DVCS measurements at HERMES

Klaus Rith University of Erlangen-Nürnberg (on behalf of the hermes Collaboration)

Deeply Virtual Compton Scattering

- Theoretically cleanest way to access GPDs
- Interference between DVCS and Bethe-Heitler amplitude
- $|\mathcal{T}_{\mathsf{DVCS}}| < |\mathcal{T}_{\mathsf{BH}}| @ \mathsf{HERMES}$

DVCS

- **Bethe-Heitler**
- Access to GPD combinations through azimuthal asymmetries

Deeply Virtual Compton Scattering

- Theoretically cleanest way to access GPDs
- Interference between DVCS and Bethe-Heitler amplitude
- $|\mathcal{T}_{\mathsf{DVCS}}| < |\mathcal{T}_{\mathsf{BH}}| @ \mathsf{HERMES}$

DVCS

Access to GPD combinations through azimuthal asymmetries

HERMES: Complete set of asymmetries

- Both beam charges
- Both beam helicities
- Unpolarised H, D and nuclear targets
- Longitudinally polarised H and D targets
- Transversely polarised H target
 - Recoil detector

K.R.

Bethe-Heitler

Azimuthal dependences in DVCS

Example: unpolarised proton target

$$\frac{d^{4}\sigma}{dQ^{2}dx_{B}dtd\phi} = \frac{y^{2}x_{B}}{32(2\pi)^{4}Q^{4}\sqrt{1 + \frac{4M^{2}x_{B}^{2}}{Q^{2}}}} (|T_{DVCS}|^{2} + |T_{BH}|^{2} + I)$$

$$|T_{BH}|^{2} = \frac{K_{BH}}{\mathcal{P}_{1}(\phi)\mathcal{P}_{2}(\phi)} \sum_{n=0}^{2} c_{n}^{BH} \cos(n\phi)$$

$$|T_{DVCS}|^{2} = K_{DVCS} \left[\sum_{n=0}^{2} c_{n}^{DVCS} \cos(n\phi) + \frac{P_{B}}{\sum_{n=1}^{1}} s_{n}^{DVCS} \sin(n\phi)\right] \text{ bilinear in GPDs}$$

$$I = \frac{-C_{B}K_{I}}{\mathcal{P}_{1}(\phi)\mathcal{P}_{2}(\phi)} K_{DVCS} \left[\sum_{n=0}^{3} c_{n}^{T} \cos(n\phi) + \frac{P_{B}}{\sum_{n=1}^{2}} s_{n}^{T} \sin(n\phi)\right] \text{ linear in GPDs}$$

HERMES Experiment

Longitudinally polarised 27.6 GeV e⁺/e⁻ beam of HERA

Internal gas targets: longitudinally polarised [³He, ¹H, ²H], transversely polarised [¹H¹] and unpolarised [¹H (1200pb⁻¹), ²H (800 pb⁻¹), He, N, Ne, Kr, Xe (300 pb⁻¹)]

DVCS asymmetries measured @ HERMES

DVCS asymmetries measured @ HERMES

Beam-charge asymmetry A_c

Exclusivity: missing-mass technique

$$M_{X}^{2} = (P_{e} + P_{p} - P_{e'} - P_{\gamma})^{2}$$

Beam-spin asymmetry A_{LU}

A. Airapetian et al., JHEP 07(2012) 032

K.R.

Model: "VGG" (Phys. Rev. D60 (1999) 094017 & Prog. Nucl. Phys. 47 (2001) 401)

K.R.

HERMES spectrometer (2006-07)

HERMES recoil detector

A. Airapetian et al., JINST 8 (2013) P05012

HERMES recoil detector

A. Airapetian et al., JINST 8 (2013) P05012

HERMES recoil detector

A. Airapetian et al., JINST 8 (2013) P05012

- All particles in final state detected \rightarrow 4 constraints from energy-momentum conservation

- Selection of pure BH/DVCS ($ep \rightarrow ep\gamma$) with high efficiency (~ 83%)
- Allows to suppress background from associated and semi-inclusive processes to a negligible level

Magnitude of the leading asymmetry has increased by 0.054 ± 0.016 (-> assoc. in traditional analysis mainly dilution)

basically **no** contamination -> clear interpretation

Single-charge BSA with recoil proton

A. Airapetian et al., JHEP 10 (2012) 042

Rather good agreement with models

KM10 - K. Kumericki and D. Müller, Nucl. Phys. B 841 (2010) 1 VGG - M. Vanderhaeghen et al., Phys. Rev. D 60 (1999) 094017

Single-charge BSA with recoil proton

Beam-spin asymmetries for associated DVCS $ep \rightarrow e\gamma p \pi^{0}$ A. Airapetian et al., JHEP 01 (2014) 077 $f = \frac{0.5}{6} = \frac{0.5}{0.5} = \frac{0.5}{6} = \frac{0.5}{10} = \frac{100}{100} = \frac{100}{10$

10-1

X_B

10 Q² [GeV²]

Asymmetry amplitudes consistent with zero (in agreement with theor. exp.; P. Guichon et al., PRD 68 (2003) 034018)

-t [GeV²]

10.1

overall

Shown amplitudes corrected for background (only overall fractions are listed):

Associated DVCS/BH (e
$$p \rightarrow e' \gamma p \pi^0$$
)85 ± 1Elastic DVCS/BH (e $p \rightarrow e' \gamma p$)4.6 ± 0.1SIDIS (e $p \rightarrow e' X \pi^0$)11 ± 1DIS201411 ± 1

0.5

-0.5

А^{sin(2ф)} LU

Beam-spin asymmetries for associated DVCS $e p \rightarrow e \gamma n \pi^+$ A. Airapetian et al., JHEP 01 (2014) 077 e⁺p → e⁺γnπ⁺ | scale uncertainty, 1.96% 0.5 Asin∳ -0.5 0.5 A^{sin(2φ)} LU

Asymmetry amplitudes consistent with zero

-t [GeV²]

(in agreement with theor. exp.; P. Guichon et al., PRD 68 (2003) 034018) Shown amplitudes corrected for background (only overall fractions are listed):

10'1

1

X_B

10 Q² [GeV²]

Associated DVCS/BH (e p
$$\rightarrow$$
 e' y n π +) 77 ± 2
Elastic DVCS/BH (e p \rightarrow e' y p) 0.2 ± 0.1
SIDIS (e p \rightarrow e' X π^{0}) 23 ± 3
DIS2014

-0.5

10'1

overall

DVCS @ HERMES

- HERMES analyzed a wealth of DVCSrelated asymmetries on nucleon and nuclear targets
- data with recoil-proton detection allows clean interpretation
- indication of larger amplitudes for pure sample
- assoc. DVCS in "traditional" analysis mainly dilution
- assoc. DVCS results consistent with zero but also with model prediction

DVCS with Recoil Detector

