

The 3D Structure of the Proton

Ralf Kaiser, IAEA and University of Glasgow

- From Rutherford Scattering to Deeply Virtual Compton Scattering (DVCS)
- Generalised Parton Distributions and the 3D Structure of the Proton
- Recent DVCS Results from HERMES
- Future Experiments in DVCS

Imagine you have a sand filled sack, and a cannon ball hidden somewhere inside. One way of figuring out where the cannon ball is, is shooting at it with a shotgun. You get a kind of picture and some of the bullets scatter back.

Imagine you have a sand filled sack, and a cannon ball hidden somewhere inside. One way of figuring out where the cannon ball is, is shooting at it with a shotgun. You get a kind of picture and some of the bullets scatter back.

Imagine you have a sand filled sack, and a cannon ball hidden somewhere inside. One way of figuring out where the cannon ball is, is shooting at it with a shotgun. You get a kind of picture and some of the bullets scatter back.

Imagine you have a sand filled sack, and a cannon ball hidden somewhere inside. One way of figuring out where the cannon ball is, is shooting at it with a shotgun. You get a kind of picture and some of the bullets scatter back.

Imagine you have a sand filled sack, and a cannon ball hidden somewhere inside. One way of figuring out where the cannon ball is, is shooting at it with a shotgun. You get a kind of picture and some of the bullets scatter back.

Rutherford Scattering Experiment

Rutherford Cross Section

Classical as well as quantum mechanical result under the assumption that

- target recoil can be neglected
- spin effects can be neglected
- the target is point-like

$$\left(rac{\mathbf{d}\sigma}{\mathbf{d}\Omega}
ight)_{\mathrm{Rutherford}} = rac{(\mathbf{Ze^2})^2}{(4\pi\epsilon_0)\cdot 4\mathbf{E^2}\sin^4rac{ heta}{2}}$$

Mott Cross Section

Taking target recoil and spin effects into account leads to the Mott cross section.

Any further deviation is therefore an indication that the target is not point-like.

This is the basic method to show that something has a substructure.

R.Hofstadter et al., Phys.Rev.92, 978 (1953)

Nuclear Form Factors

$$\left(\frac{d\sigma}{d\Omega}\right)_{\text{exp}} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \cdot |F(q^2)|^2$$

Nuclear Form Factor: Ratio of measured elastic electron scattering cross section and theoretical cross section for a point-like particle.

$$f(r) = \frac{1}{(2\pi)^3} \int F(q^2) e^{-iqx/\hbar} d^3q$$

Radial charge distribution from Fourier transformation.

Structure and Rutherford Scattering

Elastic Scattering off a Nucleus

Deviation from Rutherford Scattering (point-like)

Nuclear Form Factor

Structure and Rutherford Scattering

Elastic Scattering off a Nucleus

Deviation from Rutherford Scattering (point-like)

Nuclear Form Factor

Elastic Scattering off a Nucleon

Deviation from Rutherford Scattering (point-like)

Nucleon Form Factors

Structure and Rutherford Scattering

Elastic Scattering off a Nucleus

Deviation from Rutherford Scattering (point-like)

Nuclear Form Factor

Elastic Scattering off a Nucleon

Deviation from Rutherford Scattering (point-like)

Nucleon Form Factors

Elastic Scattering off a Quark/Parton i.e. DIS

Parameterisation of the Experimental Results

Parton
Distribution
Functions

Structure and Rutherford Scattering

Elastic Scattering off a Nucleus

Deviation from Rutherford Scattering (point-like)

Nuclear Form Factor

Elastic Scattering off a Nucleon

Deviation from Rutherford Scattering (point-like)

Nucleon Form Factors

Elastic Scattering off a Quark/Parton i.e. DIS

Parameterisation of the Experimental Results Parton
Distribution
Functions

Deeply Virtual Compton Scattering i.e. DVCS

Generalised
Parton
Distributions

Structure and Rutherford Scattering

Elastic Scattering off a Nucleus

Deviation from Rutherford Scattering (point-like)

Nuclear Form Factor

Elastic Scattering off a Nucleon

Deviation from Rutherford Scattering (point-like)

Nucleon Form Factors

Elastic Scattering off a Quark/Parton i.e. DIS

Parameterisation of the Experimental Results Parton
Distribution
Functions

Deeply Virtual Compton Scattering i.e. DVCS

Generalised
Parton
Distributions

Proton and Neutron - The Basic Idea

Proton

3 quarks (uud) Q= 2/3 + 2/3 - 1/3 = 1quarks in 3 colors

Neutron

3 quarks (udd) Q= 2/3 - 1/3 - 1/3 = 0quarks in 3 colors

Gluons & Sea Quarks

Gluons & Sea Quarks

Gluons & Sea Quarks

Orbital Angular Momentum

Generalised Parton Distributions

Generalised Parton Distributions

- GPDs are functions of 3 variables: H_q(x,ξ,t) as well as of Q².
- They include PDFs as limiting case: q(x)=Hq(x,0,0)
- Form factors are first moments of GPDs
- 4 quark GPDs:
 H, H, E, E

Often the so-called handbag diagram is used to illustrate GPDs. The simplest process to access GPDs is Deeply Virtual Compton Scattering (DVCS), shown in the diagram.

Generalised Parton Distributions

- GPDs are functions of 3 variables: H_q(x,ξ,t) as well as of Q².
- They include PDFs as limiting case: q(x)=Hq(x,0,0)
- Form factors are first moments of GPDs
- 4 quark GPDs:
 H, H, E, E

Often the so-called handbag diagram is used to illustrate GPDs. The simplest process to access GPDs is Deeply Virtual Compton Scattering (DVCS), shown in the diagram.

Generalised Parton Distributions

- GPDs are functions of 3 variables: H_q(x,ξ,t) as well as of Q².
- They include PDFs as limiting case: q(x)=Hq(x,0,0)
- Form factors are first moments of GPDs
- 4 quark GPDs:
 H, H, E, E

Often the so-called handbag diagram is used to illustrate GPDs. The simplest process to access GPDs is Deeply Virtual Compton Scattering (DVCS), shown in the diagram.

Rudolph

(c) Max Kaiser, 7 (now 9)

GPD H in VGG Model

3D Picture of the Nucleon

Fourier transformation of GPDs at ξ =0 yields 2+1 dimensional picture of the nucleons, i.e. longitudinal in momentum fraction and transversal in impact parameter space

$$q(x, b_{\perp}) = \int \frac{d^2 \Delta_{\perp}^2}{(2\pi)^2} H(x, 0, -\Delta_{\perp}^2) e^{-i\Delta_{\perp} \cdot b_{\perp}}$$

3D Picture of the Nucleon

u-quark (left) and d-quark (right) density in impact parameter plane. Proton polarised in x-direction. GPD model fit based on existing form factor data.

[P.Kroll, AIP Conf.Proc.904:76-86,2007]

Distribution Graph

Courtesy M.Murray, Glasgow

HERMES @ DESY

DVCS measurements with Recoil Detector in 2006/7 yielded about as much data as 1995-2005.

HERMES Recoil Detector

$$\mathcal{A}_C(\phi) \equiv \frac{\mathrm{d}\sigma^+(\phi) - \mathrm{d}\sigma^-(\phi)}{\mathrm{d}\sigma^+(\phi) + \mathrm{d}\sigma^-(\phi)}$$

$$\approx$$
 Re(\mathcal{H})

$$\mathcal{A}_{\mathrm{LU}}(\phi) \equiv \frac{\left[\sigma^{\rightarrow\leftarrow}(\phi) + \sigma^{\rightarrow\rightarrow}(\phi)\right] - \left[\sigma^{\leftarrow\leftarrow}(\phi) + \sigma^{\leftarrow\rightarrow}(\phi)\right]}{\left[\sigma^{\rightarrow\leftarrow}(\phi) + \sigma^{\rightarrow\rightarrow}(\phi)\right] + \left[\sigma^{\leftarrow\leftarrow}(\phi) + \sigma^{\leftarrow\rightarrow}(\phi)\right]}$$

$$\approx$$
 Im(\mathcal{H})

$$\mathcal{A}_{\mathrm{UL}}(\phi) \equiv \frac{\left[\sigma^{\leftarrow \Rightarrow}(\phi) + \sigma^{\rightarrow \Rightarrow}(\phi)\right] - \left[\sigma^{\leftarrow \Leftarrow}(\phi) + \sigma^{\rightarrow \Leftarrow}(\phi)\right]}{\left[\sigma^{\leftarrow \Rightarrow}(\phi) + \sigma^{\rightarrow \Rightarrow}(\phi)\right] + \left[\sigma^{\leftarrow \Leftarrow}(\phi) + \sigma^{\rightarrow \Leftarrow}(\phi)\right]}$$

$$\widetilde{\sim}$$
 $\operatorname{Im}(\widetilde{\mathcal{H}})$

$$\mathcal{A}_{\mathrm{LL}}(\phi) \equiv \frac{\left[\sigma^{\to \to}(\phi) + \sigma^{\leftarrow \Leftarrow}(\phi)\right] - \left[\sigma^{\leftarrow \to}(\phi) + \sigma^{\to \Leftarrow}(\phi)\right]}{\left[\sigma^{\to \to}(\phi) + \sigma^{\leftarrow \Leftarrow}(\phi)\right] + \left[\sigma^{\leftarrow \to}(\phi) + \sigma^{\to \Leftarrow}(\phi)\right]}$$

$$\widetilde{\approx}$$
 $\operatorname{Re}(\widetilde{\mathcal{H}})$

$$\mathcal{A}_C(\phi) \equiv \frac{\mathrm{d}\sigma^+(\phi) - \mathrm{d}\sigma^-(\phi)}{\mathrm{d}\sigma^+(\phi) + \mathrm{d}\sigma^-(\phi)}$$

$$\approx$$
 Re(\mathcal{H})

$$\mathcal{A}_{\mathrm{LU}}(\phi) \equiv \frac{\left[\sigma^{\rightarrow\leftarrow}(\phi) + \sigma^{\rightarrow\Rightarrow}(\phi)\right] - \left[\sigma^{\leftarrow\leftarrow}(\phi) + \sigma^{\leftarrow\Rightarrow}(\phi)\right]}{\left[\sigma^{\rightarrow\leftarrow}(\phi) + \sigma^{\rightarrow\Rightarrow}(\phi)\right] + \left[\sigma^{\leftarrow\leftarrow}(\phi) + \sigma^{\leftarrow\Rightarrow}(\phi)\right]}$$

$$\approx$$
 Im(\mathcal{H})

$$\mathcal{A}_{\mathrm{UL}}(\phi) \equiv \frac{[\sigma^{\longleftrightarrow}(\phi) + \sigma^{\to\Rightarrow}(\phi)] - [\sigma^{\longleftrightarrow}(\phi) + \sigma^{\to\Leftarrow}(\phi)]}{[\sigma^{\longleftrightarrow}(\phi) + \sigma^{\to\Rightarrow}(\phi)] + [\sigma^{\longleftrightarrow}(\phi) + \sigma^{\to\Leftarrow}(\phi)]}$$

$$\widetilde{\sim}$$
 $\operatorname{Im}(\widetilde{\mathcal{H}})$

$$\mathcal{A}_{\mathrm{LL}}(\phi) \equiv \frac{\left[\sigma^{\to \to}(\phi) + \sigma^{\leftarrow \leftarrow}(\phi)\right] - \left[\sigma^{\leftarrow \to}(\phi) + \sigma^{\to \leftarrow}(\phi)\right]}{\left[\sigma^{\to \to}(\phi) + \sigma^{\leftarrow \leftarrow}(\phi)\right] + \left[\sigma^{\leftarrow \to}(\phi) + \sigma^{\to \leftarrow}(\phi)\right]}$$

$$\widetilde{\sim}$$
 $\operatorname{Re}(\widetilde{\mathcal{H}})$

Statistics: Only 1 DVCS event for 1000 DIS events at HERMES kinematics!

Beam Charge Asymmetry

Beam Charge Asymmetries access Re(H)

 $\leftarrow \Delta$ -resonance

Beam Spin Asymmetry

Beam Spin
Asymmetries
access Im(H)

Larger values for the BSA than BCA

DVCS Data at HERMES

HERMES DVCS Event Selection

Kinematic event fitting technique

- All 3 particles in final state detected → 4 constraints from energy-momentum conservation
- Selection of elastic DVCS with high efficiency (~84%)
- Allows to suppress background from associated and semi-inclusive processes to a negligible level (~0.1%)

Missing mass distribution

- No requirement for Recoil
- Positively charged Recoil track
- Kinematic fit probability > 1%
- Kinematic fit probability < 1%

HERMES DVCS Event Samples

Without Recoil Detector

In Recoil Detector acceptance

With Recoil Detector

HERMES DVCS BSA with Recoil Detector

PhD Thesis Jennifer Bowles, Glasgow, in preparation

DVCS Measurements over the Years

CLAS @ JLab BSA

BSA

List does not claim to be exhaustive.

Courtesy C.Riedl, DESY

DVCS Measurements over the Years

Courtesy C.Riedl, DESY

University of Glasgow

DVCS Measurements over the Years

Courtesy C.Riedl, DESY

JLab Experiments: CLAS12 Detector

DVCS at CLAS12

CLAS Phys.Rev.Lett.87:182002,2001.

Projection for CLAS12 2000 hrs at L=10³⁵ cm⁻²s⁻¹

University of Glasgow

COMPASS Setup for DVCS Measurements

SM₂

Tests in 2008-09 40cm LH2 target + 1m RPD

Phase 1 (COMPASS-II)
2.5 m LH2 target + 4m RPD

Phase 2 (in future)
Polarised Transverse Target
integrating RPD _____ SM1

4.6 10⁸ μ⁺

for 2.7 10¹³ protons per SPS spill (9.6s each 48 s)

→ Lumi= 10³² cm⁻² s⁻¹ with 2.5m LH2 target

ECAL2 → ECALs upgraded + ECALO before SM1

Courtesy N.D'Hose

COMPASS Recoil Proton Detector

3.6 m long scintillator slabs

~ 300 ps timing resolution

Tests made with

2006: 4m sector prototype

• 2008-9: 1m long RPD

Observation of BH and DVCS events in 2009 data taken with 1 m RPD.

Courtesy N.D'Hose, Saclay

COMPASS Projection for BSCA

Projection for combined beam spin and charge asymmetry

nb/(Gev⁴rad)

nb/(Gev⁴rad)

150 φ (deg)

for 2 years of data taking at 160 GeV

with
2.5 m LH2
target

2013-15

nb/(Gev⁻rad)

Summary and Outlook

- Generalised Parton Distributions are promising to revolutionise our knowledge about nucleon structure and will eventually deliver a 3D picture of the proton.
- Recent and present experiments at HERMES and JLab are playing a pioneering role in this field.
- Future experiments especially at JLab after the upgrade and at COMPASS will further complete the picture.
- Ultimately, a future ep-facility with high luminosity and an energy range up to higher energies will be required to finalise the picture. This could be EIC and/or ENC.
- All of this will only be successful in the combination of experiments, lattice calculations and GPD model fits to the data.

Thank you very much for your attention!

Additional Slides

GPD Model Fits to Data

http://arxiv.org/abs/1005.4922

M. Guidal

New CFF Fit Result incorporating Aul moments

