HERMES results on transverse target single-spin asymmetries in inclusive electroproduction of charged pions and kaons

Klaus Rith

University of Erlangen-Nürnberg

(on behalf of the hermes Collaboration)

 $A_{\mathsf{N}} = [\sigma(\uparrow) - \sigma(\downarrow)] / [\sigma(\uparrow) + \sigma(\downarrow)]$

Large A_N were observed in p↑ p → h X reactions at ANL, BNL, FNAL, RHIC for √s = 4.9-500 GeV

Motivation: A_N in $p\uparrow p$

 $A_{N} = [\sigma(\uparrow) - \sigma(\downarrow)] / [\sigma(\uparrow) + \sigma(\downarrow)]$

Large A_N were observed in p↑ p → h X reactions at ANL, BNL, FNAL, RHIC for √s = 4.9-500 GeV

Possible origins:

- Sivers DF (was invented to explain A_N)
- Collins FF + transversity DF
- higher-twist multiparton correlations
- Combinations of above

But: sign problem (Kang et al., PRD83 (2011) 094001)

For consistent partonic description: Need flavor dependent A_N(E, ×_F, p_T)

Example: A_N for charged pions in $p\uparrow p$

I. Arsene et al., Phys. Rev. Lett. 101 (2008) 042001

DIS2014

Inclusive hadron electroproduction

Relevant kinematic variables:

Feynman variable x_F = P^hlong/P^hlong,max</sub> (in ep CMS)

Transverse hadron momentum P_{T} (w.r.t e direction)

Azimuthal hadron angle Ψ

HERMES Spectrometer

Transversely polarized H gas target, $S_T \cong 0.71$ (2002-2005)

HERMES front view

 \vec{k}

 $p_{\rm had}$

Definition of angle Ψ

Inclusive hadron electroproduction:

Ψ: azimuthal angle between upwards target spin direction and hadron production plane around beam direction

$$\Psi \approx \phi - \phi_{\rm S}$$
 (Sivers angle)

 \vec{k}

TTSA in inclusive hadron electroproduction

TTSA: Tranverse target single-spin asymmetry

Inclusive hadron electroproduction: $e^{\pm} p^{\uparrow} \rightarrow h X$

K.R.

x_F dependence (1D projection)

Phys. Lett. B 728 (2014) 183

> π^+ : positive; nearly linear rise with x_F up to ~ 10 %

 π⁻: negative; similar trend, smaller magnitude (up to ~ 4 %)

x_F dependence (1D projection)

- π⁻: negative; similar trend, smaller magnitude (up to ~ 4 %)
- Kaons behave differently than pions

P_T dependence (1D projection)

P_T dependence (1D projection)

Rather complicated behaviour for π+ and K+
 P_T and x_F strongly correlated; important to look at 2D

P_T dependence (2D extraction)

π⁺, K⁺:

Very similar P_T dependence for all four x_F intervals; amplitude positive, maximal for $P_T \cong .8 \text{ GeV}$

π-:

Amplitude mostly negative, magnitude increases with x_F

x_F dependence (2D extraction)

Details: sub-samples

anti-tagged category: e' not in acceptance

- trigger on hadron, low efficiency ε , P^h-dependent, $\langle \varepsilon \rangle \cong 0.3$
- hard scale: P_T

tagged category: e' in acceptance, ε = 1 -part of this category: DIS events (Q² > 1 GeV², W² > 10 GeV², 0.023 < x < 0.4, 0.2 < y < 0.95) - hard scales: Q, P_T; Q² > P_T²

Sub-samples: DIS, 0.2 < z < 0.7 (used for determination of TMDs) DIS, z > 0.7 ('quasi-exclusive')

	•				
	π^+	π^-	K+	K-]
raw tracks	60	50	5.1	2.8	ר
ε-corr. tracks	172	142	14.5	7.3	
anti-tagged	170.5	140.7	14.3	7.2] - * 106
DIS, 0.2 < z < 0.7	0.69	0.49	0.12	0.05	
■ DIS, z > 0.7	0.061	0.037	0.013	0.001]]

P_T dependence for 3 sub-samples

P_T dependence for 3 sub-samples

P_T dependence for 3 sub-samples

- HERMES has measured with high precision single-spin asymmetries in inclusive hadron electroproduction $e + p^{\uparrow} \rightarrow h + X$ from a transversely polarised proton target
- Substantial single-spin asymmetries are observed for positive pions and kaons
- ID x_F dependence of amplitudes is mainly a reflection of underlying P_T dependence

Complicated P_T dependence of amplitudes caused by contributions of sub-samples:
 -decrease with P_T for quasi-real photoproduction
 -increase with P_T for DIS samples
 -very large asymmetries for 'quasi-exclusive' events

Backups

 A_N for π^0 in p \uparrow p

for all p_T

A_N for π^0 and η in p[↑]p

Very large asymmetry for η

A_N for identified hadrons in p \uparrow p

 \sqrt{s} = 200 GeV

 $A_N(\pi^+)$ positive ~ $A_N(\pi^-)$ negative

A_N(K⁺) ~ A_N(K⁻) positive (in disagreement with expectation from valence quark fragmentation)

$$A_N(p) \sim 0, A_N(\overline{p})$$
 positive

More data and theoretical input needed

Inclusive hadron TSA

<u>Interpretation:</u> non-trivial due to missing hard scale - except for high p_T (factorisation?)

Model predictions:

FIG. 2: Estimates of A_N vs. x_F for the $p^{\uparrow} \ell \to \pi X$ process at HERMES ($\sqrt{s} \simeq 7 \text{ GeV}$). Left panel: Sivers effect at $P_T = 1.5 \text{ GeV}$; central panel: Sivers effect at $P_T = 2.5 \text{ GeV}$; right panel: Collins effect at $P_T = 2.5 \text{ GeV}$.

HERMES Experiment

Data taking: 1995-2007 27.6 GeV e+/e- beam of HERA polarisation \leq 60 %

Internal gas targets

polarized : ¹H, ¹H, ²H, ³He unpolarized: ¹H, ²H, ³He, ⁴He, N, Ne, Kr, Xe

HERMES spectrometer - RICH

hadron separation

