New More Precise Results on DVCS from Nuclear Targets

DIS2008, XVI International Workshop on Deep-Inelastic Scattering, London.

Hongxue Ye

(for the HERMES Collaboration)

yehx@hep.pku.edu.cn

outline

- Introduction and Motivation
- Deeply Virtual Compton Scattering and the Asymmetries
- The HERMES Experiment and Preliminary Results

H. Ye, Peking University, Mar. 30, 2008

Why Deeply Virtual Compton Scattering?

 hard exclusive lepton-production of a real photon and leaving the target intact:

$$l(k) + N(p) \rightarrow l'(k') + N'(p') + \gamma(q')$$

- Physical observables come from DVCS + BH + interference
- Theoretical cleanest tool to study <u>GPDs</u>

Why Generalized Parton Distribution?

• GPDs: defined through matrix elements $\langle p', S' | \mathcal{O} | p, S \rangle$

- Form Factors: transverse spatial information

 Elastic scattering
- PDFs: Longitudinal momentum distribution

 DIS

Why GPDs(II)?

GPDs can be related to known quantities

FFs	$\int_{-1}^{1} dx H_q(x, \xi, t, \mu^2) = F_1^q(t)$	$\int_{-1}^{1} dx E_q(x, \xi, t, \mu^2) = F_2^q(t)$
PDFs	$H_q(x,0,0,\mu^2) = q(x,\mu^2)$	E_q not measurable through DIS

• GPDs $\Rightarrow J_{q,g} = \frac{1}{2}\Delta\Sigma(\Delta G) + L_q(g)$ (Ji, 1997)

$$J_{q,g} = \frac{1}{2} \lim_{t \to 0} \int dx \ x [H_{q,g}(x,\xi,t,\mu^2) + E_{q,g}(x,\xi,t,\mu^2)]$$

to access the last pieces of nucleon spin structure:

$$1/2 = \underbrace{1/2 \underbrace{\Delta \Sigma}_{J_q = ?} + L_q}_{30\%} + \underbrace{\Delta G + L_g}_{J_g = ?}$$

Why Nuclear DVCS?

- Several measurements on the cross section and various asymmetries published for the proton or deuterium target
- No publication about heavier nuclear targets
 - get access to the nuclear GPDs
 - constrain theoretical models attempting to describe nuclear structure
 - provide a better understanding of the nature of nuclear force

has the unique nuclear DVCS data available now

(He-4, Nitrogen, Neon, Krypton and Xenon)

⇒ Let's do something!

Deeply Virtual Compton Scattering

• The same final state in DVCS and Bethe-Heitler ⇒interference

$$\sigma \propto |\mathcal{T}_{\mathrm{BH}}|^2 + |\mathcal{T}_{\mathrm{DVCS}}|^2 + \underbrace{(\mathcal{T}_{\mathrm{BH}}\mathcal{T}_{\mathrm{DVCS}}^* + \mathcal{T}_{\mathrm{BH}}^*\mathcal{T}_{\mathrm{DVCS}})}_{\mathcal{I}}$$

- At HERMES, $\mathcal{T}_{\mathrm{BH}} \gg \mathcal{T}_{\mathrm{DVCS}} \Rightarrow \mathcal{T}_{\mathrm{DVCS}}$ can be accessed through \mathcal{I} : both its amplitude and phase
- For longitudinal polarized beam with beam polarization P_b and charge e_l , and unpolarized target, the cross section can be factorized as

$$\sigma_{LU} = \sigma_{UU}^{0}(\phi) \left[1 + e_l A_C(\phi) + P_b A_{LU}^{DVCS}(\phi) + e_l P_b A_{LU}^{\mathcal{I}}(\phi) \right]$$

 σ_{UU}^0 : neither dependent on beam charge nor beam polarization

 A_C : the traditional Beam Charge Asymmetry $\Rightarrow c_{0/1/2,unp}^{\mathcal{I}}$

 A_{LU}^{DVCS} : only dependent on beam polarization $P_b \Rightarrow s_{1,unp}^{DVCS}$

 $A_{LU}^{\mathcal{I}}$: dependent on P_b and beam charge $\Rightarrow s_{1/2,unp}^{\mathcal{I}}$

The Measured Asymmetries

- The All HERMES nuclear data(1997-2005) is included; The hydrogen data from 2000+2005 is included
- The Combined analysis for Hydrogen/Krypton/Xenon using both beam charges data

• The single-BSA analysis for Helium-4/Nitrogen/Neon: e^+ data \Rightarrow traditional single beam charge Beam Spin Asymmetry

$$A_{LU}(\phi) = \frac{\sigma^{\rightarrow} - \sigma^{\rightarrow}}{\sigma^{\rightarrow} + \sigma^{\rightarrow}}$$

The HERMES Experiment

- the scattering lepton and real γ are detected
- recoiling nucleon/nuclei is not detected

The HERMES Experiment(II)

Missing mass is used to select the exclusive sample

$$M_x^2 = (P_e + P_p - P_{e'} - P_{\gamma})^2$$

• π^0 background is estimated \sim 5% and corrected for the results

Coherent/incoherent separation

- nuclear DVCS involves 2 contributions:
 - 1. Coherent process: nuclear target stays intact
 - 2. Incoherent process: nuclear target breaks up, the γ is emitted by a particular proton or neutron
- Separate coherent/incoherent part by a t cutoff value
- Given the t dependence of the asymmetries \Rightarrow to get the same $\langle t \rangle$ for all the targets \Rightarrow differences for $\langle x_B \rangle$, $\langle Q^2 \rangle$ are also quite small

Target	t cutoff	estimated %elas. coh.	$\langle t angle$	$\langle x_B \rangle$	$\langle Q^2 \rangle$
		incoh. (by MC)	(RMS)	(RMS)	(RMS)
Н	$-t < -t_{coh.}$	_	-0.018(0.008)	0.070(0.023)	1.81(0.75)
	$-t > -t_{incoh}$.	_	-0.200(0.120)	0.109(0.059)	2.89(1.62)
Kr	$-t < -t_{coh}$.	70	-0.018(0.015)	0.064(0.023)	1.63(0.68)
	$-t > -t_{incoh}$.	58	-0.200(0.125)	0.108(0.058)	2.84(1.61)
Xenon	$-t < -t_{coh}$.	66	-0.018(0.017)	0.062(0.023)	1.60(0.66)
	$-t > -t_{incoh}$.	56	-0.200(0.126)	0.107(0.058)	2.86(1.63)

Preliminary Results: Beam Charge Asymmetry $A_C^{\cos\phi}$

- The measured $A_C^{\cos\phi}$ (shown as red points) in coherent enriched part is quite small
- Double error bars denote stat. uncertainty only and total experimental uncertainty
- Smearing (always small) and acceptance effect is not included in error bar yet, but demonstrated with the Dual Model (V. Guzey, arXiv:0801.3235 [hep-ph])

DVCS Term of Beam Spin Asymmetry: $A_{LU}^{DVCS,\sin\phi}$

- The measured $A_{LU}^{DVCS,\sin\phi}$ are comparable with zero, except for the coherent enriched Hydrogen
- Acceptance effect is demonstrated with the Dual Model

Leading Beam Spin Asymmetry Amplitude: $A_{LU}^{(I),\sin\phi}$

- H/Kr/Xenon \Leftarrow combined analysis; He4/N/Neon $\Leftarrow e^+$ beam single-BSA fit
- From Hydrogen data, the expected small asymmetry at small t is not seen
- For Xenon small t sample, large acceptance effect due to (a). steep asymmetry t-dependence (b). the remaining incoherent contribution has a sizeable different t contribution ⇒ Model dependent

Ratio of Leading BSA Amplitude: $A_{LU,A}^{(I),\sin\phi}/A_{LU,H}^{I,\sin\phi}$

- The measured ratio of $A_{LU,A}^{(I),\sin\phi}/A_{LU,H}^{I,\sin\phi}$ is comparable with unity in both (in-)coherent enriched sample
- The results have been corrected for the background and other experimental effects, but not for the smearing (small effect, \sim 0.01) and acceptance effect

Summary and Outlook

Summary

- All the HERMES nuclear target data are analyzed, and all the possible asymmetries are extracted
- Preliminary results of $A_{LU,A}^{(I),sin\phi}/A_{LU,H}^{I,sin\phi}$ are found to be comparable with unity, for both coherent enriched and incoherent enriched data
- 'Discrepancy' with Dual Model might be due to its assumption of same neutron and proton matter distribution in nuclei (Thanks, Moskov)

Outlook

 The Deuterium data are under analyzing; the comparison of nuclear results and Deuterium will be given soon and shown possible contribution of quasi-free neutron

Thanks

Thank you!

BACK UP SLIDES

BACK UP PLOTS

t_c dependence of Beam Charge Asymmetry: $A_C^{\cos\phi}$

– Measured $A_C^{\cos\phi}$ vs. t, with the estimated resonance fraction shown for each t bin

t_c dependence of Leading BSA Amplitude: $A_{LU}^{(I),\sin\phi}$

– Measured $A_{LU}^{(I),\sin\phi}$ vs. t, with the estimated resonance fraction shown for each t bin

${\cal M}_x^2$ Distribution

 $-\,M_x^2$ Distribution compared between MC and data, with different process contributions shown

