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An unfortunate Lemma

“No particle-physics experiment has a perfect 
acceptance!”

obvious for detectors with gaps/holes

but also for “4π”, especially when looking at 
complicated final states 
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Figure 4.4. On the left, the measured distribution of the azimuthal angles φR⊥ versus φS for the transversely

polarized hydrogen data is shown. On the right, a simplified picture of the HERMES acceptance is shown

with the beam or z-direction going into the paper. It shows two possible configurations of the π+π−-pair. It

explains that when the π− is to the left (right) of the π+ there is an enlarged probability that one or both of

the pions are bent out of (into) the HERMES acceptance. The magnetic field of the spectrometer magnet is

pointing in the positive y-direction.

Here, N↑(↓) is the number of semi-inclusive π+π− pair events detected while the target is either

upwards (↑) or downwards (↓) polarized. Both these numbers are normalized to the correspond-
ing numbers of inclusive DIS events N

↑(↓)
i
. The quantity |PT | in Eq. 4.13 represents the target

polarization.

As mentioned in Sec. 2.4, one of the main reasons to measure an asymmetry instead of the

polarized cross section itself, is that the detector acceptance of HERMES does not have a full

4π coverage. This directly influences the measured cross section, whereas to a large extent the

asymmetry remains unaffected. As an example of the relevance of this difference, the left plot in

Fig. 4.4 shows the two-dimensional distribution of the azimuthal angles φR⊥ versus φS (defined

in Secs. 2.3.1 and 2.1.1, respectively), two kinematic variables that AUT directly depends on. For

this distribution, the events for both target polarization states are summed, such that the contribu-

tion from σUT cancels (see Eq. 2.67). At leading twist, also the unpolarized cross section σUU
(Eq. 2.68) is independent of both φR⊥ and φS . Therefore, the complicated patterns visible in this

distribution can be entirely attributed to the limited geometrical spectrometer acceptance, i.e., us-

ing a 4π detector this distribution would have been homogeneous. The gaps in the distribution

and the diagonal patterns are due to the gap in the acceptance between the top and bottom parts

of the spectrometer. The large difference in the number of events in the two encircled parts of the

distribution is related to the effect of the spectrometer magnet on the particle tracks. The schematic

picture of the HERMES spectrometer on the right in Fig. 4.4 explains this effect. It shows that,

depending on both φR⊥ and φS , the spectrometer magnet either bends both particles towards each

other or away from each other. In the first situation one or both of the pions can be bent into the

detector acceptance, in the latter situation one or both can be bent out of the detector acceptance.

This example illustrates that in order to measure the φR⊥ and φS dependence of the cross section,

HERMES azimuthal acceptance for 2-hadron production
[P. van der Nat, Ph.D. thesis, Vrije Universiteit (2007)]
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“No particle-physics experiment has a perfect 
acceptance!”

obvious for detectors with gaps/holes

but also for “4π” detectors, especially when looking 
at complicated final states 

An unfortunate Lemma
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maybe “4π” around 
beam axis, but not 
around virtual-photon 
axis because of lower 
limit on θ

[W. Käfer, Transversity 2008, Ferrara]
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Figure 4.11. Simulated histograms of the polar angle θ for different lower momentum cuts as indicated in

the figure. The dash-dotted curve shows the distribution one would obtain if no θ-dependence is present in

the data. Each histogram was normalized to unity.
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Figure 4.12. Distributions of simulated values of A
sin(φR⊥+φS ) sin θ
UT

without (solid line) and with (dashed line)

θ-dependent contributions of the fragmentation functions D
sp

1
, D

pp

1
and H

!,sp

1
to AUT .

2.3 Two-hadron semi-inclusive deep-inelastic scattering 27
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Figure 2.10. Description of the polar angle θ, between the positive hadron in the hadron pair’s center-of-

mass frame and Ph in the γ
∗N center-of-mass frame. In the present work P1 represents the momentum of

the positively charged pion, in agreement with Ref. [94].

The partial wave expansion allows to separate different possible contributions to these frag-

mentation functions like, for instance, the interference between a pion pair in a relative s-wave

and a pion pair in a relative p-wave. The expansion is made in terms of the polar angle θ between

the positive hadron in the center-of-mass of the pair and Ph in the target rest frame as shown in

Fig. 2.10. The angle is related to the variable ζ as:

ζ ≡
2R−

P−
h

CM
=

1

Mh

(√
M2
1
+ |R|2 −

√
M2
2
+ |R|2 − 2|R| cos θ

)
. (2.47)

At low invariant mass, the expansion can be truncated to include only the lowest order terms as

in this mass region only contributions are expected from the pion pair in a relative s- or p-wave.

Typically, in the literature the invariant-mass region below Mh ≈ 1 GeV is considered, which

includes the ρ0 resonance (Mh = 0.78 GeV). The expansion can then be written as:

2|R|
Mh

D1(z, ζ(cos θ),M
2
h) = D1,oo(z,M

2
h) + D

sp

1,ol
(z,M2

h) cos θ

+ D
pp

1,ll
(z,M2

h)
1

4
(3 cos2 θ − 1), (2.48)

2|R|
Mh

H!1(z, ζ(cos θ),M
2
h) = H

!,sp

1,ot
(z,M2

h) + H
!,pp

1,lt
(z,M2

h) cos θ. (2.49)

The subscripts o, l and t refer, respectively, to the hadron pair being unpolarized, longitudinally

polarized and transversely polarized. This polarization refers directly to the θ-dependent factors,

which appear in Eqs. 2.48 and 2.49. The function H
!,sp

1,ot describes the interference between a pion

pair produced in a relative s-wave and a pion pair in a relative p-wave. The function H
!,pp

1,lt
relates to

the interference between two pion pairs which are both in relative p-waves, but which are polarized

differently. The fragmentation functions in Eqs. 2.48 and 2.49 are often also written without the

superscript or the subscript, as they are directly related. In the present work only the superscripts

are kept.

In principle, both fragmentation functions H
!,sp

1
and H

!,pp

1
can be used to access transversity, as

was first mentioned in Ref. [93]. However, up to this moment in the literature the focus has been

on the contribution to the cross section from H
!,sp

1
and model predictions, discussed in Sec. 2.7, are

only available for H
!,sp

1
. Therefore, also in this work transversity will be accessed through H

!,sp

1
.

A different reason for this choice, of a more technical nature, is discussed in Sec. 4.5.4.

momentum cuts strongly 
distort kinematic 
distributions even for 
“4π” acceptance

[P. van der Nat, Ph.D. thesis, 
Vrije Universiteit (2007)]
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An unfortunate Lemma

“No particle-physics experiment has a perfect 
acceptance!”

obvious for detectors with gaps/holes

but also for “4π”, especially when looking at 
complicated final states 

How acceptance effects are handled is one of the 
essential questions in experiments!
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Falsified Lemma I 

“acceptance cancels in asymmetries”
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.

hermes Acceptance effects

use asymmetries to minimize systematics for spin-dependent
observables, e.g.:

AUT (φ,Ω) =
σUT (φ,Ω)

σUU (φ,Ω)
Ω = x, y, z, . . .

=
σUT (φ,Ω) ε(φ,Ω)

σUU (φ,Ω) ε(φ,Ω)
ε : detection efficiency

!=
∫

dΩσUT (φ,Ω) ε(φ,Ω)
∫

dΩσUU (φ,Ω) ε(φ,Ω)
!=

∫

dΩσUT (φ,Ω)
∫

dΩσUU (φ,Ω)
≡ AUT (φ)

Gunar Schnell, Universiteit Gent Jefferson Lab, January 11
th
, 2008 – p. 43/50
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Acceptance does not cancel in general when integrating 
numerator and denominator over (large) ranges in kinematic variables! 
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... possible ways out

for linear dependence on all kinematic variables of 
asymmetry, average asymmetry equal to asymmetry at 
average kinematics 

for all other cases: can one maybe use 1-D (projected)
acceptance function, e.g. ε(), to correct asymmetry 
AUT ()?
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Falsified Lemma II
use Monte Carlo (physics generator * detector model) 
to extract acceptance function

“projected acceptance function is independent from 
cross-section model”
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Cross-section model does not cancel in general when integrating 
numerator and denominator over (large) ranges in kinematic variables! 
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“Classique” Example: 〈cosφ〉UU

47
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(input: MC without 
azimuthal modulation)

[F. Giordano, Transversity 2008, 
Ferrara]
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... one way out: multi-D unfolding

ncorr = S−1
MC [nexp −BGMC]

(inverted) multi-dimensional 
smearing matrix

(depends on detector and 
radiative effects only!)

true yield (used to 
calculate azimuthal 

moments) experimental yield
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Unfolding Example

extracted Cahn amplitudes in good agreement with 
model amplitudes 

apparent: need Cahn model for Monte Carlo simulation 
to test procedure

also needed to extrapolate into unmeasured region
57
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1st Entrée: gmc_trans ingredients
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Initial Goals

physics generator for SIDIS pion production

include transverse-momentum dependence, in 
particular simulate Collins and Sivers effects

be fast

allow comparison of input model and reconstructed 
amplitudes

to be used with standard HERMES Monte Carlo 

be extendable (e.g., open for new models)
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Basic workings

use cross section that can (almost) be calculated 
analytically 

start from 1-hadron SIDIS expressions of Mulders & 
Tangerman (Nucl.Phys.B461:197-237,1996) and others

use Gaussian Ansatz for all transverse-momentum 
dependencies of DFs and FFs

unpolarized DFs (as well as helicity distribution) and 
FFs from fits/parametrizations (e.g., Kretzer FFs etc.)

“polarized” DFs and FFs either related to unpolarized 
ones (e.g., saturation of Soffer bound for transversity)
or some parametrizations used
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SIDIS Cross Section incl. TMDs

.

SIDIS Cross Section Including
Transverse Momentum

dσUT ≡ dσCollins
UT · sin(φ + φS) + dσSivers

UT · sin(φ − φS)

dσCollins
UT (x, y, z, φS, Ph⊥) ≡

2α2

sxy2
B(y)

∑

q

e2
q I

[(

kT · P̂h⊥

Mh

)

· hq
1H⊥q

1

]

dσSivers
UT (x, y, z, φS, Ph⊥) ≡

2α2

sxy2
A(y)

∑

q

e2
q I

[(

pT · P̂h⊥

MN

)

· f⊥q
1T Dq

1

]

dσUU(x, y, z, φS, Ph⊥) ≡
2α2

sxy2
A(y)

∑

q

e2
q I

[

fq
1Dq

1

]

where

I
[

W f D
]

≡
∫

d2pT d2kT δ(2)

(

pT −
Ph⊥

z
− kT

)

[

W f(x, pT )D(z, kT )
]

Gunar Schnell HERMES Analysis Week, Sept. 29
th
, 2004 – p. 7/10
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Gaussian Ansatz

want to deconvolve convolution integral over transverse 
momenta

easy Ansatz: Gaussian dependencies of DFs and FFs on 
intrinsic (quark) transverse momentum:

8

one obtains another Gaussian (renaming pT
′ to pT again):

exp

[

−
P 2

h⊥/z2

〈k2
T 〉 + (1 − C)〈p2

T 〉

]
∫

d2pT

P̂h⊥

MN



pT +
Ph⊥

/z

〈k2
T 〉

(

1
(1−C)〈p2

T 〉
+ 1

〈k2
T 〉

)



 exp

[

−
(

1

(1 − C)〈p2
T 〉

+
1

〈k2
T 〉

)

pT
2

]

. (50)

The first term of the sum under the integral does not survive integration as it is odd in pT (which can be readily
checked by going e.g. to Cartesian coordinates) and the second term, not depending on pT , can again be taken out
the integral leaving the simple Gaussian (including now also the prefactors):

f⊥
1T (x)D1(z)

π2(1 − C)〈p2
T 〉z2〈k2

T 〉
exp

[

−
P 2

h⊥/z2

〈k2
T 〉 + (1 − C)〈p2

T 〉

]

|Ph⊥
|/(zMN〈k2

T 〉)
(

1
(1−C)〈p2

T 〉
+ 1

〈k2
T 〉

)

∫

d2pT exp

[

−
(

1

(1 − C)〈p2
T 〉

+
1

〈k2
T 〉

)

pT
2

]

= f⊥
1T (x)D1(z)

1

π2(1 − C)〈p2
T 〉z2〈k2

T 〉
exp

[

−
P 2

h⊥/z2

〈k2
T 〉 + (1 − C)〈p2

T 〉

]

|Ph⊥
|/zMN

〈k2
T 〉

(

1
(1−C)〈p2

T 〉
+ 1

〈k2
T 〉

)

π
1

(1−C)〈p2
T 〉

+ 1
〈k2

T 〉

= f⊥
1T (x) · D1(z) ·

|Ph⊥
|

MNπz3
·

(1 − C)〈p2
T 〉

[〈k2
T 〉 + (1 − C)〈p2

T 〉]
2 · exp

[

−
P 2

h⊥/z2

〈k2
T 〉 + (1 − C)〈p2

T 〉

]

(51)

The convolution integral for the Collins term can be treated similarly. However, because of the appearance of kT

in the convolution integral and because of the fact that kT comes with the opposite sign compared to pT in the
δ-function of the convolution integral, the final de-convoluted expression for the Collins cross section has the opposite
sign of the Sivers term (and interchanged kT ↔ pT ), i.e.

I[h1(x, pT
2)H⊥

1 (z, z2kT
2)

kT · P̂h⊥

Mh
] = −h1(x) · H⊥

1 (z) ·
|Ph⊥

|
Mhπz3

·
(1 − C)〈k2

T 〉
[〈p2

T 〉 + (1 − C)〈k2
T 〉]

2 · exp

[

−
P 2

h⊥/z2

〈p2
T 〉 + (1 − C)〈k2

T 〉

]

.

(52)
For completeness we will also give the result for the unpolarized term in the cross section using the “normal”

Gaussian ansatz:

I[f1(x, pT
2)D1(z, z2kT

2)] = f1(x) · D1(z) ·
R2

πz2
· e−R2 P2

h⊥
z2 , (53)

where the notation of [6] for the mean values of transverse momenta squared was adopted, i.e. 1
R2 = 〈P 2

h⊥〉/z2 =
〈p2

T 〉 + 〈k2
T 〉.

B. Implementation of the Skewed Gaussian ansatz into GMC TRANS

After solving the convolution integrals for the skewed Gaussian ansatz for both the Sivers and the Collins function
it is now possible to define the overall cross section under which the azimuthal angles will be generated. Origi-
nally [6](Eq. (6)) the 6-fold cross section looked like:

d6σ

dxdQ2dzdP 2
h⊥dφhdφs

=
∑

q

e2
q

4π

α2

(MExy)2
R2

z2
e−R2P 2

h⊥/z2

(XUU + |ST |XSIV sin(φh − φs) + |ST |XCOL sin(φh + φs)) ,

(54)
where11

XUU =

(

1 − y +
y2

2

)

f1(x)D1(z), (55)

XCOL =
R2Ph⊥

R2
hMhz

(1 − y)h1(x)H⊥
1 (z), (56)

XSIV = −
R2Ph⊥

R2
HMNz

(

1 − y +
y2

2

)

f⊥
1T (x)D1(z), (57)

11 Here, a missing minus sign in front of the Sivers expression has already been corrected.
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Let us also define following set of constants:

〈k2
T 〉C ≡ (1 − C)〈k2

T 〉, (B18)

〈p2
T 〉S ≡ (1 − C)〈p2

T 〉, (B19)

1

R2
≡ 〈k2

T 〉 + 〈p2
T 〉 =

〈P 2
h⊥〉
z2

, (B20)

1

R2
C

≡ 〈k2
T 〉C + 〈p2

T 〉, (B21)

1

R2
S

≡ 〈k2
T 〉 + 〈p2

T 〉S . (B22)

Then one gets even more compact versions:

XUU =
R2

z2
e−R2P 2

h⊥/z2

(

1 − y +
y2

2

)

f1(x) · D1(z), (B23)

XCOL =
|Ph⊥

|
Mhz3

R4
C〈k2

T 〉C e−R2
CP 2

h⊥/z2

(1 − y) · h1(x) · H⊥
1 (z), (B24)

XSIV = −
|Ph⊥

|
MNz3

R4
S〈p2

T 〉S e−R2
SP 2

h⊥/z2

(

1 − y +
y2

2

)

f⊥
1T (x) · D1(z), (B25)

XCOL =
4|Ph⊥

|
√

πz3
R4

C

√

〈k2
T 〉C e−R2

CP 2
h⊥/z2

(1 − y) · h1(x) · H⊥(1/2)
1 (z), (B26)

XSIV = −
4|Ph⊥

|
√

πz3
R4

S

√

〈p2
T 〉S e−R2

SP 2
h⊥/z2

(

1 − y +
y2

2

)

f⊥(1/2)
1T (x) · D1(z), (B27)

XCOL =
2Mh|Ph⊥

|
z3

R4
C e−R2

CP 2
h⊥/z2

(1 − y) · h1(x) · H⊥(1)
1 (z), (B28)

XSIV = −
2MN |Ph⊥

|
z3

R4
S e−R2

SP 2
h⊥/z2

(

1 − y +
y2

2

)

f⊥(1)
1T (x) · D1(z), (B29)

2 〈sin(φ + φs)〉UT =

√
π

2Mh
RC〈k2

T 〉C ·
B(y) 1

xy2

∑

q e2
qh

q
1(x)H⊥,q

1 (z)

A(y) 1
xy2

∑

q e2
qf

q
1 (x)Dq

1(z)
, (B30)

2 〈sin(φ − φs)〉UT = −
√

π

2MN
RS〈p2

T 〉S ·
A(y) 1

xy2

∑

q e2
qf

⊥,q
1T (x)Dq

1(z)

A(y) 1
xy2

∑

q e2
qf

q
1 (x)Dq

1(z)
, (B31)

2 〈sin(φ + φs)〉UT = 2RC

√

〈k2
T 〉C ·

B(y) 1
xy2

∑

q e2
qh

q
1(x)H⊥(1/2),q

1 (z)

A(y) 1
xy2

∑

q e2
qf

q
1 (x)Dq

1(z)
, (B32)

2 〈sin(φ − φs)〉UT = −2RS

√

〈p2
T 〉S ·

A(y) 1
xy2

∑

q e2
qf

⊥(1/2),q
1T (x)Dq

1(z)

A(y) 1
xy2

∑

q e2
qf

q
1 (x)Dq

1(z)
, (B33)

2 〈sin(φ + φs)〉UT = RCMh
√

π ·
B(y) 1

xy2

∑

q e2
qh

q
1(x)H⊥(1),q

1 (z)

A(y) 1
xy2

∑

q e2
qf

q
1 (x)Dq

1(z)
, (B34)

2 〈sin(φ − φs)〉UT = −RSMN
√

π ·
A(y) 1

xy2

∑

q e2
qf

⊥(1),q
1T (x)Dq

1(z)

A(y) 1
xy2

∑

q e2
qf

q
1 (x)Dq

1(z)
, (B35)

Caution: different notations for intrinsic transverse    
                momentum exist! (Here: Amsterdam notation).

Positivity Limits & Failure of
Gaussian Ansatz

|pT |
2MN

f⊥
1T (x, pT

2) ≡ f⊥(1/2)
1T (x, pT

2) ≤
1

2
f1(x, pT

2)

|kT |
2Mh

H⊥
1 (z, z2kT

2) ≡ H⊥(1/2)
1 (z, z2kT

2) ≤
1

2
D1(z, z2kT

2)

with Gaussian Ansatz for pT /kT -dependence:

f1(x, pT
2) = f1(x)

1

π〈p2
T 〉

e
−

p2
T

〈p2
T 〉

f⊥
1T (x, pT

2) = f⊥
1T (x)

1

π〈p2
T 〉

e
−

p2
T

〈p2
T 〉

positivity limit becomes

|pT |f⊥
1T (x) ≤ MNf1(x)
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(similar:                     )

8

one obtains another Gaussian (renaming pT
′ to pT again):

exp

[

−
P 2

h⊥/z2

〈k2
T 〉 + (1 − C)〈p2

T 〉

]
∫

d2pT

P̂h⊥

MN



pT +
Ph⊥

/z

〈k2
T 〉

(

1
(1−C)〈p2

T 〉
+ 1

〈k2
T 〉

)



 exp

[

−
(

1

(1 − C)〈p2
T 〉

+
1

〈k2
T 〉

)

pT
2

]

. (50)

The first term of the sum under the integral does not survive integration as it is odd in pT (which can be readily
checked by going e.g. to Cartesian coordinates) and the second term, not depending on pT , can again be taken out
the integral leaving the simple Gaussian (including now also the prefactors):

f⊥
1T (x)D1(z)

π2(1 − C)〈p2
T 〉z2〈k2

T 〉
exp

[

−
P 2

h⊥/z2

〈k2
T 〉 + (1 − C)〈p2

T 〉

]

|Ph⊥
|/(zMN〈k2

T 〉)
(

1
(1−C)〈p2

T 〉
+ 1

〈k2
T 〉

)

∫

d2pT exp

[

−
(

1

(1 − C)〈p2
T 〉

+
1

〈k2
T 〉

)

pT
2

]

= f⊥
1T (x)D1(z)

1

π2(1 − C)〈p2
T 〉z2〈k2

T 〉
exp

[

−
P 2

h⊥/z2

〈k2
T 〉 + (1 − C)〈p2

T 〉

]

|Ph⊥
|/zMN

〈k2
T 〉

(

1
(1−C)〈p2

T 〉
+ 1

〈k2
T 〉

)

π
1

(1−C)〈p2
T 〉

+ 1
〈k2

T 〉

= f⊥
1T (x) · D1(z) ·

|Ph⊥
|

MNπz3
·

(1 − C)〈p2
T 〉

[〈k2
T 〉 + (1 − C)〈p2

T 〉]
2 · exp

[

−
P 2

h⊥/z2

〈k2
T 〉 + (1 − C)〈p2

T 〉

]

(51)

The convolution integral for the Collins term can be treated similarly. However, because of the appearance of kT

in the convolution integral and because of the fact that kT comes with the opposite sign compared to pT in the
δ-function of the convolution integral, the final de-convoluted expression for the Collins cross section has the opposite
sign of the Sivers term (and interchanged kT ↔ pT ), i.e.

I[h1(x, pT
2)H⊥

1 (z, z2kT
2)

kT · P̂h⊥

Mh
] = −h1(x) · H⊥

1 (z) ·
|Ph⊥

|
Mhπz3

·
(1 − C)〈k2

T 〉
[〈p2

T 〉 + (1 − C)〈k2
T 〉]

2 · exp

[

−
P 2

h⊥/z2

〈p2
T 〉 + (1 − C)〈k2

T 〉

]

.

(52)
For completeness we will also give the result for the unpolarized term in the cross section using the “normal”

Gaussian ansatz:

I[f1(x, pT
2)D1(z, z2kT

2)] = f1(x) · D1(z) ·
R2

πz2
· e−R2 P2

h⊥
z2 , (53)

where the notation of [6] for the mean values of transverse momenta squared was adopted, i.e. 1
R2 = 〈P 2

h⊥〉/z2 =
〈p2

T 〉 + 〈k2
T 〉.

B. Implementation of the Skewed Gaussian ansatz into GMC TRANS

After solving the convolution integrals for the skewed Gaussian ansatz for both the Sivers and the Collins function
it is now possible to define the overall cross section under which the azimuthal angles will be generated. Origi-
nally [6](Eq. (6)) the 6-fold cross section looked like:

d6σ

dxdQ2dzdP 2
h⊥dφhdφs

=
∑

q

e2
q

4π

α2

(MExy)2
R2

z2
e−R2P 2

h⊥/z2

(XUU + |ST |XSIV sin(φh − φs) + |ST |XCOL sin(φh + φs)) ,

(54)
where11

XUU =

(

1 − y +
y2

2

)

f1(x)D1(z), (55)

XCOL =
R2Ph⊥

R2
hMhz

(1 − y)h1(x)H⊥
1 (z), (56)

XSIV = −
R2Ph⊥

R2
HMNz

(

1 − y +
y2

2

)

f⊥
1T (x)D1(z), (57)

11 Here, a missing minus sign in front of the Sivers expression has already been corrected.



Gunar Schnell Transversity 2008, Beijing

Positivity Constraints
DFs (FFs) have to fulfill various positivity constraints
(resulting cross section has to be positive!)

based on probability considerations can derive 
positivity limits for leading-twist functions:
Bacchetta et al., Phys.Rev.Lett.85:712-715, 2000

➡ transversity: e.g., Soffer bound

➡ Sivers and Collins functions: e.g., loose bounds:

.

Positivity Limits & Failure of
Gaussian Ansatz

|pT |
2MN

f⊥
1T (x, pT

2) ≡ f⊥(1/2)
1T (x, pT

2) ≤
1

2
f1(x, pT

2)

|kT |
2Mh

H⊥
1 (z, z2kT

2) ≡ H⊥(1/2)
1 (z, z2kT

2) ≤
1

2
D1(z, z2kT

2)

with Gaussian Ansatz for pT /kT -dependence:

f1(x, pT
2) = f1(x)

1

π〈p2
T 〉

e
−

p2
T

〈p2
T 〉

f⊥
1T (x, pT

2) = f⊥
1T (x)

1

π〈p2
T 〉

e
−

p2
T

〈p2
T 〉

positivity limit becomes

|pT |f⊥
1T (x) ≤ MNf1(x)
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Positivity and the Gaussian Ansatz

5

III. THE MC GENERATOR GMC TRANS

Although the purity formalism has already been exploited at Hermes for the quark flavor decomposition of the
helicity distributions, one might worry about a complication in the here presented case. One does not any longer
have simple count rate asymmetries but actually needs to look at their dependences on the azimuthal angles φ and
φS . Since Hermes is not a 4π-detector, acceptance effects might spoil the extraction of the sin(φ − φS) moments.
Moreover, in principle one needs to integrate over the whole range of transverse momentum in order to resolve the
convolution integrals (3) and (4). Experimentally this is not possible. For this reason, a Monte Carlo generator,
gmc trans [6], has been developed which can simulate azimuthal distributions due to pT (kT )-dependent distribution
(fragmentation) functions. One task will be to verify that the extracted functions, i.e. the Sivers function, agrees
with the input, or - in other words - that there is no bias from the experimental apparatus.

The first version of this generator had problems with fulfilling the positivity limits for polarized8 distribution and
fragmentation functions. In order to be able to interpret them as probability densities they must - at least - be smaller
than their unpolarized counter parts f q

1 and D1. In the following a modification to the generator is introduced to
avoid the encountered problems when using a normal Gaussian ansatz.

A. Skewed Gaussian ansatz

1. Positivity limit for the Sivers and Collins function:

a. First Try: A Loose Bound: All the various distribution and fragmentation functions are not completely ar-
bitrary in size but have to fulfill positivity limits. Specifically, if one looks at a two-dimensional subspace of the
correlation matrix [7] only and thus only relates the Sivers function and the ordinary unpolarized PDF (and likewise
the Collins FF with the unpolarized FF), for the Sivers function and the Collins function one has

f⊥(1/2)
1T (x, pT

2) ≡
|pT |
2MN

f⊥
1T (x, pT

2) ≤
1

2
f1(x, pT

2) (28)

H⊥(1/2)
1 (z, z2kT

2) ≡
|kT |
2Mh

H⊥
1 (z, z2kT

2) ≤
1

2
D1(z, z2kT

2). (29)

After realizing that the normal Gaussian ansatz for the pT -dependence of the Sivers function fails the positivity
constraint Eq. (28), i.e.

f⊥(1/2)
1T (x, pT

2) ≤ 1/2f1(x, pT
2) = 1/2f1(x)

1

π〈p2
T 〉

e
−

p2
T

〈p2
T

〉 (30)

because of the extra factor of |pT | in the expression for f⊥(1/2)
1T , an ansatz was taken which just skews the Gaussian

pT distribution:

f⊥
1T (x, pT

2) = f⊥
1T (x)

1

(1 − C)π〈p2
T 〉

e
−

p2
T

(1−C)〈p2
T

〉 , (31)

where a skewedness parameter C has been introduced. One can easily verify that this choice fulfills Eq. (8). With
this new parameterization the positivity limit becomes

f⊥
1T (x)

|pT |
2MN

1

π(1 − C)〈p2
T 〉

e
−

p2
T

(1−C)〈p2
T

〉 ≤ 1/2 f1(x)
1

π〈p2
T 〉

e
−

p2
T

〈p2
T

〉 (32)

⇒
|pT |

1 − C
e
− C

1−C

p2
T

〈p2
T

〉 ≤ MN
f1(x)

f⊥
1T (x)

(33)

8 here polarized stands for functions which in general depend in one way or the other on the polarization of the target nucleon, the quarks
or the outgoing hadron

.

Positivity Limits & Failure of
Gaussian Ansatz
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2
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with Gaussian Ansatz for pT /kT -dependence:
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−
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T
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1
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−
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〈p2
T 〉

positivity limit becomes
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Positivity and the Gaussian Ansatz

5

III. THE MC GENERATOR GMC TRANS

Although the purity formalism has already been exploited at Hermes for the quark flavor decomposition of the
helicity distributions, one might worry about a complication in the here presented case. One does not any longer
have simple count rate asymmetries but actually needs to look at their dependences on the azimuthal angles φ and
φS . Since Hermes is not a 4π-detector, acceptance effects might spoil the extraction of the sin(φ − φS) moments.
Moreover, in principle one needs to integrate over the whole range of transverse momentum in order to resolve the
convolution integrals (3) and (4). Experimentally this is not possible. For this reason, a Monte Carlo generator,
gmc trans [6], has been developed which can simulate azimuthal distributions due to pT (kT )-dependent distribution
(fragmentation) functions. One task will be to verify that the extracted functions, i.e. the Sivers function, agrees
with the input, or - in other words - that there is no bias from the experimental apparatus.

The first version of this generator had problems with fulfilling the positivity limits for polarized8 distribution and
fragmentation functions. In order to be able to interpret them as probability densities they must - at least - be smaller
than their unpolarized counter parts f q

1 and D1. In the following a modification to the generator is introduced to
avoid the encountered problems when using a normal Gaussian ansatz.

A. Skewed Gaussian ansatz

1. Positivity limit for the Sivers and Collins function:

a. First Try: A Loose Bound: All the various distribution and fragmentation functions are not completely ar-
bitrary in size but have to fulfill positivity limits. Specifically, if one looks at a two-dimensional subspace of the
correlation matrix [7] only and thus only relates the Sivers function and the ordinary unpolarized PDF (and likewise
the Collins FF with the unpolarized FF), for the Sivers function and the Collins function one has

f⊥(1/2)
1T (x, pT

2) ≡
|pT |
2MN

f⊥
1T (x, pT

2) ≤
1

2
f1(x, pT

2) (28)

H⊥(1/2)
1 (z, z2kT

2) ≡
|kT |
2Mh

H⊥
1 (z, z2kT

2) ≤
1

2
D1(z, z2kT

2). (29)

After realizing that the normal Gaussian ansatz for the pT -dependence of the Sivers function fails the positivity
constraint Eq. (28), i.e.

f⊥(1/2)
1T (x, pT

2) ≤ 1/2f1(x, pT
2) = 1/2f1(x)

1

π〈p2
T 〉

e
−

p2
T

〈p2
T

〉 (30)

because of the extra factor of |pT | in the expression for f⊥(1/2)
1T , an ansatz was taken which just skews the Gaussian

pT distribution:

f⊥
1T (x, pT

2) = f⊥
1T (x)

1

(1 − C)π〈p2
T 〉

e
−

p2
T

(1−C)〈p2
T

〉 , (31)

where a skewedness parameter C has been introduced. One can easily verify that this choice fulfills Eq. (8). With
this new parameterization the positivity limit becomes

f⊥
1T (x)

|pT |
2MN

1

π(1 − C)〈p2
T 〉

e
−

p2
T

(1−C)〈p2
T

〉 ≤ 1/2 f1(x)
1

π〈p2
T 〉

e
−

p2
T

〈p2
T

〉 (32)

⇒
|pT |

1 − C
e
− C

1−C

p2
T

〈p2
T

〉 ≤ MN
f1(x)

f⊥
1T (x)

(33)

8 here polarized stands for functions which in general depend in one way or the other on the polarization of the target nucleon, the quarks
or the outgoing hadron

.
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No (useful) solution for non-zero Sivers fctn!
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Modify Gaussian Width

.

Skewed Gaussian Ansatz

f⊥
1T (x, pT

2) = f⊥
1T (x)

1

(1 − C)π〈p2
T 〉

e
−

p2
T

(1−C)〈p2
T 〉

⇒ positivity limit:

f⊥
1T (x)

|pT |
2MN

1

π(1 − C)〈p2
T 〉

e
−

p2
T

(1−C)〈p2
T 〉 ≤ 1/2 f1(x)

1

π〈p2
T 〉

e
−

p2
T

〈p2
T 〉

|pT |
1 − C

e
− C

1−C

p2
T

〈p2
T 〉 ≤ MN

f1(x)

f⊥
1T (x)

x/(1-y)*exp(-y*x**2/(.4*(1-y)))

p_T

C

p
_
T

 d
e
p

e
n

d
e
n

t 
p

a
rt

0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.1

0.2

0.3

0.4

0.5

0

0.5

1

1.5

2

2.5

3

3.5

Minimum at pT =
√

〈p2
T 〉

2C

thus
f⊥
1T (x)
f1(x)

≤ MN

√

2eC(1−C)
〈p2

T 〉

or
f⊥(1/2)
1T (x)

f1(x)
≤ 1

2

√

eπC
2

(1 − C) ≤ 0.4

Gunar Schnell HERMES Analysis Week, Sept. 29
th
, 2004 – p. 4/10.

Skewed Gaussian Ansatz

f⊥
1T (x, pT

2) = f⊥
1T (x)

1

(1 − C)π〈p2
T 〉

e
−

p2
T

(1−C)〈p2
T 〉

⇒ positivity limit:

f⊥
1T (x)

|pT |
2MN

1

π(1 − C)〈p2
T 〉

e
−

p2
T

(1−C)〈p2
T 〉 ≤ 1/2 f1(x)

1

π〈p2
T 〉

e
−

p2
T

〈p2
T 〉

|pT |
1 − C

e
− C

1−C

p2
T

〈p2
T 〉 ≤ MN

f1(x)

f⊥
1T (x)

x/(1-y)*exp(-y*x**2/(.4*(1-y)))

p_T

C

p
_
T

 d
e
p

e
n

d
e
n

t 
p

a
rt

0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.1

0.2

0.3

0.4

0.5

0

0.5

1

1.5

2

2.5

3

3.5

Minimum at pT =
√

〈p2
T 〉

2C

thus
f⊥
1T (x)
f1(x)

≤ MN

√

2eC(1−C)
〈p2

T 〉

or
f⊥(1/2)
1T (x)

f1(x)
≤ 1

2

√

eπC
2

(1 − C) ≤ 0.4

Gunar Schnell HERMES Analysis Week, Sept. 29
th
, 2004 – p. 4/10



Gunar Schnell Transversity 2008, Beijing
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SIDIS Cross Section incl. TMDs

.

SIDIS Cross Section Including
Transverse Momentum

∑

q

e2
q

4π

α2

(MExyz)2
[XUU + |ST |XSIV sin(φh − φs) + |ST |XCOL sin(φh + φs)]

where the cross section expressions are (using the skewed Gaussian Ansatz):

XUU = R2e−R2P 2
h⊥/z2

(

1 − y +
y2

2

)

f1(x) · D1(z)

XCOL = −
|Ph⊥|
Mπz

(1 − C)〈k2
T 〉

[

〈p2
T 〉 + (1 − C)〈k2

T 〉
]2 exp

[

−
P 2

h⊥/z2

〈p2
T 〉 + (1 − C)〈k2

T 〉

]

× (1 − y) · h1(x) · H⊥
1 (z)

XSIV =
|Ph⊥|
Mpz

(1 − C′)〈p2
T 〉

[

〈k2
T 〉 + (1 − C′)〈p2

T 〉
]2 exp

[

−
P 2

h⊥/z2

〈k2
T 〉 + (1 − C′)〈p2

T 〉

]

×
(

1 − y +
y2

2

)

f⊥
1T (x) · D1(z)
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using Gaussian Ansatz for transverse-momentum 
dependence of DFs and FFs:

.
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Sivers (azimuthal) Moments

.

Single Spin Asymmetries
(using skewed Gaussian Ansatz)

can be calculated analytically ⇒ allows comparison
with extracted asymmetries

〈sin(φ − φs)〉UT =

√

(1 − C)〈p2
T 〉

√

(1 − C)〈p2
T 〉 + 〈k2

T 〉

A(y) 1
xy2

∑

e2
qf⊥(1/2)

1T (x)D1(z)

A(y) 1
xy2

∑

e2
qf1(x)D1(z)

〈sin(φ − φs)〉UT =
MN

√
π

2
√

(1 − C)〈p2
T 〉 + 〈k2

T 〉

A(y) 1
xy2

∑

e2
qf

⊥(1)
1T (x)D1(z)

A(y) 1
xy2

∑

e2
qf1(x)D1(z)

〈
|Ph⊥|
zMN

sin(φ − φs)〉UT =
2
√

(1 − C)〈p2
T 〉

MN
√

π

A(y) 1
xy2

∑

e2
qf⊥(1/2)

1T (x)D1(z)

A(y) 1
xy2

∑

e2
qf1(x)D1(z)

〈
|Ph⊥|
zMN

sin(φ − φs)〉UT =
A(y) 1

xy2

∑

e2
qf⊥(1)

1T (x)D1(z)

A(y) 1
xy2

∑

e2
qf1(x)D1(z)
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use cross section expressions to evaluate 
azimuthal moments:

model-dependence on transverse momenta  
“swallowed” by      - moment of Sivers fct.: f⊥(1)

1Tp2
T
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Sivers (azimuthal) Moments

.
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use cross section expressions to evaluate 
azimuthal moments:

(similar for Collins moments)
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2nd Entrée: Selected Results
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Tuning the Gaussians in gmc_trans

constant Gaussian widths, i.e., 
no dependence on x or z:

tune to data integrated over 
whole kinematic range
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Tuning the Gaussians in gmc_trans
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Comparison Data-MC:     
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Figure 5.2.1: Comparison of the transverse momentum distributions between

the HERMES data on transversely polarised hydrogen and the po-

larised Monte Carlo generator gmc_trans in the HERMES accep-

tance. For the π0 distribution the dashed line shows the result from

an earlier Monte Carlo production neglecting smearing of the

photons (see text). Both histograms are normalised to unit area.

A solution for the Sivers and Collins functions is to modify Eq. (5.2.3) and (5.2.4) and to

use smaller widths for the transverse momentum distributions:

f⊥q
1T (x, p2

T ) = f⊥q
1T (x) ·

1

π(1 − Cs)〈p2
T 〉

e
− p2

T
(1−Cs)〈p2

T
〉 , (5.2.7)

H⊥
1 (z, z2k2

T ) = H⊥
1 (z) ·

1

πz2(1 − Cc)〈k2
T 〉

e
− k2

T
(1−Cc)〈k2

T
〉 , (5.2.8)

introducing the two parameters Cs and Cc (0 < Cs, Cc < 1). With this ansatz one avoids

unphysical cut–offs in the "pT and "kT distributions, which would further complicate the

analytical expression of cross sections.

Even though the Sivers function (5.2.7) fulfils the positivity limit (2.4.22), the sum of the

cross section components including the Sivers and transversity functions can still exceed

the unpolarised cross section. A more stringent requirement on the Sivers function takes

into account the contribution from other DFs, e.g., δqi
[

Bac04b
]

ii:

p2
T

M2

(

f⊥q
1T (x, p2

T )
)2

≤ q(x, p2
T )

[

q(x, p2
T ) − 2|δq(x, p2

T )|
]

. (5.2.9)

The main reason for the Gaussian ansatz is the possibility to calculate the unweighted

and Ph⊥–weighted asymmetry moments analytically for the kinematics of each gener-

ated event. These values are stored in a table for the comparison of extracted and imple-

mented moments. This allows the systematic study of biases on the extracted asymmetry

moments from different sources, including the dependence on intrinsic transverse quark

momenta, in particular with respect to the limited Ph⊥ acceptance of the spectrometer.

In the gmc_trans generator, certain parameters can be adjusted for a good descrip-

tion of the data. Here, the two parameters Cs and Cc are set to a value of 0.25 which

iHere, other DFs than q(x, p2
T ), δq(x, p2

T ), and f⊥q
1T (x, p2

T ) are set to 0.
iiA missing factor of 2 in the reference is added here.
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Figure 5.2.2: Comparison of the azimuthal angular distributions between HER-

MES data and the polarised Monte Carlo generator gmc_trans. All

histograms are normalised to unit area.

allows the generation of maximum absolute values for Sivers and Collins Ph⊥–weighted

moments. The mean values 〈p2
T 〉 and 〈K2

T 〉 = z2〈k2
T 〉, which are assumed to be the same

for all quark flavours, are chosen to be independent of x and z, respectively. These pa-

rameters were varied iteratively for a good description of hadron transverse momentum

distributions obtained from data. In Figure 5.2.1 the resulting distributions are plotted for

〈p2
T 〉 = 〈K2

T 〉 = 0.18 GeV2 (〈|!pT |〉 = 〈| !KT |〉 = 0.38 GeV). To speed up the simulation of de-

tector events, the effects of tracking are parametrised with a new version of HSG, which

includes the smearing of photons, instead of the time consuming tracking using HMC.

The smearing of the photons is caused by the limited energy resolution of the calorimeter

which leads to an uncertainty in the determination of the impact position and photon

energies. The inclusion of the smearing results in an improved description of the π0 distri-

butions compared to earlier generators, which neglected the smearing of the photons.

In Figure 5.2.1, the distributions of neutral pions reconstructed from the smeared photons

(solid line) and from generated photons (dashed line) are compared in addition to HER-

MES data. The agreement for charged pions is better than for neutral pions and the rise

of the Ph⊥ distribution for π0 is better described by taking smearing into account also for

photons. Also the azimuthal angular distributions are well described by the Monte Carlo,

as can be seen in Figure 5.2.2. Here, the distribution of neutral pions reconstructed from

photons neglecting any smearing (with the kinematics at generator level) is virtually in-

distinguishable from the distribution for smeared photons and therefore not shown in the

figure. Note that neither the unpolarised cosine moments nor radiative effects are imple-

mented in gmc_trans while the influence from the transverse target magnet is simulated
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histograms are normalised to unit area.
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moments. The mean values 〈p2
T 〉 and 〈K2

T 〉 = z2〈k2
T 〉, which are assumed to be the same

for all quark flavours, are chosen to be independent of x and z, respectively. These pa-

rameters were varied iteratively for a good description of hadron transverse momentum

distributions obtained from data. In Figure 5.2.1 the resulting distributions are plotted for

〈p2
T 〉 = 〈K2

T 〉 = 0.18 GeV2 (〈|!pT |〉 = 〈| !KT |〉 = 0.38 GeV). To speed up the simulation of de-

tector events, the effects of tracking are parametrised with a new version of HSG, which

includes the smearing of photons, instead of the time consuming tracking using HMC.

The smearing of the photons is caused by the limited energy resolution of the calorimeter

which leads to an uncertainty in the determination of the impact position and photon

energies. The inclusion of the smearing results in an improved description of the π0 distri-

butions compared to earlier generators, which neglected the smearing of the photons.

In Figure 5.2.1, the distributions of neutral pions reconstructed from the smeared photons

(solid line) and from generated photons (dashed line) are compared in addition to HER-

MES data. The agreement for charged pions is better than for neutral pions and the rise

of the Ph⊥ distribution for π0 is better described by taking smearing into account also for

photons. Also the azimuthal angular distributions are well described by the Monte Carlo,

as can be seen in Figure 5.2.2. Here, the distribution of neutral pions reconstructed from

photons neglecting any smearing (with the kinematics at generator level) is virtually in-

distinguishable from the distribution for smeared photons and therefore not shown in the

figure. Note that neither the unpolarised cosine moments nor radiative effects are imple-

mented in gmc_trans while the influence from the transverse target magnet is simulated

where:



Gunar Schnell Transversity 2008, Beijing

Tuning the Gaussians in gmc_trans
〈
P 2

h⊥(x, z)
〉

= z2
〈
p2

T (x)
〉

+
〈
K2

T (z)
〉

in general:

so far:
〈
P 2

h⊥(z)
〉

= z2
〈
p2

T

〉
+

〈
K2

T

〉

constant!
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Tuning the Gaussians in gmc_trans
so far:
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Ulrike Elschenbroich, Makins Relation, Collaboration Meeting, March 2006 – p.9

〈pT 〉=0.38
〈KT 〉=0.38

〈p2
T 〉# 0.185

〈K2
T 〉# 0.185
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Tuning the Gaussians in gmc_trans
now:

〈K2
T 〉

〈P 2
h⊥(x, z)〉 = z2〈p2

T (x)〉 + 〈K2
T (z)〉

〈K2
T 〉 z

Ph⊥
2

pT
2 z2 = 0.144362 z2

KT
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〈
P 2

h⊥(z)
〉

= z2
〈
p2

T

〉
+

〈
K2

T (z)
〉

now z-dependent!

tuned to HERMES 
data in acceptance

“Hashi set”
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Tuning the Gaussians in gmc_trans

z-dependent!
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Some Simple Models for 
Transversity & Friends

5.2.1 Unweighted Asymmetry Amplitudes 99

in the analysed Monte Carlo production.

5.2.1 Unweighted Asymmetry Amplitudes

In the Monte Carlo generator gmc_trans, leading order parametrisations of the unpo-

larised FFs
[

Kre00
]

and the unpolarised and helicity DFs
[

Glü96
]

, which are based on fits

to world data, are implemented as functions of x and z. Different models for the x and z

dependencies of the transversity, Sivers, and Collins functions are available for the event

generation. In most of the models a given moment of the DF or FF is proportional to q(x),

∆q(x), or D1(z). The model parameters were chosen such that the extracted asymme-

try amplitudes are comparable to the amplitudes observed in the data. The transversity

functions are proportional to the helicity DF:

δu(x) = 0.7 · ∆u(x) , (5.2.10)

δd(x) = 0.7 · ∆d(x) , (5.2.11)

δq(x) = 0.3 · ∆q(x) for q = ū, d̄, s, s̄ . (5.2.12)

In contrast, Sivers functions are modelled proportional to the unpolarised DF:

f⊥u
1T (x) = −0.3 · u(x) , (5.2.13)

f⊥d
1T (x) = 0.9 · d(x) , (5.2.14)

f⊥q
1T (x) = 0.0 for q = ū, d̄, s, s̄ . (5.2.15)

The parametrisation of the unpolarised FFs fulfil isospin and charge conjugation symmetry
[

Kre00
]

leaving three independent FFs: the favoured, disfavoured, and strange function
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Figure 5.2.3: The implemented and extracted asymmetry amplitudes (upper

half) and the differences between implemented and extracted

amplitudes (lower half) for generated and reconstructed positive

pion events. The generated events cover the whole range of the

solid angle.
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, which are based on fits

to world data, are implemented as functions of x and z. Different models for the x and z

dependencies of the transversity, Sivers, and Collins functions are available for the event

generation. In most of the models a given moment of the DF or FF is proportional to q(x),

∆q(x), or D1(z). The model parameters were chosen such that the extracted asymme-

try amplitudes are comparable to the amplitudes observed in the data. The transversity

functions are proportional to the helicity DF:

δu(x) = 0.7 · ∆u(x) , (5.2.10)

δd(x) = 0.7 · ∆d(x) , (5.2.11)

δq(x) = 0.3 · ∆q(x) for q = ū, d̄, s, s̄ . (5.2.12)

In contrast, Sivers functions are modelled proportional to the unpolarised DF:

f⊥u
1T (x) = −0.3 · u(x) , (5.2.13)

f⊥d
1T (x) = 0.9 · d(x) , (5.2.14)

f⊥q
1T (x) = 0.0 for q = ū, d̄, s, s̄ . (5.2.15)

The parametrisation of the unpolarised FFs fulfil isospin and charge conjugation symmetry
[
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]

leaving three independent FFs: the favoured, disfavoured, and strange function

(cf. Section 2.5.1). In addition, disfavoured and strange FFs are equal in the parametrisa-

tion. The first moments of the Collins function are constructed proportional to the unpo-

larised FFs. The coefficient for the disfavoured FF is twice as large as for the favoured FF

but has the opposite sign:

H⊥(1)
1,fav(z) = 0.65 · D1,fav(z) , (5.2.16)

H⊥(1)
1,dis (z) = −1.30 · D1,dis(z) . (5.2.17)

Hence, on average favoured and disfavoured Collins function are of similar magnitude

but of opposite sign.

In each kinematic bin four different asymmetry amplitudes can be determined. One

amplitude can be extracted from the generated events (in the solid angle 4π) and

another one from the reconstructed events (in the HERMES acceptance) with the two–

dimensional fit procedure described in Chapter 4. Furthermore, for the reconstructed

and generated events, the implemented asymmetry amplitudes Asin(φ±φS)
imp , which are

stored for each event j in a data table, can be averaged over all events in a kinematic
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Figure 5.2.6: The implemented and extracted Ph⊥–weighted asymmetry am-

plitudes (upper half) and the differences between implemented

and extracted amplitudes (lower half) for generated and recon-

structed positive pion events. The generated events cover the

whole range of the solid angle.
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structed negative pion events. The generated events cover the
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in the analysed Monte Carlo production.

5.2.1 Unweighted Asymmetry Amplitudes

In the Monte Carlo generator gmc_trans, leading order parametrisations of the unpo-

larised FFs
[

Kre00
]

and the unpolarised and helicity DFs
[

Glü96
]

, which are based on fits

to world data, are implemented as functions of x and z. Different models for the x and z

dependencies of the transversity, Sivers, and Collins functions are available for the event

generation. In most of the models a given moment of the DF or FF is proportional to q(x),

∆q(x), or D1(z). The model parameters were chosen such that the extracted asymme-

try amplitudes are comparable to the amplitudes observed in the data. The transversity

functions are proportional to the helicity DF:

δu(x) = 0.7 · ∆u(x) , (5.2.10)

δd(x) = 0.7 · ∆d(x) , (5.2.11)

δq(x) = 0.3 · ∆q(x) for q = ū, d̄, s, s̄ . (5.2.12)

In contrast, Sivers functions are modelled proportional to the unpolarised DF:

f⊥u
1T (x) = −0.3 · u(x) , (5.2.13)

f⊥d
1T (x) = 0.9 · d(x) , (5.2.14)

f⊥q
1T (x) = 0.0 for q = ū, d̄, s, s̄ . (5.2.15)

The parametrisation of the unpolarised FFs fulfil isospin and charge conjugation symmetry
[

Kre00
]

leaving three independent FFs: the favoured, disfavoured, and strange function

(cf. Section 2.5.1). In addition, disfavoured and strange FFs are equal in the parametrisa-

tion. The first moments of the Collins function are constructed proportional to the unpo-

larised FFs. The coefficient for the disfavoured FF is twice as large as for the favoured FF

but has the opposite sign:

H⊥(1)
1,fav(z) = 0.65 · D1,fav(z) , (5.2.16)

H⊥(1)
1,dis (z) = −1.30 · D1,dis(z) . (5.2.17)

Hence, on average favoured and disfavoured Collins function are of similar magnitude

but of opposite sign.

In each kinematic bin four different asymmetry amplitudes can be determined. One

amplitude can be extracted from the generated events (in the solid angle 4π) and

another one from the reconstructed events (in the HERMES acceptance) with the two–

dimensional fit procedure described in Chapter 4. Furthermore, for the reconstructed

and generated events, the implemented asymmetry amplitudes Asin(φ±φS)
imp , which are

stored for each event j in a data table, can be averaged over all events in a kinematic

bin:
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=
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=
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in the analysed Monte Carlo production.
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generation. In most of the models a given moment of the DF or FF is proportional to q(x),

∆q(x), or D1(z). The model parameters were chosen such that the extracted asymme-

try amplitudes are comparable to the amplitudes observed in the data. The transversity

functions are proportional to the helicity DF:

δu(x) = 0.7 · ∆u(x) , (5.2.10)

δd(x) = 0.7 · ∆d(x) , (5.2.11)

δq(x) = 0.3 · ∆q(x) for q = ū, d̄, s, s̄ . (5.2.12)

In contrast, Sivers functions are modelled proportional to the unpolarised DF:

f⊥u
1T (x) = −0.3 · u(x) , (5.2.13)

f⊥d
1T (x) = 0.9 · d(x) , (5.2.14)

f⊥q
1T (x) = 0.0 for q = ū, d̄, s, s̄ . (5.2.15)

The parametrisation of the unpolarised FFs fulfil isospin and charge conjugation symmetry
[

Kre00
]

leaving three independent FFs: the favoured, disfavoured, and strange function

(cf. Section 2.5.1). In addition, disfavoured and strange FFs are equal in the parametrisa-

tion. The first moments of the Collins function are constructed proportional to the unpo-

larised FFs. The coefficient for the disfavoured FF is twice as large as for the favoured FF

but has the opposite sign:

H⊥(1)
1,fav(z) = 0.65 · D1,fav(z) , (5.2.16)

H⊥(1)
1,dis (z) = −1.30 · D1,dis(z) . (5.2.17)

Hence, on average favoured and disfavoured Collins function are of similar magnitude

but of opposite sign.

In each kinematic bin four different asymmetry amplitudes can be determined. One

amplitude can be extracted from the generated events (in the solid angle 4π) and

another one from the reconstructed events (in the HERMES acceptance) with the two–

dimensional fit procedure described in Chapter 4. Furthermore, for the reconstructed

and generated events, the implemented asymmetry amplitudes Asin(φ±φS)
imp , which are

stored for each event j in a data table, can be averaged over all events in a kinematic

bin:

〈

Asin(φ±φS)
imp

〉

rec
=

∑Nrec
j=0 Asin(φ±φS)

imp,j

Nrec
,

〈

Asin(φ±φS)
imp

〉

gen
=

∑Ngen

j=0 Asin(φ±φS)
imp,j

Ngen
. (5.2.18)

The implemented asymmetry amplitudes are integrated over Ph⊥ and can therefore not

be compared to the extracted asymmetries in the individual Ph⊥ bins. In this case, the
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1T (x) = −0.6 · u(x)
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1T (x) = 1.05 · d(x)
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1T (x) = 0.3 · q(x)

“hashi” set III for transverse momentum widths CS = CC = 0.25
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least stringent positivity constraints only involve 
considered ‘polarized’ function and the corresponding 
unpolarized function, e.g., Sivers vs. f1

more stringent relations arise from full density density 
matrix (e.g., Soffer relation for h1 vs. g1 and f1):

careful analysis yields a more complex positivity limit 
for Sivers:

Positivity Limits Revisited

12

done in the analysis of real data. The only difference now is that one can use both generated events, e.g. events in
4π and without smearing coming directly from the mcTrack table, and reconstructed events, here using HSG (Hermes
Smearing Generator) for speedy reconstruction, to calculate asymmetries as functions of x, y, z and Ph⊥. The
unweighted asymmetries in 4π as well as the asymmetries of reconstructed events in the Hermes acceptance seem to
be consistent within errors in most of the cases. This can be seen in Figs. 3-6. Both and in particular the asymmetries
of the generated events, agree also quite well with the expected (e.g. input) values which are based on the values
in the mcUser tables. This supports the assumption that we can extract those asymmetries and that the Monte
Carlo generator is working quite reliably. However there are examples which look not (yet?) as nice. Some to point
out are the x-dependent Sivers asymmetries in Fig. 3, the slight underestimate of the z- and Ph⊥-dependent Collins
asymmetries of Figs. 4 and 5 and last but not least the y dependence of the Sivers asymmetries (Fig. 6).
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FIG. 3: Generated and reconstructed unweighted asymmetries, as well as the mcUser values as a function of x. The generated
events have also been corrected for the finite number of phi bins in the fitting procedure (valid for all the plots).

Above discrepancies are small compared to what can be seen for the |Ph⊥/zM |-weighted asymmetries. Figs. 7
and 8 show both the x and Ph⊥ dependence of the weighted asymmetries. Although the generated events agree
nicely with the input asymmetries, e.g. the values from the mcUser table, the asymmetries for reconstructed events lie
severely below the generated ones. At the moment the hypothesis is that for weighted asymmetries the acceptance,
in particular the Ph⊥ acceptance, will not cancel out in the asymmetries as only the events in the numerator are
weighted. Here more work is needed to optimize the extraction method.
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FIG. 2. Matrix element for fragmentation functions.

Time-reversal invariance has not been imposed in the above
parametrization, allowing for nonvanishing T -odd func-
tions f!

1T and h!
1 . Possible sources of T -odd effects in the

initial state have been discussed in Refs. [15]. In the final
state time-reversal invariance cannot be imposed [16–18],
leading to nonvanishing fragmentation functions D!

1T [11]
and H!

1 [19].
To put bounds on the transverse momentum dependent

functions, we again make the matrix structure explicit. One
finds for M ! !F"x, pT #g1$T the full spin matrix M̃ to be

0

B
B
B
B
B
B
@

f1 1 g1L
jpT j
M eif"g1T 1 if!

1T # jpT j
M e2if"h!

1L 1 ih!
1 # 2h1

jpT j
M e2if"g1T 2 if!

1T # f1 2 g1L
jpT j2
M2 e22ifh!

1T 2
jpT j
M e2if"h!

1L 2 ih!
1 #

jpT j
M eif"h!

1L 2 ih!
1 # jpT j2

M2 e2ifh!
1T f1 2 g1L 2

jpT j
M eif"g1T 2 if!

1T #
2h1 2

jpT j
M eif"h!

1L 1 ih!
1 # 2

jpT j
M e2if"g1T 1 if!

1T # f1 1 g1L

1

C
C
C
C
C
C
A

,

where f is the azimuthal angle of pT . First of all, this
matrix is illustrative as it shows the full quark helicity
structure accessible in a polarized nucleon [20], which is
equivalent to the full helicity structure of the forward
antiquark-nucleon scattering amplitude. Bounds to assure
positivity of any matrix element can, for instance, be ob-
tained by looking at the one-dimensional subspaces, giv-
ing the trivial bounds f1 $ 0 and jg1Lj # f1. From the
two-dimensional subspace one finds [omitting the "x, p2

T #
dependences]

jh1j #
1
2

" f1 1 g1L# # f1 , (13)

jh!"1#
1T j #

1
2

" f1 2 g1L# # f1 , (14)

"g"1#
1T #2 1 " f

!"1#
1T #2 #

p2
T

4M2 " f1 1 g1L# " f1 2 g1L#

#
p2

T

4M2 f2
1 , (15)

"h!"1#
1L #2 1 "h!"1#

1 #2 #
p2

T

4M2 " f1 1 g1L# " f1 2 g1L#

#
p2

T

4M2 f2
1 . (16)

Besides the Soffer bound, new bounds for the distribution
functions are found. In particular, one sees that functions
like g

"1#
1T and h

!"1#
1L appearing in azimuthal asymmetries in

leptoproduction are proportional to jpT j for small pT . In
the case of the T -odd fragmentation functions, the Collins
function, H

!"1#
1 , describing fragmentation of a transversely

polarized quark into an unpolarized or spinless hadron, for
instance, a pion, is bounded by "jPp!j%2zMp #D1"z, P2

p!#
while the other T -odd function D

!"1#
1T , describing fragmen-

tation of an unpolarized quark into a polarized hadron such
as a L, is given by "jPL!j%2zML#D1"z, P2

L!#.
Before sharpening these bounds via eigenvalues, it is

convenient to introduce two positive definite functions
F"x, p2

T # and G"x, p2
T # such that f1 ! F 1 G and g1 !

F 2 G and define
h1 ! aF , (17)

h
!"1#
1T ! bG , (18)

g
"1#
1T 1 if

!"1#
1T ! g

jpT j
M

p
FG , (19)

h
!"1#
1L 1 ih

!"1#
1 ! d

jpT j
M

p
FG , (20)

where the x and p2
T dependent functions a, b, g, and d

have absolute values in the interval !21, 1$. Note that a
and b are real valued but g and d are complex valued,
the imaginary part determining the strength of the T -odd
functions. Actually, one sees that the T -odd functions f!

1T
and h!

1 could be considered as imaginary parts of g1T and
h!

1L, respectively.
Next we sharpen these bounds using the eigenvalues of

the matrix, which are given by

e1,2 ! "1 2 a#F 1 "1 1 b#G 6
p

4FGjg 1 dj2 1 !"1 2 a#F 2 "1 1 b#G$2 , (21)

e3,4 ! "1 1 a#F 1 "1 2 b#G 6
p

4FGjg 2 dj2 1 !"1 1 a#F 2 "1 2 b#G$2 . (22)

Requiring them to be positive can be converted into the
conditions

F 1 G $ 0 , (23)

jaF 2 bGj # F 1 G, i.e., jh1T j # f1 , (24)

jg 1 dj2 # "1 2 a# "1 1 b# , (25)

jg 2 dj2 # "1 1 a# "1 2 b# . (26)

714

has to be positive definite!
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done in the analysis of real data. The only difference now is that one can use both generated events, e.g. events in
4π and without smearing coming directly from the mcTrack table, and reconstructed events, here using HSG (Hermes
Smearing Generator) for speedy reconstruction, to calculate asymmetries as functions of x, y, z and Ph⊥. The
unweighted asymmetries in 4π as well as the asymmetries of reconstructed events in the Hermes acceptance seem to
be consistent within errors in most of the cases. This can be seen in Figs. 3-6. Both and in particular the asymmetries
of the generated events, agree also quite well with the expected (e.g. input) values which are based on the values
in the mcUser tables. This supports the assumption that we can extract those asymmetries and that the Monte
Carlo generator is working quite reliably. However there are examples which look not (yet?) as nice. Some to point
out are the x-dependent Sivers asymmetries in Fig. 3, the slight underestimate of the z- and Ph⊥-dependent Collins
asymmetries of Figs. 4 and 5 and last but not least the y dependence of the Sivers asymmetries (Fig. 6).
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FIG. 3: Generated and reconstructed unweighted asymmetries, as well as the mcUser values as a function of x. The generated
events have also been corrected for the finite number of phi bins in the fitting procedure (valid for all the plots).

Above discrepancies are small compared to what can be seen for the |Ph⊥/zM |-weighted asymmetries. Figs. 7
and 8 show both the x and Ph⊥ dependence of the weighted asymmetries. Although the generated events agree
nicely with the input asymmetries, e.g. the values from the mcUser table, the asymmetries for reconstructed events lie
severely below the generated ones. At the moment the hypothesis is that for weighted asymmetries the acceptance,
in particular the Ph⊥ acceptance, will not cancel out in the asymmetries as only the events in the numerator are
weighted. Here more work is needed to optimize the extraction method.
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#
p2

T

4M2 f2
1 . (16)

Besides the Soffer bound, new bounds for the distribution
functions are found. In particular, one sees that functions
like g

"1#
1T and h

!"1#
1L appearing in azimuthal asymmetries in

leptoproduction are proportional to jpT j for small pT . In
the case of the T -odd fragmentation functions, the Collins
function, H

!"1#
1 , describing fragmentation of a transversely

polarized quark into an unpolarized or spinless hadron, for
instance, a pion, is bounded by "jPp!j%2zMp #D1"z, P2

p!#
while the other T -odd function D

!"1#
1T , describing fragmen-

tation of an unpolarized quark into a polarized hadron such
as a L, is given by "jPL!j%2zML#D1"z, P2

L!#.
Before sharpening these bounds via eigenvalues, it is

convenient to introduce two positive definite functions
F"x, p2

T # and G"x, p2
T # such that f1 ! F 1 G and g1 !

F 2 G and define
h1 ! aF , (17)

h
!"1#
1T ! bG , (18)

g
"1#
1T 1 if

!"1#
1T ! g

jpT j
M

p
FG , (19)

h
!"1#
1L 1 ih

!"1#
1 ! d

jpT j
M

p
FG , (20)

where the x and p2
T dependent functions a, b, g, and d

have absolute values in the interval !21, 1$. Note that a
and b are real valued but g and d are complex valued,
the imaginary part determining the strength of the T -odd
functions. Actually, one sees that the T -odd functions f!

1T
and h!

1 could be considered as imaginary parts of g1T and
h!

1L, respectively.
Next we sharpen these bounds using the eigenvalues of

the matrix, which are given by

e1,2 ! "1 2 a#F 1 "1 1 b#G 6
p

4FGjg 1 dj2 1 !"1 2 a#F 2 "1 1 b#G$2 , (21)

e3,4 ! "1 1 a#F 1 "1 2 b#G 6
p

4FGjg 2 dj2 1 !"1 1 a#F 2 "1 2 b#G$2 . (22)

Requiring them to be positive can be converted into the
conditions

F 1 G $ 0 , (23)

jaF 2 bGj # F 1 G, i.e., jh1T j # f1 , (24)

jg 1 dj2 # "1 2 a# "1 1 b# , (25)

jg 2 dj2 # "1 1 a# "1 2 b# . (26)

714

has to be positive definite!
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Positivity Limits Revisited

least stringent positivity constraints only involve 
considered ‘polarized’ function and the corresponding 
unpolarized function, e.g., Sivers vs. f1

more stringent relations arise from full helicity density 
matrix, e.g., Soffer relation for transversity vs. g1 and f1

reanalysis yields a more complex positivity limit for 
Sivers:

Addendum to Internal Report 04-039: cos 2φ in the transverse MC generator
GMC TRANS

G. Schnell
Department of Subatomic and Radiation Physics, University of Gent, 9000 Gent, Belgium

(Dated: April 17, 2007, Version 0.1)

Recently, the Monte Carlo Generator GMC TRANS has been developed to generate azimuthal
single-spin asymmetries in semi-inclusve deep-inelastic scattering that originate from transverse
momentum dependent distribution and fragmentation functions. So far only the Collins and Sivers
effects were considered. This note describes the implementation of the azimuthal aymmetry for
unpolarized target and beam. This cos 2φ modulation of the cross section arises from the product
of the T-odd Boer-Mulders distribution and the Collins fragmentation functions. Moreover, this
note serves s an erratum for the Hermes Internal Report 04-039. function as well as to describe
the skewed Gaussian Ansatz used in GMC TRANS.

I. INTRODUCTION

The semi-inclusive deep-inelastic scattering (SIDIS) cross-section for unpolarized beam and target contains – at
leading twist – not only contribution from the ordinary unpolarized quark distribution and fragmentation functions
but also from the T-odd Boer-Mulders distribution function h⊥

1 in conjunction with the T-odd Collins fragmentation
function H⊥

1 . The differential cross section can be written as

dσUU =
2α2

sxy2

∑

q

e2
q

{

A(y) I
[

f q
1Dq

1

]

− B(y) cos 2φ I

[

2(p
T
· P̂

h⊥
)(k

T
· P̂

h⊥
) − p

T
· k

T

MNMh
h⊥,q

1 H⊥,q
1

]}

. (1)

Here, the Trento conventions [1] are used and the notation is analogues to the ones in Ref. [? ].
The second term in Eq. (1) has been neglected so far in the cross section generation of GMC TRANS. As it will be

present in the measurement of the Collins and Sivers moments on a transversely polarized target it is useful how much
the presence of the Boer-Mulders function can influence the extraction of above-mentioned moments. Furthermore, a
possible Measurement of the Boer-Mulders effect will require a Monte Carlo generator to test the sensitivity of such
a measurement to the detector acceptance and possibly radiative effects.

The extension of GMC TRANS can be achieved in a similar way the Collins and Sivers effects had been introduced:

1. Gaussian ansatz for Boer-Mulders function h⊥
1

2. new positivity limits for transverse momentum dependend PDF’s

3. solve convolution integral in Eq. (1) to obtain cross section expression

This will basically be the outline of this note, completed only by an Erratum to Ref. [? ] and a nw summary of the
various set parameters of GMC TRANS.

II. ERRATUM TO REF. [? ]

In Section III. A. 1 of Ref. [? ] the positivity limit for the Sivers function when the transversity distribution h1

does not vanish, i.e., Eqs. (42-45), are not correct. In particular, Eq. (42) should read

p
T

2

M2

(

f⊥

1T (x, p
T

2)
)2 ≤ f1(x, p

T

2)
(

f1(x, p
T

2) − 2 |h1(x, p
T

2)|
)

, (2)

which has an extranous factor “2” in front of the transversity distribution. This factor “2” has to propagate also to
Eqs. (43-45) in Ref. [? ]. The latter equations also miss a square root in the denominator of the left-hand-side. The

12

done in the analysis of real data. The only difference now is that one can use both generated events, e.g. events in
4π and without smearing coming directly from the mcTrack table, and reconstructed events, here using HSG (Hermes
Smearing Generator) for speedy reconstruction, to calculate asymmetries as functions of x, y, z and Ph⊥. The
unweighted asymmetries in 4π as well as the asymmetries of reconstructed events in the Hermes acceptance seem to
be consistent within errors in most of the cases. This can be seen in Figs. 3-6. Both and in particular the asymmetries
of the generated events, agree also quite well with the expected (e.g. input) values which are based on the values
in the mcUser tables. This supports the assumption that we can extract those asymmetries and that the Monte
Carlo generator is working quite reliably. However there are examples which look not (yet?) as nice. Some to point
out are the x-dependent Sivers asymmetries in Fig. 3, the slight underestimate of the z- and Ph⊥-dependent Collins
asymmetries of Figs. 4 and 5 and last but not least the y dependence of the Sivers asymmetries (Fig. 6).
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FIG. 3: Generated and reconstructed unweighted asymmetries, as well as the mcUser values as a function of x. The generated
events have also been corrected for the finite number of phi bins in the fitting procedure (valid for all the plots).

Above discrepancies are small compared to what can be seen for the |Ph⊥/zM |-weighted asymmetries. Figs. 7
and 8 show both the x and Ph⊥ dependence of the weighted asymmetries. Although the generated events agree
nicely with the input asymmetries, e.g. the values from the mcUser table, the asymmetries for reconstructed events lie
severely below the generated ones. At the moment the hypothesis is that for weighted asymmetries the acceptance,
in particular the Ph⊥ acceptance, will not cancel out in the asymmetries as only the events in the numerator are
weighted. Here more work is needed to optimize the extraction method.

[1] M. Diehl and S. Sapeta, in preparation ??, ?? (2004), hep-ph/04xxxxx.
[2] A. Bacchetta, U. D’Alesio, M. Diehl, and C. A. Miller (2004), hep-ph/0410050.
[3] P. J. Mulders and R. D. Tangerman, Nucl. Phys. B461, 197 (1996).
[4] D. Boer and P. J. Mulders, Phys. Rev. D 57, 5780 (1998).
[5] A. M. Kotzinian and P. J. Mulders, Phys. Lett. B406, 373 (1997).
[6] N. Makins, GMC TRANS Manual (2003), Hermes Internal Note 03-060.
[7] A. Bacchetta, M. Boglione, A. Henneman, and P. Mulders, Phys. Rev. Lett. 85, 712 (2000).
[8] A. Airapetian et al., Hermes draft v. 3.5, URL http://www-hermes.desy.de/notes/prot/publications/h1.v3.5.ps.%gz.

(required setting all other DF to zero)



Gunar Schnell Transversity 2008, Beijing

“Critique de Ferrara”

“positivity limit has to involve either only f1 or (almost) 
all PDFs”

implemented positivity limit in gmc_trans (self-
consistently) involves only all in gmc_trans non-zero 
PDFs: f1, h1, Sivers (and if wanted BM)

however, we know g1 is not zero, thus at least g1 has to 
be considered as well for gmc_trans to be realistic:

which positivity constraint is stronger and what about 
other PDFs?

2

correct expressions are thus

|f⊥
1T (x)|

√

f1(x) (f1(x) − 2 |h1(x)|)
≤ MN

√

2eC(1 − C)

〈p2
T 〉

(3)

|f⊥(1/2)
1T (x)|

√

f1(x) (f1(x) − 2 |h1(x)|)
≤

1

2

√

eπC

2
(1 − C) (4)

|f⊥(1)
1T (x)|

√

f1(x) (f1(x) − 2 |h1(x)|)
≤

1 − C√
2MN

√

eC(1 − C)〈p2
T 〉. (5)

Involving a non-vanishing g1 one obtains instead of Eq.(2)

p
T

2

M2

(

f⊥

1T (x, p
T

2)
)2 ≤

{

(

f1(x, p
T

2)
)2 −

(

g1(x, p
T

2)
)2

}

{

1 −
2 |h1(x, p

T

2)|
f1(x, p

T
2) + g1(x, p

T
2)

}

, (6)

III. IMPLEMENTATION OF THE BOER-MULDERS EFFECT INTO GMC TRANS

[1] A. Bacchetta, U. D’Alesio, M. Diehl, and C. A. Miller (2004), hep-ph/0410050.
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Positivity for g1 = 0 vs. g1 ≠ 0 

for g1<0 (e.g., down quarks) g1=0 limit is less strict

for g1>0 (e.g., u-quarks) it depends on size of h1 
➥ so far in gmc_trans productions g1=0 limit was 
always less strict

nevertheless, now implemented P.L. check that involves 
g1 (and also BM function)

should check P.L. involving all functions, but too little 
known about other TMDs 

2

correct expressions are thus
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Involving a non-vanishing g1 one obtains instead of Eq.(2)
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{
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(
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∆(P.L.) =
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g1(x, p
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)2 − 2 g1(x, p

T

2) |h1(x, p
T

2)| (7)

III. IMPLEMENTATION OF THE BOER-MULDERS EFFECT INTO GMC TRANS

[1] A. Bacchetta, U. D’Alesio, M. Diehl, and C. A. Miller (2004), hep-ph/0410050.
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“Problem” with Sea Quarks

affected mainly (and strongly) strange-quark positivity 
limit

======   Check positivity limit for Transversity:
==========   positivity violation:
 iquark= -3: lhs=  24.5845945 > rhs=  0.5
 iquark= -2: lhs=  0.48761702 < rhs=  0.5
 iquark= -1: lhs=  0.08159421 < rhs=  0.5
 iquark=  1: lhs=  0.35142772 < rhs=  0.5
 iquark=  2: lhs=  0.25735636 < rhs=  0.5
==========   positivity violation:
 iquark=  3: lhs=  24.5845945 > rhs=  0.5

➠

➠

-s quarks

s quarks
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The Strange(!) Sea

f1(x) + g1(x) for strange 
quarks

 LST(15) = 118; 
'standard' scenario, 
leading order GRSV

Q2=1

Soffer bound:
|h1(x)| < 0.5{f1(x)+g1(x)}
can’t be fulfilled for 
nonzero h1f1+g1 VS. x
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Sivers function rather close to positivity limit for anti-s
Sivers function for d quarks 20% too large

 ======   Check positivity limit for Transversity:
 iquark= -3: lhs=  0. < rhs=  0.5
 iquark= -2: lhs=  0. < rhs=  0.5
 iquark= -1: lhs=  0. < rhs=  0.5
 iquark= 1: lhs=  0.221290307 < rhs=  0.5
 iquark= 2: lhs=  0.356384362 < rhs=  0.5
 iquark= 3: lhs=  0. < rhs=  0.5

 ======   Check positivity limit for T-odd DFs:
 iquark= -3: lhs=  0.38756798 < rhs=  0.38756827
 iquark= -2: lhs=  0.01550272 < rhs=  0.38756827
 iquark= -1: lhs=  0.15502719 < rhs=  0.38756827

 ==========   positivity violation!
 iquark= 1: lhs=  0.460370198 > rhs=  0.38756827
 iquark= 2: lhs=  0.250900224 < rhs=  0.38756827
 iquark= 3: lhs=  0.093016313 < rhs=  0.38756827

Sivers &Transversity Fits 
by Anselmino et al.

======   Check positivity limit for Transversity:
 iquark= -3: lhs=  0. < rhs=  0.5
 iquark= -2: lhs=  0. < rhs=  0.5
 iquark= -1: lhs=  0. < rhs=  0.5
 iquark= 1: lhs=  0.309999922 < rhs=  0.5
 iquark= 2: lhs=  0.239999932 < rhs=  0.5
 iquark= 3: lhs=  0. < rhs=  0.5

 ======   Check positivity limit for T-odd DFs:
 iquark= -3: lhs=  0.38756798 < rhs=  0.38756827
 iquark= -2: lhs=  0.01550272 < rhs=  0.38756827
 iquark= -1: lhs=  0.15502719 < rhs=  0.38756827

 ==========   positivity violation!
 iquark= 1: lhs=  0.58568429 > rhs=  0.38756827
 iquark= 2: lhs=  0.21341756 < rhs=  0.38756827
 iquark= 3: lhs=  0.09301631 < rhs=  0.38756827

g1=0 g1≠0
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Sivers function rather close to positivity limit for anti-s
Sivers function for d quarks 20% too large

 ======   Check positivity limit for Transversity:
 iquark= -3: lhs=  0. < rhs=  0.5
 iquark= -2: lhs=  0. < rhs=  0.5
 iquark= -1: lhs=  0. < rhs=  0.5
 iquark= 1: lhs=  0.221290307 < rhs=  0.5
 iquark= 2: lhs=  0.356384362 < rhs=  0.5
 iquark= 3: lhs=  0. < rhs=  0.5

 ======   Check positivity limit for T-odd DFs:
 iquark= -3: lhs=  0.38756798 < rhs=  0.38756827
 iquark= -2: lhs=  0.01550272 < rhs=  0.38756827
 iquark= -1: lhs=  0.15502719 < rhs=  0.38756827

 ==========   positivity violation!
 iquark= 1: lhs=  0.460370198 > rhs=  0.38756827
 iquark= 2: lhs=  0.250900224 < rhs=  0.38756827
 iquark= 3: lhs=  0.093016313 < rhs=  0.38756827

Sivers &Transversity Fits 
by Anselmino et al.

======   Check positivity limit for Transversity:
 iquark= -3: lhs=  0. < rhs=  0.5
 iquark= -2: lhs=  0. < rhs=  0.5
 iquark= -1: lhs=  0. < rhs=  0.5
 iquark= 1: lhs=  0.309999922 < rhs=  0.5
 iquark= 2: lhs=  0.239999932 < rhs=  0.5
 iquark= 3: lhs=  0. < rhs=  0.5

 ======   Check positivity limit for T-odd DFs:
 iquark= -3: lhs=  0.38756798 < rhs=  0.38756827
 iquark= -2: lhs=  0.01550272 < rhs=  0.38756827
 iquark= -1: lhs=  0.15502719 < rhs=  0.38756827

 ==========   positivity violation!
 iquark= 1: lhs=  0.58568429 > rhs=  0.38756827
 iquark= 2: lhs=  0.21341756 < rhs=  0.38756827
 iquark= 3: lhs=  0.09301631 < rhs=  0.38756827

g1=0 g1≠0

Non-Triv
ial

 Role o
f o

ther 
TMDs!?
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(finally) Dessert:                             
                         the leaf of mint on the cake
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Beyond Collins and Sivers

certainly would like to model all TMDs, e.g., Boer-
Mulders function, to get full cross section

even go to subleading-twist, e.g., Cahn effect

first attempts to implement those have been made

leading twist -- “straight forward” (just a few more 
convolution integrals)

subleading twist -- “hmmmm...”

biggest problem there: positivity limits don’t exist on 
DF and FF level
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Current ToDo and Done List
finish leading-twist implementation

implement newest results from fits and model 
calculations on transversity, Sivers & Collins, ... 

add radiative corrections (e.g., RADGEN)

make it portable to other experiments

(since Ferrara meeting:)

✓ Charged kaons and protons

✓ DSS FFs and published fits by Anselmino et al. 

✓ neutron target

➡ comparison of HERMES and COMPASS data 
possible (but not yet done)
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Epilogue



Gunar Schnell Transversity 2008, Beijing

Acceptance plays crucial part in analysis of multi-
particle final states

Acceptance studies and/or corrections (e.g., unfolding)
require realistic Monte Carlo simulation of underlying 
physics

gmc_trans provides Collins and Sivers amplitudes for 
pions and kaons based on Gaussian Ansatz for TMDs

Positivity limits ➥ smaller Gaussian width for TMDs

Comparison of unpolarized hadron yield suggests
z-dependent average fragmentation KT

Don’t fully trust GRSV strange polarization at low Q2!

Non-trivial role of unmeasured TMDs in fulfilling 
positivity of Sivers distribution


