

Recent HERMES results on the 3D imaging of the nucleon

Luciano L. Pappalardo (for the HERMES Collaboration)

University of Ferrara

pappalardo@fe.infn.it

CFNS Seminars 2021 – January 21, 2021

Looking deeply into the proton

size $\approx 10^{-15}$ m

- Elementary particle?

- > Hadrons having the same J^P quantum numbers form **multiplets** in the Y-I₃ plane.
- These regularities were suspected to be the manifestation of some internal degree of freedom, i.e. hadrons must have an internal structure!

Looking deeply into the proton

- Elementary particle?

1964-1969

- Quark hypothesis (Gell-Mann - Zweig)
- Scaling at SLAC ('69)
- **Parton Model** (Faynman, Bjorken)

1972-1979

- QCD lagrangian - colors, sea quarks,
- gluons
- discovery of gluons (PETRA '73)

First 3-jet event from PETRA observed through the TASSO detector in 1979

Looking deeply into the proton

The nucleon collinear structure

- Complete description of the collinear structure of the nucleon at leading-twist
- > Only PDFs that survive integration over quark transverse momentum p_T .

The nucleon non-collinear structure

- Provide a 3-dim picture of the ٠ nucleon in momentum space (nucleon tomography)
 - Describe correlations between p_T •
 - and the spin orientation of the parent hadron
 - and the spin orientation of the parton itself
 - and are flavor dependent

Phys.Rev.D81:114013,2010

8 leading-twist TMDs ٠

TMDs depend on x and p_T ٠

6

Semi-Inclusive Deep-Inelastic scattering (SIDIS) olarizatio $X_{Y,Z}^{\mathcal{W}} \propto \mathbf{DF} \otimes \mathbf{FF}$ Unpol FF Collins FF e'(E') e(E) Fragmentation Functions (FF) $\frac{d\sigma^{h}}{dx\,dy\,d\phi_{S}\,dz\,d\phi\,d\mathbf{P}_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2\left(1-\epsilon\right)}\left(1+\frac{\gamma^{2}}{2x}\right)$ quark U $F_{\rm UU,T} + \epsilon F_{\rm UU,L}$ H_1^{\perp} h U 0 $+\sqrt{2\epsilon (1+\epsilon)}\cos(\phi)F_{\mathrm{UU}}^{\cos(\phi)} + \epsilon\cos(2\phi)F_{\mathrm{UU}}^{\cos(2\phi)}$ X DF $\lambda_l \left[\sqrt{2\epsilon \left(1 - \epsilon \right)} \sin \left(\phi \right) F_{\rm LU}^{\sin \left(\phi \right)} \right]$ **TMD factorization:** $\sigma^{ep \rightarrow ehX} = \sum DF \otimes \sigma^{eq \rightarrow eq} \otimes FF$ (requires $P_{h\perp}^2 \ll Q^2$)

Parton Distributions Functions (DF)

 g_1 ($\)$

transversity

U

(0)

 $f_{1T}^{\perp} - () \rightarrow - () \rightarrow g_{1T}^{\perp} - () \rightarrow - - ()$

 f_1

n

0

Sivers

U

L

W-G 2

quark

- (🖁)

L.L. Pappalardo – CFNS Seminar - January 21, 2021

Pretzelosity

т

- (

 h_1^{\perp}

 h_{1L}^\perp 📀

+ $S_L = \left[\sqrt{2\epsilon (1+\epsilon)} \sin (\phi) F_{\mathrm{UL}}^{\sin (\phi)} + \epsilon \sin (2\phi) F_{\mathrm{UL}}^{\sin (2\phi)} \right]$

 $\begin{bmatrix} \sin(\phi - \phi_S) \left(F_{\mathrm{UT},\mathrm{T}}^{\sin(\phi - \phi_S)} + \epsilon F_{\mathrm{UT},\mathrm{L}}^{\sin(\phi - \phi_S)} \right) \\ + \epsilon \sin(\phi + \phi_S) F_{\mathrm{UT}}^{\sin(\phi + \phi_S)} + \epsilon \sin(3\phi - \phi_S) F_{\mathrm{UT}}^{\sin(3\phi - \phi_S)} \end{bmatrix}$

+ $S_L \lambda_l \left[\sqrt{1 - \epsilon^2} F_{\rm LL} + \sqrt{2\epsilon (1 - \epsilon)} \cos (\phi) F_{\rm LL}^{\cos (\phi)} \right]$

 $+\sqrt{2\epsilon (1+\epsilon)} \sin (\phi_S) F_{\text{UT}}^{\sin (\phi_S)}$

 $+\sqrt{2\epsilon(1-\epsilon)}\cos(\phi_S)F_{\rm LT}^{\cos(\phi_S)}$

+ $S_T \lambda_l \left[\sqrt{1 - \epsilon^2} \cos{(\phi - \phi_S)} F_{\text{LT}}^{\cos{(\phi - \phi_S)}} \right]$

 $+\sqrt{2\epsilon(1+\epsilon)}\sin(2\phi-\phi_S)F_{\mathrm{UT}}^{\sin(2\phi-\phi_S)}$

 $+\sqrt{2\epsilon(1-\epsilon)}\cos(2\phi-\phi_S)F_{\rm LT}^{\cos(2\phi-\phi_S)}$

The HERMES TMD bible

PREPARED FOR SUBMISSION TO JHEP **DESY Report 20-119**

Azimuthal single- and double-spin asymmetries in semi-inclusive deep-inelastic lepton scattering by transversely polarized protons

The HERMES Collaboration

A. Airapetian^{13,16} N. Akopov²⁶ Z. Akopov⁶ E.C. Aschenauer⁷ W. Augustyniak²⁵
R. Avakian^{26,a} A. Bacchetta²¹ S. Belostotski^{19,a} V. Bryzgalov²⁰ G.P. Capitani¹¹
E. Cisbani²² G. Ciullo¹⁰ M. Contalbrigo¹⁰ W. Decorinck⁶ R. De Leo² E. De Sanctis¹¹
M. Diefenthaler⁹ P. Di Nezza¹¹ M. Düren¹³ G. Elbak n²⁶ F. Ellinghaus⁵ A. Fantoni¹¹
L. Felawka²³ G. Gavrilov^{6,19,23} V. Gharibyan²⁶ Holler A. Ivanilov²⁰ H.E. Jackson^{1,a}
S. Joosten¹² R. Kaiser¹⁴ G. Karyan^{6,26} E. Linney A. Kissenv¹⁹ V. Kozlov¹⁷
P. Kravchenko^{9,19} L. Lagamba² L. Lapikás¹¹ P. Lenka¹⁰ W. Lorenzon¹⁶
S.I. Manaenkov¹⁹ B. Marianski^{25,a} H.F. aruky n²⁶ Y. Miyachi²⁴ A. Movsisyan^{10,26}
V. Muccifora¹¹ Y. Naryshkin¹⁹ A. Nas¹¹ G. Yakayan²⁶ W.-D. Nowak⁷
L.L. Pappalardo¹⁰ P.E. Reiner¹¹ A. Relon¹⁵ C. Riedl^{7,15} K. Rith⁹ G. Rosner¹⁴
A. Rostomyan⁶ J. Rubin¹⁰ D. Ryckbos, M.A. Schäfer²¹ G. Schnell^{3,4,12} B. Seitz¹⁴
T.-A. Shibata²⁴ V. Shuto, M. Statera¹⁰ A. Terkulov¹⁷ M. Tytgat¹²
Y. Van Haarlem¹² C. Van Hase¹² F. Veretennikov^{3,19} I. Vilardi² S. Yaschenko⁹
D. Zeiler⁹ B. Asthanna P. Zu, anski²⁵

¹Physics Division, ional Laboratory, Argonne, Illinois 60439-4843, USA Traonn ²Istituto Nazionale & Fisica Nucleare, Sezione di Bari, 70124 Bari, Italy ³Department of Theoretical Physics, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain ⁴IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain ⁵Nuclear Physics Laboratory, University of Colorado, Boulder, Colorado 80309-0390, USA ⁶DESY, 22603 Hamburg, Germany ⁷DESY, 15738 Zeuthen, Germany ⁸Joint Institute for Nuclear Research, 141980 Dubna, Russia ⁹Physikalisches Institut, Universität Erlangen-Nürnberg, 91058 Erlangen, Germany ¹⁰Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, and Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, 44122 Ferrara, Italy ¹¹Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, 00044 Frascati, Italy ¹²Department of Physics and Astronomy, Ghent University, 9000 Gent, Belgium ¹³II. Physikalisches Institut, Justus-Liebig Universität Gießen, 35392 Gießen, Germany

^aDeceased.

Published Dec. 2 2020 on: JHEP 12 (2020) 010

$dx dy d\phi$	$\frac{d\sigma^{h}}{\sigma_Sdzd\phid\mathbf{P}^2_{h\perp}} =$	$\frac{\alpha^2}{xyQ^2}$	$\frac{y^2}{2(1-\epsilon)}\left(1+\frac{\gamma^2}{2x}\right)$
{	$\begin{bmatrix} F_{\rm UU,T} + \epsilon F_{\rm UU,L} \\ + \sqrt{2\epsilon \left(1 + \epsilon\right)} \cos\left(\phi\right) \end{bmatrix}$	$F_{\rm UU}^{\cos{(\phi)}}$	$+ \epsilon \cos(2\phi) F_{\mathrm{UU}}^{\cos(2\phi)} \Big]$
+ 2	$\lambda_l \left[\sqrt{2\epsilon \left(1 - \epsilon \right)} \sin \left(\phi \right) \right]$	$F_{\rm LU}^{\sin(\phi)}$	
$+ S_L$	$\left[\sqrt{2\epsilon \left(1+\epsilon\right)}\sin\left(\phi\right)\right.$	$F_{\mathrm{UL}}^{\sin(\phi)} +$	$+\epsilon\sin(2\phi)F_{\mathrm{UL}}^{\sin(2\phi)}$
$+ S_L$	$\lambda_l \left[\sqrt{1 - \epsilon^2} F_{\rm LL} + \sqrt{2} \right]$	$\overline{\epsilon \left(1-\epsilon\right)}$	$\cos\left(\phi\right)F_{\mathrm{LL}}^{\cos\left(\phi\right)}$
$+ S_T$	$\begin{bmatrix} \sin (\phi - \phi_S) \left(F_{\text{UT}}^{\sin} + \epsilon \sin (\phi + \phi_S) F_{\text{UT}}^{\sin} + \sqrt{2\epsilon (1 + \epsilon)} \sin (\phi + \sqrt{2\epsilon (1 + \epsilon)}) \sin (\phi + \sqrt{2\epsilon (1 + \epsilon)}) \sin (2\epsilon) \end{bmatrix}$	$F_{\rm UT}^{(\phi-\phi_S)} + F_{\rm UT}^{(\phi+\phi_S)} + S_{\rm UT$	$+ \epsilon F_{\mathrm{UT,L}}^{\sin(\phi-\phi_S)} \Big) + \epsilon \sin(3\phi-\phi_S) F_{\mathrm{UT}}^{\sin(3\phi-\phi_S)} \phi_S \Big) F_{\mathrm{UT}}^{\sin(2\phi-\phi_S)} \Big]$
$+ S_T$	$\lambda_l \left[\sqrt{1 - \epsilon^2} \cos\left(\phi - \phi + \sqrt{2\epsilon \left(1 - \epsilon\right)} \cos\left(\phi + \sqrt{2\epsilon \left(1 - \epsilon\right)} \cos\left(\phi + \sqrt{2\epsilon \left(1 - \epsilon\right)} \cos\left(2\phi + \sqrt{2\epsilon \left(1 - \epsilon\right)} \cos\left(2\phi + \phi + \sqrt{2\epsilon} \cos\left(2\phi + \phi + \cos\left(2\phi + \cos\left(2\phi + \phi + \cos$	$S F_{\rm LT}^{\cos{(\phi)}} F_{\rm LT}^{\cos{(\phi)}} \phi - \phi_{S} F_{\rm LT}^{\cos{(\phi)}}$	

The HERMES TMD bible

PREPARED FOR SUBMISSION TO JHEP **DESY Report 20-119**

Azimuthal single- and double-spin asymmetries in semi-inclusive deep-inelastic lepton scattering by transversely polarized protons

The HERMES Collaboration

A. Airapetian^{13,16} N. Akopov²⁶ Z. Akopov⁶ E.C. Aschenauer⁷ W. Augustyniak²⁵
R. Avakian^{26,a} A. Bacchetta²¹ S. Belostotski^{19,a} V. Bryzgalov²⁰ G.P. Capitani¹¹
E. Cisbani²² G. Ciullo¹⁰ M. Contalbrigo¹⁰ W. Decorinck⁶ R. De Leo² E. De Sanctis¹¹
M. Diefenthaler⁹ P. Di Nezza¹¹ M. Düren¹³ G. Elbak n²⁶ F. Ellinghaus⁵ A. Fantoni¹¹
L. Felawka²³ G. Gavrilov^{6,19,23} V. Gharibyan²⁶ J. Holler A. Ivanilov²⁰ H.E. Jackson^{1,a}
S. Joosten¹² R. Kaiser¹⁴ G. Karyan^{6,26} E. Ginney A. Kissebv¹⁹ V. Kozlov¹⁷
P. Kravchenko^{9,19} L. Lagamba² L. Lapikás¹ P. Lenisa¹⁰ W. Lorenzon¹⁶
S.I. Manaenkov¹⁹ B. Marianski^{25,a} H Holeruky n²⁶ Y. Miyachi²⁴ A. Movsiyan^{10,26}
V. Muccifora¹¹ Y. Naryshkin¹⁹ A. Nas¹⁹ G. Gararyan²⁶ W.-D. Nowak⁷
L.L. Pappalardo¹⁰ P.E. Reiger¹ A. Ralon¹⁴ C. Riedl^{7,15} K. Rith⁹ G. Rosner¹⁴
A. Rostomyan⁶ J. Rubin¹⁴ D. Ryckbos A. A. Schäfer²¹ G. Schnell^{3,4,12} B. Seitz¹⁴
T.-A. Shibata²⁴ V. Shuto, M. Statera¹⁰ A. Terkulov¹⁷ M. Tytgat¹²
Y. Van Haarlem¹² C. Van Huse¹² F. Veretennikov^{3,19} I. Vilardi² S. Yaschenko⁹
D. Zeiler⁹ B. Katapann 2, Zu, miski²⁵

- ¹ Physics Division, Irgonne, Jonal Laboratory, Argonne, Illinois 60439-4843, USA
 ² Istituto Nazionale a Fisica Nucleare, Sezione di Bari, 70124 Bari, Italy
 ³ Department of Theorenical Physics, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
 ⁴ IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
 ⁵ Nuclear Physics Laboratory, University of Colorado, Boulder, Colorado 80309-0390, USA
 ⁶ DESY, 22603 Hamburg, Germany
 ⁷ DESY, 15738 Zeuthen, Germany
 ⁸ Joint Institute for Nuclear Research, 141980 Dubna, Russia
 ⁹ Physikalisches Institut, Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
- ¹⁰Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, and Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, 44122 Ferrara, Italy
- ¹¹Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, 00044 Frascati, Italy
- ¹²Department of Physics and Astronomy, Ghent University, 9000 Gent, Belgium
- $^{13}{\it II.}$ Physikalisches Institut, Justus-Liebig Universität Gießen, 35392 Gießen, Germany

^aDeceased.

Published Dec. 2 2020 on: JHEP 12 (2020) 010

- Compendium of HERMES TMDs results obtained with transv. Pol. H target (84 pages!)
- > 10 azimuthal modulations (6 $A_{U\perp}$ + 4 $A_{L\perp}$)
- ▶ 1D and 3D projections in $x, z, P_{h\perp}$
- > 7 hadron types: π^{\pm} , π^{0} , K^{\pm} , p, \bar{p}
- > 2 types of asymmetries:
 - Cross-Section Asymmetries (CSA): entire Fourier amplitude of each cross-section term
 - **Structure-Function Asymmetries (SFA):** pure ratios of structure functions **(NEW!)** (include correction for ε -dependent kinematic prefactors)

Advances w.r.t previous analyses:

- 3D binning (before only 1D)
- $\blacktriangleright \ m{p}/\overline{m{p}}$ asymmetries (in addition to π^{\pm} , π^{0} , K^{\pm})
- Extraction of SFAs (in addition to CSAs)
- > Use of a later data production, which includes updated tracking and alignment info
- > Extraction of π^0 asymmetries is improved in various aspects, including background subtr.
- > 1D binning optimized and extended to the high-z ("semi-exclusive") region (0.7 < z < 1.2)
- > The x range is extended up to 0.6 (before was up to 0.4)

Jul 2020

5

-

L.L. Pappalardo – CFNS Seminar - January 21, 2021

The SFA amplitudes (NEW!)

The relevant asymmetry amplitudes are extracted in an unbinned ML fit of the Fourier decomposition of the cross section

$$-\ln \mathbb{L} = -\sum_{i=1}^{N_h} w_i \ln \mathbb{P}\left(x_i, z_i, P_{h\perp,i}, \phi_i, \phi_{S,i}, P_{l,i}, S_{\perp,i} : 2\left\langle \sin\left(\phi - \phi_S\right) \right\rangle_{U\perp}^h, \ldots \right)$$

$$\mathbb{P} \left(x, z, \epsilon, P_{h\perp}, \phi, \phi_S, P_l, S_{\perp} : 2\langle \sin(\phi - \phi_S) \rangle_{U\perp}^h, \dots 2\langle \cos(\phi + \phi_S) / \sqrt{2\epsilon(1 - \epsilon)} \rangle_{L\perp}^h \right)$$

$$= \left[1 + S_{\perp} \left[2\langle \sin(\phi - \phi_S) \rangle_{U\perp}^h \sin(\phi - \phi_S) + \epsilon 2\langle \sin(\phi + \phi_S) / \epsilon \rangle_{U\perp}^h \sin(\phi + \phi_S) + \epsilon 2\langle \sin(\phi - \phi_S) / \sqrt{2\epsilon(1 + \epsilon)} 2\langle \sin(\phi_S) / \sqrt{2\epsilon(1 + \epsilon)} \rangle_{U\perp}^h \sin(\phi_S) + \epsilon 2\langle \sin(2\phi - \phi_S) / \sqrt{2\epsilon(1 + \epsilon)} \rangle_{U\perp}^h \sin(2\phi - \phi_S) + \epsilon 2\langle \sin(2\phi + \phi_S) / \epsilon \rangle_{U\perp}^h \sin(2\phi + \phi_S) \right)$$

$$+ P_l S_{\perp} \left(\sqrt{1 - \epsilon^2} 2\langle \cos(\phi - \phi_S) / \sqrt{1 - \epsilon^2} \rangle_{L\perp}^h \cos(\phi - \phi_S) + \sqrt{2\epsilon(1 - \epsilon)} 2\langle \cos(\phi_S) / \sqrt{2\epsilon(1 - \epsilon)} \rangle_{L\perp}^h \cos(\phi + \phi_S) \right) \right]^w$$

$$A_{L\perp} DSAs$$

10 Fourier components:

- $6 A_{U\perp}$ SSAs (4 leading-twist + 2 subleading twist)
- $4 A_{L\perp}$ DSAs (2 leading-twist + 2 subleading twist)
- $sin(2\phi + \phi_S)$ and $cos(\phi + \phi_S)$ terms arise purely from the small but non-vanishing longit. target-polarization component
- The SFA amplitudes do not include the ε -dependent kinematic prefactors
- Are extracted by including explicitly the ε-dependent kinematic prefactors in the probability-density function, separated from the fit parameters.

SSA and DSA amplitudes

	Azimuthal	Significant non-vanishing Fourier amplitude							
			π^+	π^{-}	K^+	K^-	p	π^{0}	$ar{p}$
	$\sin\left(\phi + \phi_S\right)$	[Collins]	\checkmark	\checkmark	\checkmark		\checkmark		
	$\sin\left(\phi-\phi_S\right)$	[Sivers]	\checkmark		\checkmark	\checkmark	\checkmark	(√)	\checkmark
	$\sin\left(3\phi - \phi_S\right)$	[Pretzelosity]							
	$\sin\left(\phi_S ight)$		(√)	\checkmark		\checkmark			
ŗ	$\sin\left(2\phi - \phi_S\right)$								(\checkmark)
	$\sin\left(2\phi + \phi_S\right)$				\checkmark				
	$\cos\left(\phi - \phi_S\right)$	[Worm-gear]	\checkmark	(\checkmark)	(\checkmark)				
	$\cos\left(\phi + \phi_S\right)$								
	$\cos\left(\phi_S ight)$				\checkmark				
	$\cos\left(2\phi - \phi_S\right)$								

All other 1D SFA results in back-up slides!

 \checkmark : incompatible with NULL hypothesis at 95% CL

 (\checkmark) : incompatible with NULL hypothesis at 90% CL

The HERMES experiment at HERA (1995-2007)

The polarized gas target

18 2 p [GeV]

Aerogel n=1.03

Selected results

The Sivers term

 $\frac{d\sigma^{h}}{dx\,dy\,d\phi_{S}\,dz\,d\phi\,d\mathbf{P}_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2\left(1-\epsilon\right)}\left(1+\frac{\gamma^{2}}{2x}\right)$ Describes correlation between quark transverse momentum and nucleon transverse polarization $F_{\rm UU,T} + \epsilon F_{\rm UU,L}$ $+\sqrt{2\epsilon \left(1+\epsilon\right)}\cos\left(\phi\right)F_{\mathrm{UU}}^{\cos\left(\phi\right)}+\epsilon\cos\left(2\phi\right)F_{\mathrm{UU}}^{\cos\left(2\phi\right)}\right]$ Sivers + $\lambda_l \left[\sqrt{2\epsilon (1-\epsilon)} \sin (\phi) F_{\rm LU}^{\sin (\phi)} \right]$ $F_{UT,T}^{\sin(\phi_h - \phi_S)} = \mathcal{C} \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M} f_{1T}^{\perp} D_1 \right]$ + $S_L = \left[\sqrt{2\epsilon (1+\epsilon)} \sin(\phi) F_{\mathrm{UL}}^{\sin(\phi)} + \epsilon \sin(2\phi) F_{\mathrm{UL}}^{\sin(2\phi)} \right]$ + $S_L \lambda_l \left[\sqrt{1 - \epsilon^2} F_{\rm LL} + \sqrt{2\epsilon (1 - \epsilon)} \cos(\phi) F_{\rm LL}^{\cos(\phi)} \right]$ + S_T $\left[\sin(\phi - \phi_S) \left(F_{\mathrm{UT,T}}^{\sin(\phi - \phi_S)} + \epsilon F_{\mathrm{UT,L}}^{\sin(\phi - \phi_S)} \right) + \epsilon \sin(\phi + \phi_S) F_{\mathrm{UT}}^{\sin(\phi + \phi_S)} + \epsilon \sin(3\phi - \phi_S) F_{\mathrm{UT}}^{\sin(3\phi - \phi_S)} \right]$ Unpol. FF $+\sqrt{2\epsilon(1+\epsilon)}\sin(\phi_S)F_{\rm UT}^{\sin(\phi_S)}$ $+\sqrt{2\epsilon (1+\epsilon)} \sin (2\phi - \phi_S) F_{\mathrm{UT}}^{\sin (2\phi - \phi_S)}$ + $S_T \lambda_l \left[\sqrt{1 - \epsilon^2} \cos{(\phi - \phi_S)} F_{LT}^{\cos{(\phi - \phi_S)}} \right]$ $+\sqrt{2\epsilon (1-\epsilon)}\cos{(\phi_S)}F_{\mathrm{LT}}^{\cos{(\phi_S)}}$ $+\sqrt{2\epsilon (1-\epsilon)} \cos (2\phi - \phi_S) F_{\text{LT}}^{\cos (2\phi - \phi_S)}$

- large positive amplitude \rightarrow clear evidence of non-zero $f_{1T}^{\perp,u}$
- signal rises with x, z and $P_{h\perp}$ in SIDIS region (0.2 < z < 0.7)
- More informative 3D projections confirm and further detail the rise of the amplitude at large x, z and $P_{h\perp}$

Vanishing due to the cancellation of the opposite Sivers effect for *u* and *d* quarks

- Sudden drop at large-z (> 0.7) reveals a change of mechanism in this semi-exclusive region
- Contributions from decays of exclusively produced ρ^0 into $\pi^+\pi^-$ are large in this region!

- intermediate size between those of π^+ and π^- reflects isospin symmetry at the amplitude level
- π⁰ amplitude is much less susceptible to VM decays and no sudden change is observed at large z → observed positive signal cannot be attributed solely to contributions from VM
- An alternative (concurrent?) explanation: at large z, favored fragmentation $(d \rightarrow \pi^{-})$ prevails over the disfavored one $(u \rightarrow \pi^{-}) \rightarrow$ no cancellation and a non-zero amplitude opposite to that of π^{+} is observed.

Large positive amplitude, similar kinematic dep. of π^+

Positive amplitude, different than $\pi^ K^-$ is a pure sea object with no valence quarks in common with target proton

Sivers amplitudes: the K^+ vs. π^+ issue

Similar kinematic dependence in SIDIS region but K^+ is substantially larger!

- *u*-quark dominance, but different sea-quark content
- possible differences in k_T dependence of the fragmentation functions for different quark flavors (entering the convolution integral)?
- different impact of higher-twist effects
- K^+ amplitude keeps rising with z in semi-exclusive region (no sudden change) → Contribution from exclusive VM decays much less pronounced for Kaons than for pions.

- each x-bin divided into two Q² bins
- no effect for pions, but hint of suppression at larger Q^2 for kaons

Sivers amplitudes: protons results (CFR vs. TFR)

- No generally-accepted recipe exists
- positive values of x_F and rapidity (y_h) are typically associated with hadrons produced from the struck quark (CFR)
- negative values point at target fragmentation (TFR)

At the selected kinematics the vast majority of protons are compatible with being produced in CFR

The Collins term

Collins amplitudes: SFA pion results

L.L. Pappalardo – CFNS Seminar - January 21, 2021

Collins amplitudes: all SFA 1D results

- K^+ exhibits a very similar kinematic dependence as π^+ , but amplitude is twice as large!
- $K^- \approx 0$: only disfavored and opposite $(u \rightarrow K^-, d \rightarrow K^-)$ fragmentation mechanisms can contribute
- First measurement of Collins asymm. for protons/antiprotons!

0.5

1 0

z

- proton amplitude is non zero (negative)
- antiproton amplitude ≈ 0

х

 $2 \left(\sin(\phi + \phi_S) / \epsilon \right)_{U_1}$

0.2

0.15

0.1

0.05

-0.05

-0.1

-0.15

-0.2

0.4

0.3

0.2

0.1

-0.1

-0.2

-0.3

-0.4

-0

p

р

0.1

0.2

 Collins effect is a fragmentation process, but too little is known about this effect for spin-¹/₂ hadron production

^{0.5} 1 P_{h⊥} [GeV]

The Pretzelosity term

$(\sin(3\phi - \phi_S) / \varepsilon)_{U\perp}$ (Pretzelosity): all 1D results

The $\cos(\phi - \phi_S)$ DSA

 $\frac{d\sigma^{h}}{dx\,dy\,d\phi_{S}\,dz\,d\phi\,d\mathbf{P}_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2\left(1-\epsilon\right)}\left(1+\frac{\gamma^{2}}{2x}\right)$ polarized quarks in a transversely polarized nucleon $F_{\rm UU,T} + \epsilon F_{\rm UU,L}$ $+\sqrt{2\epsilon (1+\epsilon)} \cos (\phi) F_{\mathrm{UU}}^{\cos (\phi)} + \epsilon \cos (2\phi) F_{\mathrm{UU}}^{\cos (2\phi)} \Big|$ worm-gear (II) + $\lambda_l \left| \sqrt{2\epsilon (1-\epsilon)} \sin (\phi) F_{\rm LU}^{\sin (\phi)} \right|$ $F_{LT}^{\cos(\phi_h - \phi_S)} = \mathcal{C} \left[\frac{\hat{h} \cdot p_T}{M} \bigvee_{g_{1T} D_1} \right]$ + $S_L = \left[\sqrt{2\epsilon (1+\epsilon)} \sin (\phi) F_{\mathrm{UL}}^{\sin (\phi)} + \epsilon \sin (2\phi) F_{\mathrm{UL}}^{\sin (2\phi)}\right]$ + $S_L \lambda_l \left[\sqrt{1 - \epsilon^2} F_{\rm LL} + \sqrt{2\epsilon (1 - \epsilon)} \cos(\phi) F_{\rm LL}^{\cos(\phi)} \right]$ Unpol FF + S_T $\left[\sin\left(\phi - \phi_S\right)\left(F_{\mathrm{UT,T}}^{\sin\left(\phi - \phi_S\right)} + \epsilon F_{\mathrm{UT,L}}^{\sin\left(\phi - \phi_S\right)}\right)\right]$ ST $+\epsilon \sin{(\phi + \phi_S)}F_{\mathrm{UT}}^{\sin{(\phi + \phi_S)}} + \epsilon \sin{(3\phi - \phi_S)}F_{\mathrm{UT}}^{\sin{(3\phi - \phi_S)}}$ $+\sqrt{2\epsilon(1+\epsilon)}\sin(\phi_S)F_{\rm UT}^{\sin(\phi_S)}$ $+\sqrt{2\epsilon (1+\epsilon)} \sin (2\phi - \phi_S) F_{\mathrm{UT}}^{\sin (2\phi - \phi_S)}$ + $S_T \lambda_l \left[\sqrt{1 - \epsilon^2} \cos{(\phi - \phi_S)} F_{\rm LT}^{\cos{(\phi - \phi_S)}} \right]$ $+\sqrt{2\epsilon (1-\epsilon)}\cos{(\phi_S)}F_{\mathrm{LT}}^{\cos{(\phi_S)}}$ $+\sqrt{2\epsilon (1-\epsilon)} \cos (2\phi - \phi_S) F_{\mathrm{LT}}^{\cos (2\phi - \phi_S)}$

Describes probability to find longitudinally

The $\cos(\phi - \phi_S)$ DSA: all SFA 1D results

The sub-leading twist $\sin \phi_s$ term

$$\begin{aligned} \frac{d\sigma^{h}}{dx\,dy\,d\phi_{S}\,dz\,d\phi\,d\mathbf{P}_{h\perp}^{2}} &= \frac{\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2\left(1-\epsilon\right)}\left(1+\frac{\gamma^{2}}{2x}\right) \\ \left\{ \begin{array}{c} \left[F_{\mathrm{UU,T}}+\epsilon F_{\mathrm{UU,L}}\right.\\ &+\sqrt{2\epsilon\left(1+\epsilon\right)}\cos\left(\phi\right)F_{\mathrm{UU}}^{\cos\left(\phi\right)}+\epsilon\cos\left(2\phi\right)F_{\mathrm{UU}}^{\cos\left(2\phi\right)}\right] \\ &+ \lambda_{l}\left[\sqrt{2\epsilon\left(1-\epsilon\right)}\sin\left(\phi\right)F_{\mathrm{LU}}^{\sin\left(\phi\right)}\right] \\ &+ S_{L}\left[\sqrt{2\epsilon\left(1+\epsilon\right)}\sin\left(\phi\right)F_{\mathrm{UL}}^{\sin\left(\phi\right)}+\epsilon\sin\left(2\phi\right)F_{\mathrm{UL}}^{\sin\left(2\phi\right)}\right] \\ &+ S_{L}\lambda_{l}\left[\sqrt{1-\epsilon^{2}}F_{\mathrm{LL}}+\sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(\phi\right)F_{\mathrm{LL}}^{\cos\left(\phi\right)}\right] \\ &+ S_{T}\left[\sin\left(\phi-\phi_{S}\right)\left(F_{\mathrm{UT,T}}^{\sin\left(\phi-\phi_{S}\right)}+\epsilon F_{\mathrm{UT,U}}^{\sin\left(\phi-\phi_{S}\right)}\right)\right.\\ &+\epsilon\sin\left(\phi+\phi_{S}\right)F_{\mathrm{UT}}^{\sin\left(\phi+\phi_{S}\right)}+\epsilon\sin\left(3\phi-\phi_{S}\right)F_{\mathrm{UT}}^{\sin\left(3\phi-\phi_{S}\right)} \\ &+\sqrt{2\epsilon\left(1+\epsilon\right)}\sin\left(2\phi-\phi_{S}\right)F_{\mathrm{UT}}^{\sin\left(2\phi-\phi_{S}\right)}\right] \\ &+ S_{T}\lambda_{l}\left[\sqrt{1-\epsilon^{2}}\cos\left(\phi-\phi_{S}\right)F_{\mathrm{LT}}^{\cos\left(\phi-\phi_{S}\right)} \\ &+\sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(2\phi-\phi_{S}\right)F_{\mathrm{LT}}^{\cos\left(2\phi-\phi_{S}\right)}\right] \end{array}\right\} \end{aligned}$$

Sensitive to worm-gear g_{1T}^{\perp} , sivers, transversity + higher-twist DF and FF

$$F_{UT}^{\sin\phi_S} = \frac{2M}{Q} \mathcal{C} \left\{ \left(x f_T D_1 - \frac{M_h}{M} h_1 \frac{\tilde{H}}{z} \right) - \frac{k_T \cdot p_T}{2MM_h} \left[\left(x h_T H_1^{\perp} + \frac{M_h}{M} g_{1T} \frac{\tilde{G}^{\perp}}{z} \right) - \left(x h_T^{\perp} H_1^{\perp} - \frac{M_h}{M} f_{1T}^{\perp} \frac{\tilde{D}^{\perp}}{z} \right) \right] \right\}$$

It is the only contribution to the cross section that survives integration over hadron transverse momentum:

$$F_{\rm UT}^{\sin(\phi_S)}(x,Q^2,z) = \int d^2 \mathbf{P}_{h\perp} F_{\rm UT}^{\sin(\phi_S)}(x,Q^2,z,P_{h\perp}) = -x \frac{2M_h}{Q} \sum_q e_q^2 h_1^q \frac{\tilde{H}^q(z)}{z}$$

providing sensitivity to transversity w/o involving a convolution over intrinsic transverse momenta.

The essentially unknow \tilde{H}^q interaction-dependent FF has been found to be related to the Collins function. These circumstances may explain the observed **similar qualitative behavior of the** $2\langle sin(\phi_s) \rangle_{U\perp}$ **and the Collins asymmetries**.

The sub-leading twist $\sin \phi_s$ term: pions SFA results

The sub-leading twist $\sin \phi_s$ term: all SFA 1D results

 $(2\varepsilon(1+\varepsilon))^{1/2}\rangle_{U\perp}$

 $2 \langle sin(\phi_S) /$

-0.05 -0.1

-0.15

0.2

Х

0.5

1 0

z

0.1

 π^0 , p, \bar{p} results vanishing ٠

 $P_{h\perp}^{0.5}$ [GeV]

striking z-dependence in "semi-exclusive region" for π^+/K^+ consistent with large $sin(\phi_S)$ amplitude observed in exclusive π^+ electroproduction [Phys. Lett. B 682 (2010)]

Conclusions

- The full collection of leading- and subleading-twist SSAs and DSAs with a transversely polarized H target has now been published, based on an improved analysis including proton/antiproton results, as well as results in a 3D binning and extended to the large-z ("semi-exclusive region") region.
- A rich phenomenology and surprising effects arise when intrinsic transverse degrees of freedom (spin, momentum) are not integrated out!
- Flavor sensitivity ensured by the excellent hadron ID of the HERMES experiment reveals interesting and unexpected facets of data

Conclusions

The **3D** imaging of the nucleon is a fashinating and fast evolving research field. HERMES has been a pioneer experiment in this fiels and continues to play a key role in these studies!

L.L. Pappalardo – CFNS Seminar - January 21, 2021

The other SFA results...

 π^+ : positive amplitude (~ 2%) \rightarrow consistent with positive $\sin(2\phi - \phi_s)$ amplitude observed for exclusive π^+ electroproduction [Phys. Lett. B 682 (2010)]

z

Х

 $\langle \sin(2\phi + \phi_S) / \varepsilon \rangle_{U\perp}$: all 1D results

Arises solely from the small longit. target polarization component

Semi-Inclusive region (0. 2 < z < 0.7): K^+ : positive amplitude over full z range

Semi-Exclusive region (z > 0.7):

 π^+ : positive amplitude rising with $z \rightarrow \text{consistent}$ with positive $\sin(2\phi + \phi_S)$ amplitude observed for exclusive π^+ electroproduction [Phys. Lett. B 682 (2010)]

$$\left(\cos(\phi_{S}) / \sqrt{2\varepsilon(1-\varepsilon)} \right)_{L1} : \text{ all 1D results}$$

0.5 1 P_{h⊥} [GeV]

0.2

-0 -0.2 -0.4

0.1

0.2

X

0.5

1 0 Z

$$\left(\cos(\phi + \phi_S) / \sqrt{2\varepsilon(1 - \epsilon)}\right)_{L\perp}$$
: all 1D results

Х

Other HERMES results

Sub-leading twist $sin(\phi)$ BSA

$$\frac{d\sigma^{h}}{dx \, dy \, d\phi_{S} \, dz \, d\phi \, dP_{h\perp}^{2}} = \frac{\alpha^{2} - y^{2}}{xyQ^{2} \, 2(1-\epsilon)} \left(1 + \frac{\gamma^{2}}{2x}\right)$$

$$\left\{ \begin{bmatrix} F_{UU,T} + \epsilon F_{UU,L} \\ + \sqrt{2\epsilon(1+\epsilon)} \cos(\phi) F_{UU}^{\cos(\phi)} + \epsilon \cos(2\phi) F_{UU}^{\cos(2\phi)} \end{bmatrix} \right.$$

$$+ \frac{\sqrt{2\epsilon(1+\epsilon)} \sin(\phi) F_{UU}^{\sin(\phi)} + \epsilon \cos(2\phi) F_{UU}^{\cos(2\phi)} \end{bmatrix}$$

$$+ \frac{\lambda_{l}}{\sqrt{2\epsilon(1-\epsilon)} \sin(\phi) F_{UU}^{\sin(\phi)} + \epsilon \sin(2\phi) F_{UU}^{\sin(2\phi)} \end{bmatrix}$$

$$+ S_{L} \left[\sqrt{2\epsilon(1+\epsilon)} \sin(\phi) F_{UL}^{\sin(\phi)} + \epsilon \sin(2\phi) F_{UL}^{\sin(2\phi)} \end{bmatrix}$$

$$+ S_{L} \lambda_{l} \left[\sqrt{1-\epsilon^{2}} F_{LL} + \sqrt{2\epsilon(1-\epsilon)} \cos(\phi) F_{UT}^{\cos(\phi)} \right]$$

$$+ S_{T} \left[\sin(\phi - \phi_{S}) \left(F_{UT,T}^{\sin(\phi - \phi_{S})} + \epsilon F_{UT,L}^{\sin(\phi - \phi_{S})} \right) \\ + \frac{\epsilon \sin(\phi + \phi_{S}) F_{UT}^{\sin(\phi + \phi_{S})} + \epsilon \sin(3\phi - \phi_{S}) F_{UT}^{\sin(3\phi - \phi_{S})} \\ + \sqrt{2\epsilon(1+\epsilon)} \sin(\phi) F_{UT}^{\sin(\phi)} + \epsilon \sin(3\phi - \phi_{S}) F_{UT}^{\sin(3\phi - \phi_{S})} \\ + \sqrt{2\epsilon(1+\epsilon)} \sin(2\phi - \phi_{S}) F_{UT}^{\cos(\phi,\phi)} \end{bmatrix}$$

$$+ S_{T} \lambda_{l} \left[\sqrt{1-\epsilon^{2}} \cos(\phi - \phi_{S}) F_{UT}^{\cos(\phi,\phi)} \\ + \sqrt{2\epsilon(1-\epsilon)} \cos(\phi - \phi_{S}) F_{UT}^{\cos(\phi,\phi)} \\ + \sqrt{2\epsilon(1-\epsilon)} \cos(2\phi - \phi_{S}) F_{UT}^{\cos(\phi,\phi)} \\ + \sqrt{2\epsilon(1-\epsilon)} \cos(2\phi - \phi_{S}) F_{UT}^{\cos(2\phi - \phi_{S})} \end{bmatrix} \right\}$$

$$Sensitive to f_{1} , Boer-Mulders + higher-twist DF and FF brucker behaviors and the sense of the sens$$

Sub-leading twist $sin(\phi)$ BSA

Phys. Lett. B 797 (2019) 134886

- Positive amplitudes rising with z for π^+ and π^-
- Small positive amplitude with mild kinematic dep. for K^+
- Results compatible with zero for K^- , p and \bar{p}

Sub-leading twist $sin(\phi)$ BSA

Boer-Mulders function

The cos2 ϕ amplitudes $\propto h_1^{\perp}(x, p_T^2) \otimes H_1^{\perp}(z, k_T^2)$

The cos ϕ amplitudes $\propto +\frac{1}{Q} [h_1^{\perp} \otimes H_1^{\perp} + f_1 \otimes D_1 \dots]$

Worm-gear h_{1L}^{\perp}

$$\frac{d\sigma^{h}}{dx \, dy \, d\phi_{S} \, dz \, d\phi \, dP_{hL}^{2}} = \frac{\alpha^{2} \, y^{2}}{xyQ^{2} \, 2(1-\epsilon)} \left(1 + \frac{\gamma^{2}}{2x}\right)$$

$$\left\{ \begin{array}{c} \left[F_{UU,T} + \epsilon F_{UU,L} \\ + \sqrt{2\epsilon(1+\epsilon)} \cos(\phi) F_{UU}^{\cos(\phi)} + \epsilon \cos(2\phi) F_{UU}^{\cos(2\phi)}\right] \\ + \lambda_{l} \left[\sqrt{2\epsilon(1-\epsilon)} \sin(\phi) F_{UU}^{\sin(\phi)}\right] \\ \end{array} \right\}$$

$$+ \lambda_{l} \left[\sqrt{2\epsilon(1-\epsilon)} \sin(\phi) F_{UU}^{\sin(\phi)} + \epsilon \sin(2\phi) F_{UL}^{\sin(2\phi)}\right] \\ + S_{L} \left[\sqrt{2\epsilon(1+\epsilon)} \sin(\phi) F_{UL}^{\sin(\phi)} + \epsilon \sin(2\phi) F_{UL}^{\sin(2\phi)}\right] \\ + S_{L} \lambda_{l} \left[\sqrt{1-\epsilon^{2}} F_{LL} + \sqrt{2\epsilon(1-\epsilon)} \cos(\phi) F_{LL}^{\cos(\phi)}\right] \\ + S_{T} \left[\sin(\phi-\phi_{S}) \left(F_{UT,T}^{\sin(\phi-\phi_{S})} + \epsilon F_{UT,L}^{\sin(\phi-\phi_{S})}\right) \\ + \epsilon \sin(\phi+\phi_{S}) F_{UT}^{\sin(\phi+\phi_{S})} + \epsilon \sin(3\phi-\phi_{S}) F_{UT}^{\sin(\phi+\phi_{S})} \\ + \sqrt{2\epsilon(1+\epsilon)} \sin(\phi-\phi_{S}) F_{UT}^{\sin(\phi-\phi_{S})} \\ + \sqrt{2\epsilon(1+\epsilon)} \sin(2\phi-\phi_{S}) F_{UT}^{\sin(\phi-\phi_{S})} \\ + \sqrt{2\epsilon(1-\epsilon)} \cos(\phi-\phi_{S}) F_{UT}^{\cos(\phi-\phi_{S})} \\ + \sqrt{2\epsilon(1-\epsilon)} \cos(\phi-\phi_{S}) F_{UT}^{\cos(\phi-\phi-\phi_{S})} \\ \end{bmatrix}$$

The sin(2 ϕ) amplitude $\propto h_{1L}^{\perp}(x, p_T^2) \otimes H_1^{\perp}(z, k_T^2)$

A. Airapetian et al, Phys. Rev. Lett. 84 (2000)

Amplitudes consistent with zero for all mesons and for both H and D targets

Miscellanea

Mapping the phase-space of the nucleon

TMDs: 3D description in longitudinal (x) and transverse (k_{\perp}) mom.

GPDs: 3D description in longit. momentum (x) and transverse location (b_{\perp})

The CSA amplitudes

The probability-density function used for the CSA decomposition of the cross section

10 Fourier components:

- $6 A_{U\perp}$ SSAs (4 leading-twist + 2 subleading twist)
- $4 A_{L\perp}$ DSAs (2 leading-twist + 2 subleading twist)
- $sin(2\phi + \phi_S)$ and $cos(\phi + \phi_S)$ terms arise purely from the small but non-vanishing longitudinal target-polarization component along the virtual photon direction (target polarization states are referred to the lepton beam direction)
- The CSA amplitudes include in their definition the ε -dependent kinematic prefactors

Kinematic coverage

Kinematic coverage and factorization requirements

Due to $x-Q^2$ correlation, the first x bin corresponds to the small Q^2 region, where the TMD-factorization requirement $P_{h\perp}^2 \ll Q^2$ is less favourable.

TMD-factorization requirement $P_{h\perp}^2 \ll Q^2$ fulfilled for most of the selected DIS events!

Factorization requirements

At the selected kinematics the vast majority of protons are compatible with being produced in CFR (find more studies in paper)

...also from TFR (low z, high $P_{h\perp}$)