Search for a two-photon exchange contribution to inclusive deep-inelastic scattering

Klaus Rith

University of Erlangen-Nürnberg & DESY

SPIN 2010, FZ-Jülich

September 30, 2010

- Motivation: $2-\gamma$ exchange in elastic ep scattering
- 2- γ exchange in inelastic ep scattering: e + p⁺ \rightarrow e' + X with transversely polarised target

Precise determination of 2- γ -exchange contribution: $\sigma(e^{+}p)/\sigma(e^{-}p)$ CLAS, VEPP-3, OLYMPUS

Inelastic ep scattering

$Q^2 = -q^2 = 2EE'(1 - \cos\theta)$

negative squared four-momentum transfer

x = Q²/2M(E - E') Bjorken scaling variable

• $1-\gamma$ exchange approximation: Forbids any SSA in inclusive DIS due to parity and time reversal invariance

2-γ exchange contribution:

Leads to a transverse-target and/or beam SSA arising from the interference of 1- γ and 2- γ exchange

(A. Metz, M. Schlegel and K. Goeke, Phys. Lett. B643 (2006) 319, A. Afanasev, M. Strikman, and C. Weiss, Phys. Rev. D77 (2008) 014028

$$(\sigma_{UT}) \propto e_{\ell} \alpha \frac{m_{pol}}{Q} \epsilon_{\mu\nu\rho\sigma} S^{\mu} p^{\nu} k^{\rho} k^{\sigma} C_{T}$$

Spin dependent part of cross section for Unpolarised beam on a Transversely polarized target

$$\sigma_{\text{UT}} \propto e_{\ell} \alpha (m_{\text{pol}}/Q) \epsilon_{\mu\nu\rho\sigma} S^{\mu} p^{\nu} k^{\rho} k^{\sigma} C_{\text{T}}$$

$$\propto \vec{s} \cdot (\vec{k} \times \vec{k'})$$

Largest asymmetry when the spin vector \vec{S} is perpendicular to the lepton scattering plane

Azimuthal asymmetry:

$$A(x, Q^{2}, \phi_{s}) = \frac{\sigma_{UT}(x, Q^{2}, \phi_{s})}{\sigma_{UU}(x, Q^{2})} = [A_{UT}^{sin\phi s}(x, Q^{2})]sin\phi_{s}$$

$$A_{N} = \frac{\sigma_{L} - \sigma_{R}}{\sigma_{L} + \sigma_{R}} = \frac{2}{\pi} A_{UT}^{sin\phi s} (left-right asymmetry)$$

Early measurements:

σ(e⁺p)/σ(e⁻p)

DESY: H. Jostlein et al., Phys. Lett. B 52 (1974) 485 DESY: S. Hartwig et al., Lett. Nuovo Cim. 15 (1976) 429 SLAC: D.L. Fancher et al., Phys. Rev. Lett. 37 (1976) 1323 SLAC: L.S. Rochester et al., Phys. Rev. Lett. 36 (1976) 1284 DESY: S. Hartwig et al., Phys. Lett. B 82 (1979) 297

σ(μ⁺p)/σ(μ⁻p)

CERN-BCDMS: A. Argento et al., Phys. Lett. B 140 (1984) 142 CERN-EMC: J.J. Aubert et al., Nucl. Phys. B 272 (1986) 158

0

$$A_N$$
 in $e^- + p^{\uparrow} \rightarrow e^{-'} + X$

(region of nucleon resonances; search for violation of time-reversal invariance)

CEA: J.A. Appel et al., Phys. Rev. D 1 (1970) 1285 CEA: J.R. Chen et al., Phys. Rev. Lett. 21 (1968) 1279 SLAC: S. Rock et al., Phys. Rev. Lett. 24 (1970) 748 No effect within statistical accuracy of a few percent

HERMES Experiment

Data taking: 1995-2007 27.6 GeV e+/e- beam of HERA polarisation < 60 %

Internal gas targets

polarized : ¹H, ¹H, ²H, ³He unpolarized: ¹H, ²H, ³He, ⁴He, N, Ne, Kr, Xe

HERMES front view

HERMES kinematic plane

0.007 < x < 0.9, y < 0.91 0.25 GeV² < Q² < 20 GeV² W² > 4 GeV²

Single-spin azimuthal asymmetry

$$A_{UT}(x,Q^{2},\phi_{s}) = \frac{N^{\uparrow}/L_{P}^{\uparrow} - N^{\downarrow}/L_{P}^{\downarrow}}{N^{\uparrow}/L^{\uparrow} + N^{\downarrow}/L^{\downarrow}} \cong A_{UT}^{sin\phi s}(x,Q^{2}) sin\phi_{s}$$

Acceptance effects cancel for small bin size or asymmetry

Systematic uncertainties

- **Possible apparative sources of false asymmetries:**
 - misalignement of the detectors,
 - beam position and slope at the interaction point,
 - bending of e and e' in transverse holding field of target magnet
 - MC studies with artificial $A_{UT}^{sin\phi s}$ implemented

Examples:

Syst. uncertainty: $max[\delta^{MC}(stat), (input-output)]$

		$\langle P \rangle$	Events		
	e+	0.75	2.9 M		
	e-	0.71	4.8 M		
beam	$A_{UT}^{\sin\phi_S}$	$\delta A_{UT}^{\sin\phi_S}$ (stat	.) $\delta A_{UT}^{\sin \phi_S}$ (syst.)	$\langle x_B \rangle$	$\langle Q^2 \rangle$
	$\times 10^{-3}$	$\times 10^{-3}$	$\times 10^{-3}$	1 27	$[{ m GeV}^2]$
e^+	-0.61	3.97	0.63	0.02	0.68
<i>e</i>	-6.55	3.40	0.63		
e'	-0.60	1.70	0.29	0.14	2.40

$$A_{\rm N} = 2/\pi A_{\rm UT}^{\sin\phi s} = O(10^{-3})$$

same for e+ and e-
No sign for 2-photon exchange in DIS

15

HERMES has measured with high precision single-spin asymmetries in inclusive DIS e + $p^{\uparrow} \rightarrow e' + X$ from a transversely polarised proton target

No evidence for a 2-photon-exchange contribution to the cross section has been observed within the experimental uncertainties of the order of 10⁻³

This sets the so far most precise limit of 2-photon exchange in DIS