks?

Analysis multi-dimensional in x, y, z,and Pt

Create your own projections of results through: http://www-hermes.desy.de/cosnphi/

Transversity

$$\frac{d\sigma^{h}}{dx\,dy\,d\phi_{S}\,dz\,d\phi\,d\mathbf{P}_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}} \frac{y^{2}}{2\left(1-\epsilon\right)} \left(1+\frac{\gamma^{2}}{2x}\right)$$

$$\left\{ \begin{bmatrix} F_{\mathrm{UU,T}} + \epsilon F_{\mathrm{UU,L}} \\ +\sqrt{2\epsilon\left(1+\epsilon\right)}\cos\left(\phi\right) F_{\mathrm{UU}}^{\cos\left(\phi\right)} + \epsilon\cos\left(2\phi\right) F_{\mathrm{UU}}^{\cos\left(2\phi\right)} \end{bmatrix} \right.$$

$$+ \lambda_{l} \left[\sqrt{2\epsilon\left(1-\epsilon\right)}\sin\left(\phi\right) F_{\mathrm{LU}}^{\sin\left(\phi\right)} \right]$$

$$+ S_{L} \left[\sqrt{2\epsilon\left(1+\epsilon\right)}\sin\left(\phi\right) F_{\mathrm{UL}}^{\sin\left(\phi\right)} + \epsilon\sin\left(2\phi\right) F_{\mathrm{UL}}^{\sin\left(2\phi\right)} \right]$$

$$+ S_{L} \lambda_{l} \left[\sqrt{1-\epsilon^{2}} F_{\mathrm{LL}} + \sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(\phi\right) F_{\mathrm{LL}}^{\sin\left(\phi-\phi\right)} \right]$$

$$+ S_{T} \left[\sin \left(\phi - \phi_{S} \right) \left(F_{\text{UT},\text{T}}^{\sin \left(\phi - \phi_{S} \right)} + \epsilon F_{\text{UT},\text{L}}^{\sin \left(\phi - \phi_{S} \right)} \right) \right. \\
\left. + \epsilon \sin \left(\phi + \phi_{S} \right) F_{\text{UT}}^{\sin \left(\phi + \phi_{S} \right)} + \epsilon \sin \left(3\phi - \phi_{S} \right) F_{\text{UT}}^{\sin \left(3\phi - \phi_{S} \right)} \\
\left. + \sqrt{2\epsilon \left(1 + \epsilon \right)} \sin \left(\phi_{S} \right) F_{\text{UT}}^{\sin \left(\phi_{S} \right)} \\
\left. + \sqrt{2\epsilon \left(1 + \epsilon \right)} \sin \left(2\phi - \phi_{S} \right) F_{\text{UT}}^{\sin \left(2\phi - \phi_{S} \right)} \right]$$

$$+ S_{T} \lambda_{l} \left[\sqrt{1 - \epsilon^{2}} \cos (\phi - \phi_{S}) F_{LT}^{\cos (\phi - \phi_{S})} + \sqrt{2\epsilon (1 - \epsilon)} \cos (\phi_{S}) F_{LT}^{\cos (\phi_{S})} + \sqrt{2\epsilon (1 - \epsilon)} \cos (2\phi - \phi_{S}) F_{LT}^{\cos (2\phi - \phi_{S})} \right] \right\}$$

$$F_{UT}^{\sin(\phi_h + \phi_S)} = \mathcal{C} \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T}{M_h} h_1 H_1^{\perp} \right]$$

Describes probability to find transversely polarized quarks in a transversely polarized nucleon

Distribution Functions

4					
(E		U	L	Т	
n u	U	f_1 \odot		h_1^{\perp} \bigcirc - \bigcirc	
C	L		g ₁ • - •	h_{1L}^{\perp} \bullet $ \bullet$	
e	Т	f_{1T}^{\perp}	g_{1T}^{\perp} \longrightarrow $ \longrightarrow$	h ₁	
o n				h_{1T}^{\perp} $ -$	

Fragmentation Functions

A	3	quark				
1		U		L	Т	
h	U	D_1	0	5.1	H_1^{\perp} - \blacksquare	

Collins amplitudes $\propto h_1(x, p_T^2) \otimes H_1^{\perp}(z, k_T^2)$

0.5

P_h [GeV]

0.4

X

0.6

$$\begin{cases}
u \to \pi^{-} & \begin{cases} u \to \pi^{+} \\ d \to \pi^{+} \end{cases} \\
\uparrow & \uparrow \\
H_{1}^{\perp,unfav}(z) \approx -H_{1}^{\perp,fav}(z)
\end{cases}$$

Consistent with Belle/BaBar measurements in ete-

$$e^+e^- \rightarrow \pi_{jet1}^+ \pi_{jet2}^- X$$

Anselmino et al. Phys. Rev. D 75 (2007)

Sivers function

$$\frac{d\sigma^{h}}{dx\,dy\,d\phi_{S}\,dz\,d\phi\,d\mathbf{P}_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2\left(1-\epsilon\right)}\left(1+\frac{\gamma^{2}}{2x}\right)$$

$$\left\{ \begin{bmatrix} F_{\text{UU,T}} + \epsilon F_{\text{UU,L}} \\ +\sqrt{2\epsilon\left(1+\epsilon\right)}\cos\left(\phi\right)F_{\text{UU}}^{\cos\left(\phi\right)} + \epsilon\cos\left(2\phi\right)F_{\text{UU}}^{\cos\left(2\phi\right)} \end{bmatrix} \right.$$

$$+ \lambda_{l} \left[\sqrt{2\epsilon\left(1-\epsilon\right)}\sin\left(\phi\right)F_{\text{LU}}^{\sin\left(\phi\right)} \right]$$

$$+ S_{L} \left[\sqrt{2\epsilon\left(1+\epsilon\right)}\sin\left(\phi\right)F_{\text{UL}}^{\sin\left(\phi\right)} + \epsilon\sin\left(2\phi\right)F_{\text{UL}}^{\sin\left(2\phi\right)} \right]$$

$$+ S_{L} \lambda_{l} \left[\sqrt{1-\epsilon^{2}}F_{\text{LL}} + \sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(\phi\right)F_{\text{LL}}^{\sin\left(\phi-\phi_{S}\right)} \right]$$

$$+ C_{L} \left[\left[\frac{1}{2}\left(1+\epsilon\right)\left$$

$$+ S_{T} \left[\sin \left(\phi - \phi_{S} \right) \left(F_{\text{UT},T}^{\sin \left(\phi - \phi_{S} \right)} + \epsilon F_{\text{UT},L}^{\sin \left(\phi - \phi_{S} \right)} \right) \right. \\
\left. + \epsilon \sin \left(\phi + \phi_{S} \right) F_{\text{UT}}^{\sin \left(\phi + \phi_{S} \right)} + \epsilon \sin \left(3\phi - \phi_{S} \right) F_{\text{UT}}^{\sin \left(3\phi - \phi_{S} \right)} \\
\left. + \sqrt{2\epsilon \left(1 + \epsilon \right)} \sin \left(\phi_{S} \right) F_{\text{UT}}^{\sin \left(\phi_{S} \right)} \\
\left. + \sqrt{2\epsilon \left(1 + \epsilon \right)} \sin \left(2\phi - \phi_{S} \right) F_{\text{UT}}^{\sin \left(2\phi - \phi_{S} \right)} \right]$$

$$+ S_{T} \lambda_{l} \left[\sqrt{1 - \epsilon^{2}} \cos (\phi - \phi_{S}) F_{LT}^{\cos (\phi - \phi_{S})} + \sqrt{2\epsilon (1 - \epsilon)} \cos (\phi_{S}) F_{LT}^{\cos (\phi_{S})} + \sqrt{2\epsilon (1 - \epsilon)} \cos (2\phi - \phi_{S}) F_{LT}^{\cos (2\phi - \phi_{S})} \right]$$

$$F_{UT,T}^{\sin(\phi_h - \phi_S)} = \mathcal{C} \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M} f_{1T}^{\perp} D_1 \right]$$

Describes correlation between quark transverse momentum and nucleon transverse polarization

Distribution Functions

		quark			
		U		L	Т
n u	U	f_1	0		h_1^{\perp} \bigcirc - \bigcirc
c I e o n	L			g ₁ • - •	h_{1L}^{\perp} \bullet $ \bullet$
	Т	f_{1T}^{\perp}) -	g_{1T}^{\perp} \longrightarrow $ \longrightarrow$	h_1 h_{1T} h_{1T}

Fragmentation Functions

1		quark				
(i		U	L	L T		
h	U	D_1 \odot	[54]	H_1^{\perp} - \blacksquare		

Sivers amplitudes $\propto f_{1T}^{\perp}(x,p_T^2)\otimes D_1(z,k_T^2)$

[Airapetian et al., Phys. Rev. Lett. 103 (2009) 152002]

r significantly positive

slightly positive (isospin-symmetry)

consistent with zero

consistent with Sivers func. of opposite sign for u and d quarks

Sivers amplitudes $\propto f_{1T}^{\perp}(x, p_T^2) \otimes D_1(z, k_T^2)$

[Airapetian et al., Phys. Rev. Lett. 103 (2009) 152002] $2 \left\langle \sin(\phi - \phi_S) \right\rangle_{UT}$ consistent with Sivers func. of r significantly positive opposite sign for u and d quarks 0.05 [Anselmino *et al.*,Eur.Phys.J.A3,2009] $Q^2 = 2.4 \text{ GeV}^2$ $\mathbf{x} \Delta^{N} \mathbf{f}_{\mathbf{u}}^{(1)}(\mathbf{x})$ 0.1 slightly positive (isospin-symmetry) $\mathbf{x} \Delta^{N} \mathbf{f}_{\mathbf{d}}^{(1)}(\mathbf{x})$ -0.1 0.05 π consistent with zero 10^{-1} -0.05 2 $\langle \sin(\phi - \phi_{\rm S}) \rangle_{\rm UT}$.0 $Q^2 < \langle Q^2(x_i) \rangle | K^+$ $2 \left\langle \sin(\phi - \phi_S) \right\rangle_{UT}$ 0.2 Larger than π^+ !! $\circ Q^2 > \langle Q^2(x_i) \rangle$ role of sea quarks? 0.1 $\begin{array}{c} 2 \left\langle \sin(\varphi - \varphi_{S}) \right\rangle_{UT}^{K^{+}} - 2 \left\langle \sin(\varphi - \varphi_{S}) \right\rangle_{UT}^{\pi^{+}} \\ 0.01 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.04 \\$ K $\langle Q^2 \rangle$ [GeV²] 0.1 10 -1 10 -1 10 -1 -0.1 Higher-twist contrib for K^+ ? 10 -1 0.6 0.4 0.5 diff. comes from low Q^2 $P_{h\perp}$ [GeV] X Z

Worm-gear g^{\perp}_{1T}

$$\frac{d\sigma^{h}}{dx\,dy\,d\phi_{S}\,dz\,d\phi\,d\mathbf{P}_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2\left(1-\epsilon\right)}\left(1+\frac{\gamma^{2}}{2x}\right)$$

$$\left\{ \begin{bmatrix} F_{\mathrm{UU,T}} + \epsilon F_{\mathrm{UU,L}} \\ +\sqrt{2\epsilon\left(1+\epsilon\right)}\cos\left(\phi\right)F_{\mathrm{UU}}^{\cos\left(\phi\right)} + \epsilon\cos\left(2\phi\right)F_{\mathrm{UU}}^{\cos\left(2\phi\right)} \end{bmatrix} \right.$$

$$+ \lambda_{l} \left[\sqrt{2\epsilon\left(1-\epsilon\right)}\sin\left(\phi\right)F_{\mathrm{LU}}^{\sin\left(\phi\right)} \right]$$

$$+ S_{L} \left[\sqrt{2\epsilon\left(1+\epsilon\right)}\sin\left(\phi\right)F_{\mathrm{UL}}^{\sin\left(\phi\right)} + \epsilon\sin\left(2\phi\right)F_{\mathrm{UL}}^{\sin\left(2\phi\right)} \right]$$

$$+ S_{L} \lambda_{l} \left[\sqrt{1-\epsilon^{2}}F_{\mathrm{LL}} + \sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(\phi\right)F_{\mathrm{LL}}^{\cos\left(\phi\right)} \right]$$

$$+ S_{L} \left[\sin\left(\phi-\phi_{S}\right)\left(F_{\mathrm{UT,T}}^{\sin\left(\phi-\phi_{S}\right)} + \epsilon F_{\mathrm{UT,L}}^{\sin\left(\phi-\phi_{S}\right)}\right) + \epsilon\sin\left(\phi+\phi_{S}\right)F_{\mathrm{UT}}^{\sin\left(\phi+\phi_{S}\right)} + \epsilon\sin\left(3\phi-\phi_{S}\right)F_{\mathrm{UT}}^{\sin\left(3\phi-\phi_{S}\right)}$$

$$+ \sqrt{2\epsilon\left(1+\epsilon\right)}\sin\left(\phi_{S}\right)F_{\mathrm{UT}}^{\sin\left(\phi+\phi_{S}\right)}$$

$$+ \sqrt{2\epsilon\left(1+\epsilon\right)}\sin\left(2\phi-\phi_{S}\right)F_{\mathrm{UT}}^{\sin\left(2\phi-\phi_{S}\right)} \right]$$

$$+ S_{T} \lambda_{l} \left[\sqrt{1 - \epsilon^{2}} \cos (\phi - \phi_{S}) F_{LT}^{\cos (\phi - \phi_{S})} + \sqrt{2\epsilon (1 - \epsilon)} \cos (\phi_{S}) F_{LT}^{\cos (\phi_{S})} + \sqrt{2\epsilon (1 - \epsilon)} \cos (2\phi - \phi_{S}) F_{LT}^{\cos (2\phi - \phi_{S})} \right] \right\}$$

$$F_{LT}^{\cos(\phi_h - \phi_S)} = \mathcal{C} \left[\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M} g_{1T} D_1 \right]$$

Describes the probability to find longitudinally polarized quarks in a transversely polarized nucleon!

- requires interference between wave funct. components that differ by 1 unit of **OAM**
- Can be accessed in LT DSAs

	Fragmentation Functions					
A	· Su	quark				
6		U	L	Т		
h	U	D_1 \odot	151	H_1^{\perp} - \blacksquare		

The cos(ϕ - ϕ_5) amplitudes $\propto g_{1T}^{\perp}(x, p_T^2) \otimes D_1(z, k_T^2)$

Selected higher-twist 1-hadron SIDIS results

Subleading twist

$$\frac{d\sigma^{h}}{dx\,dy\,d\phi_{S}\,dz\,d\phi\,d\mathbf{P}_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2\left(1-\epsilon\right)}\left(1+\frac{\gamma^{2}}{2x}\right)^{2}$$

$$\left\{ \begin{bmatrix} F_{\text{UU,T}} + \epsilon F_{\text{UU,L}} \\ +\sqrt{2\epsilon\left(1+\epsilon\right)}\cos\left(\phi\right)F_{\text{UU}}^{\cos\left(\phi\right)} + \epsilon\cos\left(2\phi\right)F_{\text{UU}}^{\cos\left(2\phi\right)} \end{bmatrix} \right.$$

$$+ \lambda_{l} \left[\sqrt{2\epsilon\left(1-\epsilon\right)}\sin\left(\phi\right)F_{\text{LU}}^{\sin\left(\phi\right)} \right]$$

$$+ S_{L} \left[\sqrt{2\epsilon\left(1+\epsilon\right)}\sin\left(\phi\right)F_{\text{UL}}^{\sin\left(\phi\right)} + \epsilon\sin\left(2\phi\right)F_{\text{UL}}^{\sin\left(2\phi\right)} \right]$$

$$+ S_{L} \lambda_{l} \left[\sqrt{1-\epsilon^{2}}F_{\text{LL}} + \sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(\phi\right)F_{\text{LL}}^{\cos\left(\phi\right)} \right]$$

$$+ S_{T} \left[\sin \left(\phi - \phi_{S} \right) \left(F_{\text{UT},\text{T}}^{\sin \left(\phi - \phi_{S} \right)} + \epsilon F_{\text{UT},\text{L}}^{\sin \left(\phi - \phi_{S} \right)} \right) \right. \\
\left. + \epsilon \sin \left(\phi + \phi_{S} \right) F_{\text{UT}}^{\sin \left(\phi + \phi_{S} \right)} + \epsilon \sin \left(3\phi - \phi_{S} \right) F_{\text{UT}}^{\sin \left(3\phi - \phi_{S} \right)} \\
\left. + \sqrt{2\epsilon \left(1 + \epsilon \right)} \sin \left(\phi_{S} \right) F_{\text{UT}}^{\sin \left(\phi_{S} \right)} \\
\left. + \sqrt{2\epsilon \left(1 + \epsilon \right)} \sin \left(2\phi - \phi_{S} \right) F_{\text{UT}}^{\sin \left(2\phi - \phi_{S} \right)} \right]$$

$$+ S_{T} \lambda_{l} \left[\sqrt{1 - \epsilon^{2}} \cos (\phi - \phi_{S}) F_{LT}^{\cos (\phi - \phi_{S})} + \sqrt{2\epsilon (1 - \epsilon)} \cos (\phi_{S}) F_{LT}^{\cos (\phi_{S})} + \sqrt{2\epsilon (1 - \epsilon)} \cos (2\phi - \phi_{S}) F_{LT}^{\cos (2\phi - \phi_{S})} \right] \right\}$$

$$\begin{split} F_{UT}^{\sin\phi_S} &= \frac{2M}{Q} \, \mathcal{C} \bigg\{ \bigg(x f_T D_1 - \frac{M_h}{M} \, h_1 \frac{\tilde{H}}{z} \bigg) \\ &- \frac{\mathbf{k}_T \cdot \mathbf{p}_T}{2M M_h} \, \bigg[\bigg(x h_T H_1^{\perp} + \frac{M_h}{M} g_{1T} \, \frac{\tilde{G}^{\perp}}{z} \bigg) - \bigg(x h_T^{\perp} H_1^{\perp} - \frac{M_h}{M} f_{1T}^{\perp} \, \frac{\tilde{D}^{\perp}}{z} \bigg) \bigg] \bigg\} \end{split}$$

Sensitive to worm-gear g_{1T}^{\perp} , sivers, transversity + higher-twist DF and FF

Distribution Functions

A	5	quark				
6		U	L	Т		
n u	U	f_1 \odot		h_1^{\perp} \bigcirc - \bigcirc		
C	L	4 . 	g ₁ • - •	h_{1L}^{\perp} \bullet $ \bullet$		
e	Т	f_{1T}^{\perp}	g_{1T}^{\perp} \longrightarrow $ \longrightarrow$	h ₁		
n				h_{1T}^{\perp}		

Subleading-twist $sin(\phi_s)$ Fourier component

- sensitive to worm-gear g_{1T}^{\perp} , Sivers function, Transversity, etc
- significant non-zero signal for π^- and K⁻!

Subleading-twist $sin(\phi_S)$ Fourier component

$$F_{LU}^{\sin \phi}$$

$$F_{LU}^{\sin\phi_h} = \frac{2M}{Q} \mathcal{C} \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T}{M_h} \left(xe \, H_1^{\perp} + \frac{M_h}{M} \, f_1 \frac{\tilde{\boldsymbol{G}}^{\perp}}{z} \right) + \frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M} \left(xg^{\perp} D_1 + \frac{M_h}{M} \, h_1^{\perp} \frac{\tilde{\boldsymbol{E}}}{z} \right) \right]$$

$$\frac{d\sigma^{h}}{dx\,dy\,d\phi_{S}\,dz\,d\phi\,d\mathbf{P}_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}} \frac{y^{2}}{2\left(1-\epsilon\right)} \left(1 + \frac{\gamma^{2}}{2x}\right)$$

$$\left\{ \begin{bmatrix} F_{\text{UU,T}} + \epsilon F_{\text{UU,L}} \\ +\sqrt{2\epsilon\left(1+\epsilon\right)}\cos\left(\phi\right) F_{\text{UU}}^{\cos\left(\phi\right)} + \epsilon\cos\left(2\phi\right) F_{\text{UU}}^{\cos\left(2\phi\right)} \end{bmatrix} \right.$$

$$+ \lambda_{l} \left[\sqrt{2\epsilon\left(1-\epsilon\right)}\sin\left(\phi\right) F_{\text{LU}}^{\sin\left(\phi\right)} \right]$$

$$+ S_{L} \left[\sqrt{2\epsilon\left(1+\epsilon\right)}\sin\left(\phi\right) F_{\text{UL}}^{\sin\left(\phi\right)} + \epsilon\sin\left(2\phi\right) F_{\text{UL}}^{\sin\left(2\phi\right)} \right]$$

$$+ S_{L} \lambda_{l} \left[\sqrt{1-\epsilon^{2}} F_{\text{LL}} + \sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(\phi\right) F_{\text{LL}}^{\cos\left(\phi\right)} \right]$$

$$+ S_{T} \left[\sin\left(\phi-\phi_{S}\right) \left(F_{\text{UT,T}}^{\sin\left(\phi-\phi_{S}\right)} + \epsilon F_{\text{UT,L}}^{\sin\left(\phi-\phi_{S}\right)} \right) + \epsilon \sin\left(\phi+\phi_{S}\right) F_{\text{UT}}^{\sin\left(\phi+\phi_{S}\right)} + \epsilon \sin\left(3\phi-\phi_{S}\right) F_{\text{UT}}^{\sin\left(3\phi-\phi_{S}\right)} + \sqrt{2\epsilon\left(1+\epsilon\right)}\sin\left(\phi_{S}\right) F_{\text{UT}}^{\sin\left(\phi+\phi_{S}\right)} + \sin\left(2\phi-\phi_{S}\right) F_{\text{UT}}^{\sin\left(2\phi-\phi_{S}\right)} \right]$$

$$+ S_{T} \lambda_{l} \left[\sqrt{1-\epsilon^{2}}\cos\left(\phi-\phi_{S}\right) F_{\text{LT}}^{\cos\left(\phi-\phi_{S}\right)} + \sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(\phi_{S}\right) F_{\text{LT}}^{\cos\left(\phi-\phi_{S}\right)} + \sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(\phi_{S}\right) F_{\text{LT}}^{\cos\left(\phi-\phi_{S}\right)} + \sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(2\phi-\phi_{S}\right) F_{\text{LT}}^{\cos\left(2\phi-\phi_{S}\right)} \right] \right\}$$

Sensitive to f_1 , Boer-Mulders + higher-twist DF and FF

$$F_{III}^{\sin \phi}$$

$$F_{LU}^{\sin\phi_h} = \frac{2M}{Q} \mathcal{C} \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T}{M_h} \left(xe \, H_1^{\perp} + \frac{M_h}{M} \, f_1 \frac{\tilde{\boldsymbol{G}}^{\perp}}{z} \right) + \frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M} \left(xg^{\perp} D_1 + \frac{M_h}{M} \, h_1^{\perp} \frac{\tilde{\boldsymbol{E}}}{z} \right) \right]$$

$$\frac{d\sigma^{h}}{dx\,dy\,d\phi_{S}\,dz\,d\phi\,d\mathbf{P}_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2\left(1-\epsilon\right)}\left(1+\frac{\gamma^{2}}{2x}\right)$$

$$\left\{ \begin{bmatrix} F_{\mathrm{UU,T}}+\epsilon F_{\mathrm{UU,L}} \\ +\sqrt{2\epsilon\left(1+\epsilon\right)}\cos\left(\phi\right)F_{\mathrm{UU}}^{\cos\left(\phi\right)}+\epsilon\cos\left(2\phi\right)F_{\mathrm{UU}}^{\cos\left(2\phi\right)} \end{bmatrix} \right.$$

$$\left. + \lambda_{l}\left[\sqrt{2\epsilon\left(1-\epsilon\right)}\sin\left(\phi\right)F_{\mathrm{LU}}^{\sin\left(\phi\right)}\right] \right.$$

$$\left. + S_{L}\left[\sqrt{2\epsilon\left(1+\epsilon\right)}\sin\left(\phi\right)F_{\mathrm{UL}}^{\sin\left(\phi\right)}+\epsilon\sin\left(2\phi\right)F_{\mathrm{UL}}^{\sin\left(2\phi\right)} \right] \right.$$

$$\left. + S_{L}\lambda_{l}\left[\sqrt{1-\epsilon^{2}}F_{\mathrm{LL}}+\sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(\phi\right)F_{\mathrm{LL}}^{\sin\left(\phi-\phi_{S}\right)}\right] \right.$$

$$\left. + S_{T}\left[\sin\left(\phi-\phi_{S}\right)\left(F_{\mathrm{UT,T}}^{\sin\left(\phi-\phi_{S}\right)}+\epsilon F_{\mathrm{UT,L}}^{\sin\left(\phi-\phi_{S}\right)}\right)\right.$$

$$\left. + \epsilon\sin\left(\phi+\phi_{S}\right)F_{\mathrm{UT}}^{\sin\left(\phi+\phi_{S}\right)}+\epsilon\sin\left(3\phi-\phi_{S}\right)F_{\mathrm{UT}}^{\sin\left(3\phi-\phi_{S}\right)} \right.$$

$$\left. + \sqrt{2\epsilon\left(1+\epsilon\right)}\sin\left(\phi_{S}\right)F_{\mathrm{UT}}^{\sin\left(\phi+\phi_{S}\right)} \right.$$

$$\left. + \sqrt{2\epsilon\left(1+\epsilon\right)}\cos\left(\phi-\phi_{S}\right)F_{\mathrm{LT}}^{\cos\left(\phi-\phi_{S}\right)} \right.$$

$$\left. + \sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(\phi_{S}\right)F_{\mathrm{LT}}^{\cos\left(\phi-\phi_{S}\right)} \right.$$

$$\left. + \sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(\phi-\phi_{S}\right)F_{\mathrm{LT}}^{\cos\left(\phi-\phi_{S}\right)} \right.$$

$$\left. + \sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(\phi-\phi_{S}\right)F_{\mathrm{LT}}^{\cos\left(\phi-\phi_{S}\right)} \right] \right.$$

$$F_{III}^{\sin \phi}$$

$$F_{LU}^{\sin\phi_h} = \frac{2M}{Q} \mathcal{C} \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T}{M_h} \left(xe H_1^{\perp} + \frac{M_h}{M} f_1 \frac{\tilde{G}^{\perp}}{z} \right) + \frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M} \left(xg^{\perp} D_1 + \frac{M_h}{M} h_1^{\perp} \frac{\tilde{E}}{z} \right) \right]$$

H target, 2000-2007 data 0.2<z<0.7

Released yesterday!!

$$F_{III}^{\sin \phi}$$

$$F_{LU}^{\sin\phi_h} = \frac{2M}{Q} \mathcal{C} \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T}{M_h} \left(xe \, H_1^{\perp} + \frac{M_h}{M} \, f_1 \frac{\tilde{\boldsymbol{G}}^{\perp}}{z} \right) + \frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M} \left(xg^{\perp} D_1 + \frac{M_h}{M} \, h_1^{\perp} \frac{\tilde{\boldsymbol{E}}}{z} \right) \right]$$

D target, 2000-2007 data 0.2<z<0.7

Released yesterday!!

2-hadron SIDIS results

Following formalism developed by Steve Gliske

Find details in

Transverse Target Moments of Dihadron Production in Semi-inclusive Deep Inelastic Scattering at HERMES S. Gliske, PhD thesis, University of Michigan, 2011

A short digression on di-hadron fragmentation functions

Standard definition of di-hadron FF assume no polarization of final state hadrons (pseudo-scalar mesons) or define mixtures of certain partial waves as new FFs

In the **new formalism there are only two di-hadron FFs**. Names and symbols are entirely associated with the quark spin states (D_1 for $\chi = \chi'$ and H_1^{\perp} (generalized Collins) for $\chi \neq \chi'$), whereas the partial waves of the produced hadrons $(|l_1m_1\rangle,|l_2m_2\rangle)$ are associated with partial waves of FFs.

$$D_{1} = \sum_{\ell=1}^{\infty} \sum_{m=-\ell}^{\infty} P_{\ell,m}(\cos \vartheta) e^{im(\phi_{R}-\phi_{k})} D_{1}^{|\ell,m\rangle}(z, M_{h}, |\mathbf{k}_{T}|)$$

$$H_{1}^{\perp} = \sum_{\ell=1}^{\infty} \sum_{m=-\ell}^{\infty} P_{\ell,m}(\cos \vartheta) e^{im(\phi_{R}-\phi_{k})} H_{1}^{\perp|\ell,m\rangle}(z, M_{h}, |\mathbf{k}_{T}|)$$

 $H_1^{\perp|2,0\rangle} = \frac{1}{2}H_{1,LL}^{\perp},$

 $H_1^{\perp|2,-2\rangle} = H_{1,TT}^{\perp}.$

The cross-section is identical to the ones in literature, the only difference is the interpretation of the FFs:

$$\begin{array}{llll} D_{1}^{|0,0\rangle} & = & D_{1,OO} = \left(\frac{1}{4}D_{1,OO}^{s} + \frac{3}{4}D_{1,OO}^{p}\right) & H_{1}^{\perp|0,0\rangle} & = & H_{1,OO}^{\perp} = \frac{1}{4}H_{1,OO}^{\perp s} + \frac{3}{4}H_{1,OO}^{\perp p}, & H_{1}^{\perp|2,0\rangle} & = & \frac{1}{2}H_{1,LL}^{\perp}, \\ D_{1}^{|1,0\rangle} & = & D_{1,OL}, & H_{1}^{\perp|1,1\rangle} & = & H_{1,OT}^{\perp} + \frac{|R|}{|k_{T}|}\bar{H}_{1,OT}^{\uparrow} & = & \frac{|R|}{|k_{T}|}H_{1,OT}^{\uparrow} & H_{1}^{\perp|2,-1\rangle} & = & \frac{1}{2}H_{1,LT}^{\perp}, \\ D_{1}^{|1,\pm1\rangle} & = & D_{1,OT} \mp \frac{|k_{T}||R|}{M_{h}^{2}}G_{1,OT}^{\perp}, & H_{1}^{\perp|1,0\rangle} & = & H_{1,OL}^{\perp} & H_{1}^{\perp|1,0\rangle} & = & H_{1,OL}^{\perp}, \\ D_{1}^{|2,0\rangle} & = & \frac{1}{2}D_{1,LL}, & H_{1}^{\perp|1,-1\rangle} & = & H_{1,OT}^{\perp}, \\ D_{1}^{|2,\pm1\rangle} & = & \frac{1}{2}\left(D_{1,LT} \mp \frac{|k_{T}||R|}{M_{h}^{2}}G_{1,LT}^{\perp}\right), & H_{1}^{\perp|2,2\rangle} & = & H_{1,TT}^{\perp} + \frac{|R|}{|k_{T}|}\bar{H}_{1,TT}^{\uparrow} & = & \frac{|R|}{|k_{T}|}H_{1,TT}^{\uparrow}, \\ D_{1}^{|2,\pm2\rangle} & = & D_{1,TT} \mp \frac{1}{2}\frac{|k_{T}||R|}{M_{h}^{2}}G_{1,TT}^{\perp}, & H_{1}^{\perp|2,1\rangle} & = & \frac{1}{2}H_{1,LT}^{\perp} + \frac{1}{2}\frac{|R|}{|k_{T}|}\bar{H}_{1,LT}^{\uparrow} & = & \frac{1}{2}\frac{|R|}{|k_{T}|}H_{1,LT}^{\uparrow}, \end{array}$$

The di-hadron SIDIS cross-section

$$d\sigma_{UT} = \frac{\alpha^{2} M_{h} P_{h\perp}}{2\pi x y Q^{2}} \left(1 + \frac{\gamma^{2}}{2x}\right) |S_{\perp}|$$

$$\times \sum_{\ell=0}^{2} \sum_{m=-\ell}^{\ell} \left\{ A(x,y) \left[P_{\ell,m} \sin((m+1)\phi_{h} - m\phi_{R} - \phi_{S})) \right. \right.$$

$$\times \left(F_{UT,T}^{P_{\ell,m} \sin((m+1)\phi_{h} - m\phi_{R} - \phi_{S})} + \epsilon F_{UT,L}^{P_{\ell,m} \sin((m+1)\phi_{h} - m\phi_{R} - \phi_{S})} \right) \right]$$

$$+ B(x,y) \left[P_{\ell,m} \sin((1-m)\phi_{h} + m\phi_{R} + \phi_{S}) F_{UT}^{P_{\ell,m} \sin((1-m)\phi_{h} + m\phi_{R} + \phi_{S})} \right]$$

$$+ P_{\ell,m} \sin((3-m)\phi_{h} + m\phi_{R} - \phi_{S}) F_{UT}^{P_{\ell,m} \sin((3-m)\phi_{h} + m\phi_{R} + \phi_{S})} \right]$$

$$+ V(x,y) \left[P_{\ell,m} \sin(-m\phi_{h} + m\phi_{R} + \phi_{S}) F_{UT}^{P_{\ell,m} \sin((2-m)\phi_{h} + m\phi_{R} + \phi_{S})} + P_{\ell,m} \sin((2-m)\phi_{h} + m\phi_{R} - \phi_{S}) F_{UT}^{P_{\ell,m} \sin((2-m)\phi_{h} + m\phi_{R} - \phi_{S})} \right] \right\}.$$

l and m correspond to the l and m in $|lm\rangle$ angular momentum state of the hadron

Considering all terms ($d\sigma_{UU}$, $d\sigma_{LU}$, $d\sigma_{UL}$, $d\sigma_{LL}$, $d\sigma_{UT}$, $d\sigma_{LT}$) there are **144 non-zero structure functions** at twist-3 level. The most known is

$$F_{UT}^{P_{\ell,m}\sin((1-m)\phi_h+m\phi_R+\phi_S)} = -\mathcal{I}\left[\frac{|\boldsymbol{k}_T|}{M_h}\cos\left((m-1)\phi_h-\phi_p-m\phi_k\right)h_1H_1^{\perp|\ell,m\rangle}\right]$$

which for l=1 and m=1 reduces to the well known colliner $F_{UT}^{~\sin\vartheta\sin(\phi_R+\phi_S)}$ related to transversity

The di-hadron SIDIS cross-section

Published $\pi^+\pi^-$ Results

- independent way to access transversity
- significantly positive amplitudes
- 1st evidence of non zero dihadron FF
- no convolution integral involved
- limited statistical power (v.r.t. 1 hadron)

The di-hadron SIDIS cross-section

- New tracking, new PID, use of ϕ_R rather than $\phi_{R\perp}$
- Different fitting procedure and function
- Acceptance correction

- independent way to access transversity
- significantly positive amplitudes
- 1st evidence of non zero dihadron FF
- no convolution integral involved
- limited statistical power (v.r.t. 1 hadron)
- signs are consistent for all $\pi\pi$ species
- statistics much more limited for $\pi^{\pm}\pi^{0}$
- despite uncertainties may still help to constrain global fits and may assist in u-d flavor separation

A short digression on the Lund/Artru string fragmentation model

(a phenomenological explanation of the Collins effect)

In the cross-section the Collins FF is always paired withy a distrib. function involving a transv. pol. quark.

- 1. Assume u quark and proton have (transverse) spin alligned in the direction $\phi_S = \pi/2$. The model assumes that the struck quark is initially connected with the remnant via a gluon-flux tube (string)
- 2. When the string breaks, a $q\bar{q}$ pair is created with vacuum quantum numbers $J^P = 0^+$. The positive parity requires that the spins of q and \bar{q} are aligned, thus an OAM L = 1 has to compensate the spins
- 3. This OAM generates a transverse momentum of the produced pseudo-scalar meson (e.g. π^+) and deflects the meson to the **left side** w.r.t. the struck quark direction, generating left-righ azimuthal asymmetries

A short digression on the Lund/Artru string fragmentation model

Relative to the proton transv. spin, the fragmenting quark can have spin parallel or antiparallel to $\left|\frac{1}{2},\pm\frac{1}{2}\right|$ Then combining the spins of the formed di-quark systems one can get:

$$\frac{1}{2} \otimes \frac{1}{2} = 1 \oplus 0 \Rightarrow \begin{cases} 1 \ spin \ 0 \ state \ |0,0\rangle & 1 \ pseudo-scalar \ meson \ (PSM) \\ 3 \ spin \ 1 \ states \ \left\{ \begin{array}{c} |1,0\rangle & 1 \ Longitudinal \ VM \\ |1,\pm 1\rangle & 2 \ transvrse \ VM \end{cases}$$

Lund/Artru prediction at the amplitude level: the asymmetry for PSM has opposite sign to that for transversely polarized VM (left vs. right side), and the amplitude for $|1,0\rangle$ is 0

Lund/Artru model makes predictions for the individual di-hadrons, but the Collins function includes pairs of di-hadrons

→ to make predictions for the Collins function one needs to consider the cross-section level, i.e. the sum of contributing amplitudes times their complex conjugate

Using the Clebsch-Gordan algebra one obtains: $|1,\pm 1\rangle$ $|1,\pm 1\rangle$ \equiv $|2,\pm 2\rangle$

Lund/Artru prediction at the cross-section level: the $|2, \pm 2\rangle$ partial waves of the Collins func. for SIDIS VM production have the opposite sign as the respective PS Collins func.

"gluon radiaton model" vs. Lund/Artru model

The Lund/Artru model only accounts for favored Collins fragmentation. An extension of the model (the **gluon radiation model**), elaborated by **S. Gliske** accounts for the disfavored case

- 1. Struck quark emits a gluon in such a way that most of its momentum is transferred to the gluon
- 2. The struck quark then becomes part of the remnant
- 3. The radiated gluon produces a $q\bar{q}$ pair that eventually converts into a meson
- 4. For PSM the di-quark must interact further with the remnant to get the PSM quantum numbers. In case of VM the di-quark directly forms the meson

- Di-quark has q.n. of vacuum
- Struck quark joins the anti-quark in the final state → favored fragment.

Prediction: the $|2,\pm 2\rangle$ partial wave of the Collins funct. for SIDIS VM production have the opposite sign as the respective PS Collins function

- Di-quark has q.n. of observed final state
- Produced quark joins the anti-quark in the final state → disfavored fragment.

Prediction: the disfavored $|2, \pm 2\rangle$ Collins frag. also is expected to have opposite sign as the respective PS Collins function.

...and now let's look at the results

		Fragment. process	Fav/disfav	Deflection	Sign of amplitude	
nce		$u ightarrow \pi^+$	fav PSM	left $(\phi_h \to 0)$	> 0 (Collins π^+)	from
nan		$u o\pi^-$	disfav PSM	ight $(\phi_h o \pi)$	< 0 (Collins π^-)	data
domi)	$\boldsymbol{u} \rightarrow \boldsymbol{\rho}^+ \rightarrow \pi^+ \pi^0$	fav VM	right $(\phi_h o \pi)$	< 0	from
р п		$\boldsymbol{u} o \boldsymbol{ ho}^- o \pi^- \pi^0$	disfav VM	right $(\phi_h o \pi)$	< 0	models
		$m{u} ightarrow m{ ho^0} ightarrow \pi^+\pi^-$	mixed VM	right $(\phi_h o \pi)$	0 or < 0	

...and now let's look at the results

	Fragment. process	Fav/disfav	Deflection	Sign of amplitude	
eg ($u o\pi^+$	fav PSM	left $(\phi_h \to 0)$	> 0 (Collins π^+)	from
inance	$u o \pi^-$	disfav PSM	ight $(\phi_h o \pi)$	< 0 (Collins π^-)	data
domi	$\boldsymbol{u} \rightarrow \boldsymbol{\rho}^+ \rightarrow \pi^+ \pi^0$	fav VM	right $(\phi_h o \pi)$	< 0	from
ם ב	$\boldsymbol{u} ightarrow oldsymbol{ ho}^- ightarrow \pi^- \pi^0$	disfav VM	right $(\phi_h o \pi)$	< 0	models
	$u \rightarrow \rho^0 \rightarrow \pi^+\pi^-$	mixed VM	right $(\phi_h o \pi)$	0 or < 0	

 $|2,-2\rangle$ consistent with zero for all flavors Not in contraddiction with models: if the transversity function causes the fragmenting quark to have positive polarization than Collins $|2,-2\rangle$ must be zero as this partial wave requires fragmenting quark with negative polarization

$|2, +2\rangle$ consistent with model expect:

- No signal outside ρ-mass bin
 → no non-resonant pion-pairs in p-wave
- Negative for ρ^{\pm} (model predictions)
- very small for ho^0 (consistent with small Collins π^0)

Back-up

The cos amplitudes

A. Airapetian et al, Phys. Rev. D 87 (2013) 012010

Analysis multi-dimensional in x, y, z,and Pt

Create your own projections of results through: http://www-hermes.desy.de/cosnphi/

$$F_{III}$$
 sin ϕ

$$F_{UL}^{\sin\phi_h} = \frac{2M}{Q} \mathcal{C} \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T}{M_h} \left(x h_L H_1^{\perp} + \frac{M_h}{M} g_{1L} \frac{\tilde{\boldsymbol{G}}^{\perp}}{z} \right) + \frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M} \left(x f_L^{\perp} D_1 - \frac{M_h}{M} h_{1L}^{\perp} \frac{\tilde{\boldsymbol{H}}}{z} \right) \right]$$

$$\begin{split} \frac{d\sigma^{h}}{dx\,dy\,d\phi_{S}\,dz\,d\phi\,dP_{h\perp}^{2}} &= \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2\left(1-\epsilon\right)}\left(1+\frac{\gamma^{2}}{2x}\right) \\ \left\{ \begin{array}{c} \left[F_{\mathrm{UU},\mathrm{T}}+\epsilon F_{\mathrm{UU},\mathrm{L}}\right.\\ &+\sqrt{2\epsilon\left(1+\epsilon\right)}\cos\left(\phi\right)F_{\mathrm{UU}}^{\cos\left(\phi\right)}+\epsilon\cos\left(2\phi\right)F_{\mathrm{UU}}^{\cos\left(2\phi\right)}\right] \\ + &\lambda_{l}\left[\sqrt{2\epsilon\left(1-\epsilon\right)}\sin\left(\phi\right)F_{\mathrm{LU}}^{\sin\left(\phi\right)}\right] \\ + &S_{L}\left[\sqrt{2\epsilon\left(1+\epsilon\right)}\sin\left(\phi\right)F_{\mathrm{UL}}^{\sin\left(\phi\right)} + \epsilon\sin\left(2\phi\right)F_{\mathrm{UL}}^{\sin\left(2\phi\right)}\right] \\ + &S_{L}\lambda_{l}\left[\sqrt{1-\epsilon^{2}}F_{\mathrm{LL}}+\sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(\phi\right)F_{\mathrm{LL}}^{\sin\left(\phi-\phi_{S}\right)}\right] \\ + &S_{T}\left[\sin\left(\phi-\phi_{S}\right)\left(F_{\mathrm{UT},\mathrm{T}}^{\sin\left(\phi-\phi_{S}\right)}+\epsilon F_{\mathrm{UT},\mathrm{L}}^{\sin\left(\phi-\phi_{S}\right)}\right) \\ &+\epsilon\sin\left(\phi+\phi_{S}\right)F_{\mathrm{UT}}^{\sin\left(\phi+\phi_{S}\right)}+\epsilon\sin\left(3\phi-\phi_{S}\right)F_{\mathrm{UT}}^{\sin\left(3\phi-\phi_{S}\right)} \\ &+\sqrt{2\epsilon\left(1+\epsilon\right)}\sin\left(\phi_{S}\right)F_{\mathrm{UT}}^{\sin\left(\phi+\phi_{S}\right)} \\ &+\sqrt{2\epsilon\left(1+\epsilon\right)}\sin\left(2\phi-\phi_{S}\right)F_{\mathrm{UT}}^{\cos\left(\phi-\phi_{S}\right)} \\ &+\sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(\phi_{S}\right)F_{\mathrm{LT}}^{\cos\left(\phi-\phi_{S}\right)} \\ &+\sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(\phi_{S}\right)F_{\mathrm{LT}}^{\cos\left(\phi-\phi_{S}\right)} \\ &+\sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(\phi_{S}\right)F_{\mathrm{LT}}^{\cos\left(\phi-\phi_{S}\right)} \right] \right\} \end{split}$$

Worm-gear h^{\perp}_{1L}

$$F_{UL}^{\sin 2\phi_h} = \mathcal{C} \left[-\frac{2 \left(\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T \right) \left(\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T \right) - \boldsymbol{k}_T \cdot \boldsymbol{p}_T}{M M_h} h_{1L}^{\perp} H_1^{\perp} \right]$$

$$\frac{d\sigma^{h}}{dx\,dy\,d\phi\,s\,dz\,d\phi\,d\mathbf{P}_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}} \frac{y^{2}}{2\left(1-\epsilon\right)} \left(1 + \frac{\gamma^{2}}{2x}\right)$$

$$\left\{ \begin{bmatrix} F_{\mathrm{UU,T}} + \epsilon F_{\mathrm{UU,L}} \\ +\sqrt{2\epsilon\left(1+\epsilon\right)}\cos\left(\phi\right) F_{\mathrm{UU}}^{\cos\left(\phi\right)} + \epsilon\cos\left(2\phi\right) F_{\mathrm{UU}}^{\cos\left(2\phi\right)} \end{bmatrix} \right.$$

$$\left. + \lambda_{l} \left[\sqrt{2\epsilon\left(1-\epsilon\right)}\sin\left(\phi\right) F_{\mathrm{LU}}^{\sin\left(\phi\right)} \right]$$

+
$$S_L$$
 $\left[\sqrt{2\epsilon (1+\epsilon)} \sin(\phi) F_{\mathrm{UL}}^{\sin(\phi)} + \epsilon \sin(2\phi) F_{\mathrm{UL}}^{\sin(2\phi)}\right]$

+
$$S_L \lambda_l \left[\sqrt{1 - \epsilon^2} F_{LL} + \sqrt{2\epsilon (1 - \epsilon)} \cos(\phi) F_{LL}^{\cos(\phi)} \right]$$

$$+ S_{T} \left[\sin \left(\phi - \phi_{S} \right) \left(F_{\text{UT},\text{T}}^{\sin \left(\phi - \phi_{S} \right)} + \epsilon F_{\text{UT},\text{L}}^{\sin \left(\phi - \phi_{S} \right)} \right) \right. \\ \left. + \epsilon \sin \left(\phi + \phi_{S} \right) F_{\text{UT}}^{\sin \left(\phi + \phi_{S} \right)} + \epsilon \sin \left(3\phi - \phi_{S} \right) F_{\text{UT}}^{\sin \left(3\phi - \phi_{S} \right)} \right. \\ \left. + \sqrt{2\epsilon \left(1 + \epsilon \right)} \sin \left(\phi_{S} \right) F_{\text{UT}}^{\sin \left(\phi_{S} \right)} \right. \\ \left. + \sqrt{2\epsilon \left(1 + \epsilon \right)} \sin \left(2\phi - \phi_{S} \right) F_{\text{UT}}^{\sin \left(2\phi - \phi_{S} \right)} \right]$$

$$+ S_{T} \lambda_{l} \left[\sqrt{1 - \epsilon^{2}} \cos (\phi - \phi_{S}) F_{LT}^{\cos (\phi - \phi_{S})} + \sqrt{2\epsilon (1 - \epsilon)} \cos (\phi_{S}) F_{LT}^{\cos (\phi_{S})} + \sqrt{2\epsilon (1 - \epsilon)} \cos (2\phi - \phi_{S}) F_{LT}^{\cos (2\phi - \phi_{S})} \right]$$

Describes the probability to find transversely polarized quarks in a longitudinally polarized nucleon

$\begin{array}{|c|c|c|c|c|c|}\hline \textbf{Distribution Functions}\\\hline & \textbf{quark}\\\hline & \textbf{U} & \textbf{L} & \textbf{T}\\\hline & \textbf{n} & \textbf{U} & f_1 & \odot & h_{1}^{\perp} & \ddots & \ddots\\ & \textbf{c} & \textbf{L} & g_1 & & h_{1L} & & - & \ddots\\ & \textbf{l} & & & & h_{1L} & & - & \ddots\\ & \textbf{o} & \textbf{n} & & & & h_{1T}^{\perp} & & & - & \ddots\\ & \textbf{o} & \textbf{n} & & & & & h_{1T}^{\perp} & & & - & \ddots\\ \end{array}$

Fragmentation Functions									
		quark							
		U		L	Т				
h	U	D_1	0	154	H_1^{\perp} $ \blacksquare$				

The $sin(2\phi)$ amplitude $\propto h_{1L}^{\perp}(x, p_T^2) \otimes H_1^{\perp}(z, k_T^2)$

Deuterium target

A. Airapetian et al, Phys. Lett. B562 (2003)

Hydrogen target

A. Airapetian et al, Phys. Rev. Lett. 84 (2000)

Amplitudes consistent with zero for all mesons and for both H and D targets

Pretzelosity

$$F_{UT}^{\sin(3\phi_h-\phi_S)} = \mathcal{C}\left[\frac{2\left(\hat{\boldsymbol{h}}\cdot\boldsymbol{p}_T\right)\left(\boldsymbol{p}_T\cdot\boldsymbol{k}_T\right) + \boldsymbol{p}_T^2\left(\hat{\boldsymbol{h}}\cdot\boldsymbol{k}_T\right) - 4\left(\hat{\boldsymbol{h}}\cdot\boldsymbol{p}_T\right)^2\left(\hat{\boldsymbol{h}}\cdot\boldsymbol{k}_T\right)}{2M^2M_h}h_1^{\perp}H_1^{\perp}\right]$$

$$\frac{d\sigma^{h}}{dx\,dy\,d\phi_{S}\,dz\,d\phi\,d\mathbf{P}_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}} \frac{y^{2}}{2(1-\epsilon)} \left(1 + \frac{\gamma^{2}}{2x}\right)$$

$$\left\{ \begin{bmatrix} F_{\text{UU,T}} + \epsilon F_{\text{UU,L}} \\ +\sqrt{2\epsilon(1+\epsilon)}\cos(\phi)F_{\text{UU}}^{\cos(\phi)} + \epsilon\cos(2\phi)F_{\text{UU}}^{\cos(2\phi)} \end{bmatrix} \right.$$

$$+ \lambda_{l} \left[\sqrt{2\epsilon(1-\epsilon)}\sin(\phi)F_{\text{LU}}^{\sin(\phi)} \right]$$

$$+ S_{L} \left[\sqrt{2\epsilon(1+\epsilon)}\sin(\phi)F_{\text{UL}}^{\sin(\phi)} + \epsilon\sin(2\phi)F_{\text{UL}}^{\sin(2\phi)} \right]$$

$$+ S_{L} \lambda_{l} \left[\sqrt{1-\epsilon^{2}}F_{\text{LL}} + \sqrt{2\epsilon(1-\epsilon)}\cos(\phi)F_{\text{LL}}^{\cos(\phi)} \right]$$

$$+ S_{T} \left[\sin \left(\phi - \phi_{S} \right) \left(F_{\text{UT},\text{T}}^{\sin \left(\phi - \phi_{S} \right)} + \epsilon F_{\text{UT},\text{L}}^{\sin \left(\phi - \phi_{S} \right)} \right) \right. \\
\left. + \epsilon \sin \left(\phi + \phi_{S} \right) F_{\text{UT}}^{\sin \left(\phi + \phi_{S} \right)} + \epsilon \sin \left(3\phi - \phi_{S} \right) F_{\text{UT}}^{\sin \left(3\phi - \phi_{S} \right)} \\
\left. + \sqrt{2\epsilon \left(1 + \epsilon \right)} \sin \left(\phi_{S} \right) F_{\text{UT}}^{\sin \left(2\phi - \phi_{S} \right)} \right] \\
\left. + \sqrt{2\epsilon \left(1 + \epsilon \right)} \sin \left(2\phi - \phi_{S} \right) F_{\text{UT}}^{\sin \left(2\phi - \phi_{S} \right)} \right]$$

$$+ S_{T} \lambda_{l} \left[\sqrt{1 - \epsilon^{2}} \cos (\phi - \phi_{S}) F_{LT}^{\cos (\phi - \phi_{S})} + \sqrt{2\epsilon (1 - \epsilon)} \cos (\phi_{S}) F_{LT}^{\cos (\phi_{S})} + \sqrt{2\epsilon (1 - \epsilon)} \cos (2\phi - \phi_{S}) F_{LT}^{\cos (2\phi - \phi_{S})} \right]$$

Describes correlation between quark transverse momentum and transverse spin in a transversely pol. nucleon

> Sensitive to non-spherical shape of the nucleon

Fragmentation Functions									
		quark							
		U		L	Т				
h	U	D_1	0	154	H_1^{\perp} $ \blacksquare$				

The sin(3 ϕ - ϕ_s) amplitude $\propto h_{1T}^{\perp}(x, p_T^2) \otimes H_1^{\perp}(z, k_T^2)$

All amplitudes consistent with zero

...suppressed by two powers of $P_{h\perp}$ w.r.t. Collins and Sivers amplitudes

The worm-gear g_{1T}^{\perp}

- ➤ The only TMD that is both chiral-even and naïve-T-even
- requires interference between wave funct. components that differ by 1 unit of OAM

S. Boffi et al. (2009)
Phys. Rev. D 79 094012
Light cone constituent quark
model
flavorless
dashed line: interf. L=0, L=1

dotted line: interf L=1, L=2

⇒ related to quark orbital motion inside nucleons

- \succ Many models support simple relations among g_{1T}^{\perp} and other TMDs:
- $g_{1T}^q = -h_{1L}^{\perp q}$ (also supported by Lattice QCD and first data)
- $g_{1T}^{q(1)}(x) \overset{ww_{-type}}{\approx} x \int_{x}^{1} \frac{dy}{y} g_{1}^{q}(y) \quad \text{(Wandzura-Wilczek appr.)}$

Probing g_{1T}^{\perp} through Double Spin Asymmetries

$$F_{LT}^{\cos(\phi_h - \phi_S)} = \mathcal{C} \left[\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M} \mathbf{g}_{1T} D_1 \right]$$

$$F_{LT}^{\cos\phi_S} = \frac{2M}{Q} \mathcal{C} \left\{ -\left(xg_T D_1 + \frac{M_h}{M} h_1 \frac{E}{z}\right) + \frac{\mathbf{k}_T \cdot \mathbf{p}_T}{2M M_h} \left[\left(xe_T H_1^{\perp} - \frac{M_h}{M} g_{1T} \frac{\tilde{D}^{\perp}}{z}\right) + \left(xe_T^{\perp} H_1^{\perp} + \frac{M_h}{M} f_{1T}^{\perp} \frac{\tilde{G}^{\perp}}{z}\right) \right] \right\}$$

$$\begin{split} F_{LT}^{\cos(2\phi_h-\phi_S)} &= \frac{2M}{Q} \, \mathcal{C} \bigg\{ -\frac{2 \, (\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T)^2 - \boldsymbol{p}_T^2}{2M^2} \, \bigg(x g_T^\perp D_1 + \frac{M_h}{M} \, h_{1T}^\perp \frac{\tilde{E}}{z} \bigg) \\ &\quad + \frac{2 \, (\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T) \, (\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T) - \boldsymbol{k}_T \cdot \boldsymbol{p}_T}{2M M_h} \, \bigg[\bigg(x e_T H_1^\perp - \frac{M_h}{M} \underbrace{g_{1T}}_{z} \frac{\tilde{D}^\perp}{z} \bigg) \\ &\quad - \bigg(x e_T^\perp H_1^\perp + \frac{M_h}{M} f_{1T}^\perp \frac{\tilde{G}^\perp}{z} \bigg) \bigg] \bigg\} \end{split}$$

The simplest way to probe worm-gear g_{1T}^{\perp} is through the $\cos(\phi - \phi_S)$ Fourier component

The $cos(\phi_s)$ Fourier component

The $cos(2\phi-\phi_s)$ Fourier component

The $sin(2\phi+\phi_5)$ Fourier component

• arises solely from longitudinal (w.r.t. virtual photon direction) component of the target spin

- related to $\langle \sin(2\phi) \rangle_{UL}$ Fourier comp: $2\langle \sin(2\phi + \phi_S) \rangle_{UT}^h \propto \frac{1}{2} \sin(\theta_{ly^*}) 2\langle \sin(2\phi) \rangle_{UL}^h$
- · sensitive to worm-gear h_{1L}^\perp
- suppressed by one power of $P_{h\perp}$ w.r.t. Collins and Sivers amplitudes
- no significant signal observed (except maybe for K+)

The subleading-twist $sin(2\phi-\phi_S)$ Fourier component

• sensitive to worm-gear g_{1T}^{\perp} , Pretzelosity and Sivers function:

$$\begin{split} & \propto \quad \mathcal{W}_1(\mathbf{p_T}, \mathbf{k_T}, P_{h\perp}) \left(\mathbf{x} \mathbf{f_T^{\perp}} D_1 - \frac{M_h}{M} \mathbf{h_{1T}^{\perp}} \frac{\tilde{H}}{z} \right) \\ & - \, \mathcal{W}_2(\mathbf{p_T}, \mathbf{k_T}, P_{h\perp}) \left[\left(\mathbf{x} \mathbf{h_T} \mathbf{H_1^{\perp}} + \frac{M_h}{M} \mathbf{g_{1T}} \frac{\tilde{G}^{\perp}}{z} \right) \right. \\ & + \left(\mathbf{x} \mathbf{h_T^{\perp}} \mathbf{H_1^{\perp}} - \frac{M_h}{M} \mathbf{f_{1T}^{\perp}} \frac{\tilde{D}^{\perp}}{z} \right) \end{split}$$

- suppressed by one power of $P_{h\perp}$ w.r.t. Collins and Sivers amplitudes
- no significant non-zero signal observed

The HERMES experiment at HERA

electron beam line

TRD, Calorimeter, preshower, RICH:

lepton-hadron > 98%

hadron separation

 π ~ 98%, K ~ 88% , P ~ 85%

Siver amplitudes: additional studies

 No systematic shifts observed between high and low Q² amplitudes for both π⁺ and K⁺

No indication of important contributions from exclusive VM

The pion-difference asymmetry

Contribution by decay of exclusively produced vector mesons (ρ^0, ω, ϕ) is not negligible (6-7% for pions and 2-3% for kaons), though substatially limited by the requirement z<0.7.

$$A_{UT}^{\pi^{+}-\pi^{-}}(\phi,\phi_{S}) \equiv \frac{1}{P_{T}} \frac{(\sigma_{U\uparrow}^{\pi^{+}} - \sigma_{U\uparrow}^{\pi^{-}}) - (\sigma_{U\downarrow}^{\pi^{+}} - \sigma_{U\downarrow}^{\pi^{-}})}{(\sigma_{U\uparrow}^{\pi^{+}} - \sigma_{U\uparrow}^{\pi^{-}}) + (\sigma_{U\downarrow}^{\pi^{+}} - \sigma_{U\downarrow}^{\pi^{-}})}$$

Contribution from exclusive ρ^0 largely cancels out!

- significantly positive Sivers and Collins amplitudes are obtained
- measured amplitudes are not generated by exclusive VM contribution