GMC TRANS

- A Monte Carlo Generator for TMDs -

PKU-RBRC Workshop on Transverse Spin Physics Beijing, June 30 - July 5, 2008

Gunar.Schnell@UGent.be

Prelude: The Role of Acceptance in Experiments

• "No particle-physics experiment has a perfect acceptance!"

obvious for detectors with gaps/holes

 but also for "4π", especially when looking at complicated final states

• "No particle-physics experiment has a perfect acceptance!"

HERMES azimuthal acceptance for 2-hadron production

[P. van der Nat, Ph.D. thesis, Vrije Universiteit (2007)]

Gunar Schnell

• "No particle-physics experiment has a perfect acceptance!"

• "No particle-physics experiment has a perfect acceptance!"

momentum cuts strongly distort kinematic distributions even for "4π" acceptance

> [P. van der Nat, Ph.D. thesis, Vrije Universiteit (2007)]

• "No particle-physics experiment has a perfect acceptance!"

obvious for detectors with gaps/holes

- but also for "4π", especially when looking at complicated final states
- How acceptance effects are handled is one of the essential questions in experiments!

• "acceptance cancels in asymmetries"

• "acceptance cancels in asymmetries"

$$A_{UT}(\phi, \Omega) = \frac{\sigma_{UT}(\phi, \Omega)}{\sigma_{UU}(\phi, \Omega)}$$

 $\Omega = x, y, z, \dots$

 ϵ : detection efficiency

 $A_{UT}(\phi)$

Gunar Schnell

• "acceptance cancels in asymmetries"

$$A_{UT}(\phi, \Omega) = \frac{\sigma_{UT}(\phi, \Omega)}{\sigma_{UU}(\phi, \Omega)}$$
$$= \frac{\sigma_{UT}(\phi, \Omega) \epsilon(\phi, \Omega)}{\sigma_{UU}(\phi, \Omega) \epsilon(\phi, \Omega)}$$

$$\Omega = x, y, z, \dots$$

 ϵ : detection efficiency

Gunar Schnell

• "acceptance cancels in asymmetries"

$$\begin{aligned} A_{UT}(\phi, \Omega) &= \frac{\sigma_{UT}(\phi, \Omega)}{\sigma_{UU}(\phi, \Omega)} \\ &= \frac{\sigma_{UT}(\phi, \Omega) \epsilon(\phi, \Omega)}{\sigma_{UU}(\phi, \Omega) \epsilon(\phi, \Omega)} \\ &\neq \frac{\int d\Omega \sigma_{UT}(\phi, \Omega) \epsilon(\phi, \Omega)}{\int d\Omega \sigma_{UU}(\phi, \Omega) \epsilon(\phi, \Omega)} \end{aligned}$$

$$\Omega = x, y, z, \dots$$

 ϵ : detection efficiency

• "acceptance cancels in asymmetries"

$$\begin{aligned} A_{UT}(\phi, \Omega) &= \frac{\sigma_{UT}(\phi, \Omega)}{\sigma_{UU}(\phi, \Omega)} & \Omega = x, y, z, \dots \\ &= \frac{\sigma_{UT}(\phi, \Omega) \epsilon(\phi, \Omega)}{\sigma_{UU}(\phi, \Omega) \epsilon(\phi, \Omega)} & \epsilon : \text{detection efficiency} \\ &\neq \frac{\int d\Omega \sigma_{UT}(\phi, \Omega) \epsilon(\phi, \Omega)}{\int d\Omega \sigma_{UU}(\phi, \Omega) \epsilon(\phi, \Omega)} \neq \frac{\int d\Omega \sigma_{UT}(\phi, \Omega)}{\int d\Omega \sigma_{UU}(\phi, \Omega)} \equiv A_{UT}(\phi) \end{aligned}$$

Gunar Schnell

• "acceptance cancels in asymmetries"

$$\begin{split} A_{UT}(\phi, \Omega) &= \frac{\sigma_{UT}(\phi, \Omega)}{\sigma_{UU}(\phi, \Omega)} & \Omega = x, y, z, \dots \\ &= \frac{\sigma_{UT}(\phi, \Omega) \epsilon(\phi, \Omega)}{\sigma_{UU}(\phi, \Omega) \epsilon(\phi, \Omega)} & \epsilon : \text{detection efficiency} \\ &\neq \frac{\int d\Omega \sigma_{UT}(\phi, \Omega) \epsilon(\phi, \Omega)}{\int d\Omega \sigma_{UU}(\phi, \Omega) \epsilon(\phi, \Omega)} \neq \frac{\int d\Omega \sigma_{UT}(\phi, \Omega)}{\int d\Omega \sigma_{UU}(\phi, \Omega)} \equiv A_{UT}(\phi) \end{split}$$

Acceptance does **not cancel** in general when **integrating** numerator and denominator over (large) ranges in kinematic variables!

Gunar Schnell

... possible ways out

- for *linear* dependence on *all kinematic variables* of asymmetry, average asymmetry equal to asymmetry at average kinematics
- for all other cases: can one maybe use 1-D (*projected*) acceptance function, e.g. ε(φ), to correct asymmetry A_{UT} (φ)?

- use Monte Carlo (physics generator * detector model) to extract acceptance function
- "projected acceptance function is independent from cross-section model"

- use Monte Carlo (physics generator * detector model) to extract acceptance function
- "projected acceptance function is independent from cross-section model"

 $\epsilon(\phi, \Omega) = \frac{\epsilon(\phi, \Omega)\sigma_{UU}(\phi, \Omega)}{\sigma_{UU}(\phi, \Omega)}$

 $\Omega = x, y, z, \dots$

- use Monte Carlo (physics generator * detector model) to extract acceptance function
- "projected acceptance function is independent from cross-section model"

$\epsilon(\phi,\Omega)$		$\epsilon(\phi,\Omega)\sigma_{UU}(\phi,\Omega)$
	_	$\sigma_{UU}(\phi,\Omega)$
	_	$\int \mathrm{d}\Omega \sigma_{UU}(\phi,\Omega) \epsilon(\phi,\Omega)$
	+	$\int \mathrm{d}\Omega \sigma_{UU}(\phi,\Omega)$

$$\Omega = x, y, z, \dots$$

- use Monte Carlo (physics generator * detector model) to extract acceptance function
- "projected acceptance function is independent from cross-section model"

 $\begin{aligned} \epsilon(\phi, \Omega) &= \frac{\epsilon(\phi, \Omega)\sigma_{UU}(\phi, \Omega)}{\sigma_{UU}(\phi, \Omega)} \\ \neq \frac{\int d\Omega \sigma_{UU}(\phi, \Omega) \epsilon(\phi, \Omega)}{\int d\Omega \sigma_{UU}(\phi, \Omega)} \\ \neq \int d\Omega \epsilon(\phi, \Omega) \equiv \epsilon(\phi) \end{aligned}$

 $\Omega = x, y, z, \dots$

Gunar Schnell

- use Monte Carlo (physics generator * detector model) to extract acceptance function
- "projected acceptance function is independent from cross-section model"

$$\begin{aligned} \epsilon(\phi, \Omega) &= \frac{\epsilon(\phi, \Omega)\sigma_{UU}(\phi, \Omega)}{\sigma_{UU}(\phi, \Omega)} \\ &\neq \frac{\int d\Omega \sigma_{UU}(\phi, \Omega) \epsilon(\phi, \Omega)}{\int d\Omega \sigma_{UU}(\phi, \Omega)} \\ &\neq \int d\Omega \epsilon(\phi, \Omega) \equiv \epsilon(\phi) \end{aligned}$$

 $\Omega = x, y, z, \dots$

Cross-section model does **not cancel** in general when **integrating** numerator and denominator over (large) ranges in kinematic variables!

Gunar Schnell

"Classique" Example: $\langle \cos\phi \rangle_{UU}$

Gunar Schnell

... one way out: multi-D unfolding

true yield (used to calculate azimuthal moments)

experimental yield

 $n_{\rm corr} = S_{\rm MC}^{-1} \left[n_{\rm exp} - BG_{\rm MC} \right]$

 (inverted) multi-dimensional smearing matrix
 (depends on detector and radiative effects only!)

Gunar Schnell

... one way out: multi-D unfolding

Unfolding Example

Cahn Model
 Extracted values

- extracted Cahn amplitudes in good agreement with model amplitudes
- apparent: need Cahn model for Monte Carlo simulation to test procedure

• also needed to extrapolate into unmeasured region

Gunar Schnell

1st Entrée: gmc_trans ingredients

Gunar Schnell

Initial Goals

- physics generator for SIDIS pion production
- include transverse-momentum dependence, in particular simulate Collins and Sivers effects
- be fast
- allow comparison of input model and reconstructed amplitudes
- to be used with standard HERMES Monte Carlo
- be extendable (e.g., open for new models)

Basic workings

- use cross section that can (almost) be calculated analytically
- start from 1-hadron SIDIS expressions of Mulders & Tangerman (Nucl.Phys.B461:197-237,1996) and others
- use Gaussian Ansatz for all transverse-momentum dependencies of DFs and FFs
- unpolarized DFs (as well as helicity distribution) and FFs from fits/parametrizations (e.g., Kretzer FFs etc.)
- "polarized" DFs and FFs either related to unpolarized ones (e.g., saturation of Soffer bound for transversity) or some parametrizations used

Gunar Schnell

SIDIS Cross Section incl. TMDs

 $d\sigma_{UT} \equiv d\sigma_{UT}^{\text{Collins}} \cdot \sin(\phi + \phi_S) + d\sigma_{UT}^{\text{Sivers}} \cdot \sin(\phi - \phi_S)$

$$egin{aligned} d\sigma^{
m Collins}_{UT}(x,y,z,\phi_S,P_{h\perp}) &\equiv -rac{2lpha^2}{sxy^2}B(y)\sum_q e_q^2\,\mathcal{I}\left[\left(rac{k_T\cdot\hat{P}_{h\perp}}{M_h}
ight)\cdot h_1^qH_1^{\perp q}
ight] \ d\sigma^{
m Sivers}_{UT}(x,y,z,\phi_S,P_{h\perp}) &\equiv -rac{2lpha^2}{sxy^2}A(y)\sum_q e_q^2\,\mathcal{I}\left[\left(rac{p_T\cdot\hat{P}_{h\perp}}{M_N}
ight)\cdot f_{1T}^{\perp q}D_1^q
ight] \ d\sigma_{UU}(x,y,z,\phi_S,P_{h\perp}) &\equiv -rac{2lpha^2}{sxy^2}A(y)\sum_q e_q^2\,\mathcal{I}\left[f_1^qD_1^q
ight] \end{aligned}$$

where

0

$$\mathcal{I}\Big[\mathcal{W}fD\Big]\equiv\int d^2p_Td^2k_T\,\delta^{(2)}\left(p_T-rac{P_{h\perp}}{z}-k_T
ight)\Big[\mathcal{W}f(x,p_T)\,D(z,k_T)\Big]$$

Transversity 2008, Beijing

Gunar Schnell

Gaussian Ansatz

- want to deconvolve convolution integral over transverse momenta
- easy Ansatz: Gaussian dependencies of DFs and FFs on intrinsic (quark) transverse momentum:

$$\mathcal{I}[f_1(x, \boldsymbol{p}_T^2) D_1(z, z^2 \boldsymbol{k}_T^2)] = f_1(x) \cdot D_1(z) \cdot \frac{R^2}{\pi z^2} \cdot e^{-R^2 \frac{P_{h\perp}^2}{z^2}}$$

with $f_1(x, \boldsymbol{p}_T^2) = f_1(x) \frac{1}{\pi \langle \boldsymbol{p}_T^2 \rangle} e^{-\frac{\boldsymbol{p}_T^2}{\langle \boldsymbol{p}_T^2 \rangle}} \frac{1}{R^2} \equiv \langle k_T^2 \rangle + \langle \boldsymbol{p}_T^2 \rangle = \frac{\langle P_{h\perp}^2 \rangle}{z^2}$

(similar: $D_1(z, z^2 \boldsymbol{k}_T^2)$)

Caution: different notations for intrinsic transverse momentum exist! (Here: Amsterdam notation)

Gunar Schnell

Transversity 2008, Beijing

0

Positivity Constraints

- DFs (FFs) have to fulfill various positivity constraints (resulting cross section has to be positive!)
- based on probability considerations can derive positivity limits for leading-twist functions: Bacchetta et al., Phys.Rev.Lett.85:712-715, 2000

- Sivers and Collins functions: e.g., loose bounds:

$$egin{array}{ll} rac{|p_T|}{2M_N} f_{1T}^{\perp}(x,p_T^2) &\equiv & f_{1T}^{\perp(1/2)}(x,p_T^2) &\leq rac{1}{2} f_1(x,p_T^2) \ rac{|k_T|}{2M_h} H_1^{\perp}(z,z^2k_T^2) &\equiv & H_1^{\perp(1/2)}(z,z^2k_T^2) &\leq rac{1}{2} D_1(z,z^2k_T^2) \end{array}$$

Positivity and the Gaussian Ansatz

$$\frac{|\boldsymbol{p}_{T}|}{2M_{N}}f_{1T}^{\perp}(x,\boldsymbol{p}_{T}^{2}) \leq \frac{1}{2}f_{1}(x,\boldsymbol{p}_{T}^{2})$$

with
$$f_1(x, p_T^2) = f_1(x) \frac{1}{\pi \langle p_T^2 \rangle} e^{-\frac{p_T}{\langle p_T^2 \rangle}}$$

$$f_{1T}^{\perp}(x,p_T^2) ~=~ f_{1T}^{\perp}(x)rac{1}{\pi \langle p_T^2
angle} e^{-rac{p_T^2}{\langle p_T^2
angle}}$$

 $\Rightarrow |p_T| f_{1T}^{\perp}(x) \leq M_N f_1(x)$

2

Transversity 2008, Beijing

Gunar Schnell

Positivity and the Gaussian Ansatz

$$\frac{|\boldsymbol{p}_{T}|}{2M_{N}}f_{1T}^{\perp}(x,\boldsymbol{p}_{T}^{2}) \leq \frac{1}{2}f_{1}(x,\boldsymbol{p}_{T}^{2})$$

with
$$f_1(x, p_T^2) = f_1(x) \frac{1}{\pi \langle p_T^2 \rangle} e^{-\frac{p_T}{\langle p_T^2 \rangle}}$$

$$f_{1T}^{\perp}(x,p_T^2) ~=~ f_{1T}^{\perp}(x)rac{1}{\pi \langle p_T^2
angle} e^{-rac{p_T^2}{\langle p_T^2
angle}}$$

 $\implies |p_T|f_{1T}^{\perp}(x) \leq M_N f_1(x)$

2

No (useful) solution for non-zero Sivers fctn!

Gunar Schnell

Modify Gaussian Width

$$f_{1T}^{\perp}(x, p_T^2) = f_{1T}^{\perp}(x) \; rac{1}{(1-C)\pi \langle p_T^2
angle} \; e^{-rac{p_T^2}{(1-C) \langle p_T^2
angle}}$$

→ positivity limit:

$$f_{1T}^{\perp}(x) \, rac{|p_T|}{2M_N} rac{1}{\pi (1-C) \langle p_T^2
angle} \, e^{-rac{p_T^2}{(1-C) \langle p_T^2
angle}} \ \le \ 1/2 \, f_1(x) \, rac{1}{\pi \langle p_T^2
angle} \, e^{-rac{p_T^2}{\langle p_T^2
angle}}$$

$$\displaystyle \longrightarrow rac{|p_T|}{1-C} \; e^{-rac{C}{1-C} rac{p_T^2}{\langle p_T^2
angle}} \; \leq \; M_N rac{f_1(x)}{f_{1T}^\perp(x)}$$

Transversity 2008, Beijing

Gunar Schnell

SIDIS Cross Section incl. TMDs

 $\sum_{q} \frac{e_q^2}{4\pi} \frac{\alpha^2}{(MExyz)^2} [X_{UU} + |S_T| X_{SIV} \sin(\phi_h - \phi_s) + |S_T| X_{COL} \sin(\phi_h + \phi_s)]$ using Gaussian Ansatz for transverse-momentum dependence of DFs and FFs: $X_{UU} = R^2 e^{-R^2 P_{h\perp}^2/z^2} \left(1 - y + \frac{y^2}{2}\right) f_1(x) \cdot D_1(z)$ $X_{COL} = + \frac{|P_{h\perp}|}{M_{\pi}z} \frac{(1 - C) \langle k_T^2 \rangle}{[\langle p_T^2 \rangle + (1 - C) \langle k_T^2 \rangle]^2} \exp\left[-\frac{P_{h\perp}^2/z^2}{\langle p_T^2 \rangle + (1 - C) \langle k_T^2 \rangle}\right]$ $\times (1 - y) \cdot h_1(x) \cdot H_1^{\perp}(z)$

$$\begin{split} X_{SIV} &= -\frac{|P_{h\perp}|}{M_p z} \frac{(1-C') \langle p_T^2 \rangle}{\left[\langle k_T^2 \rangle + (1-C') \langle p_T^2 \rangle \right]^2} \exp\left[-\frac{P_{h\perp}^2/z^2}{\langle k_T^2 \rangle + (1-C') \langle p_T^2 \rangle} \right] \\ &\times \left(1 - y + \frac{y^2}{2} \right) f_{1T}^{\perp}(x) \cdot D_1(z) \end{split}$$

Gunar Schnell

וו מוושיכו שני בטעט, שכוןוון

Sivers (azimuthal) Moments

use cross section expressions to evaluate azimuthal moments:

$$-\langle \sin(\phi - \phi_s) \rangle_{UT} = \frac{\sqrt{(1 - C)\langle p_T^2 \rangle}}{\sqrt{(1 - C)\langle p_T^2 \rangle + \langle k_T^2 \rangle}} \frac{A(y) \frac{1}{xy^2} \sum e_q^2 f_{1T}^{\perp(1/2)}(x) D_1(z)}{A(y) \frac{1}{xy^2} \sum e_q^2 f_1(x) D_1(z)}$$
$$-\langle \sin(\phi - \phi_s) \rangle_{UT} = \frac{M_N \sqrt{\pi}}{2\sqrt{(1 - C)\langle p_T^2 \rangle + \langle k_T^2 \rangle}} \frac{A(y) \frac{1}{xy^2} \sum e_q^2 f_{1T}^{\perp(1)}(x) D_1(z)}{A(y) \frac{1}{xy^2} \sum e_q^2 f_{1T}^{\perp(1)}(x) D_1(z)}$$

$$-\langle \frac{|P_{h\perp}|}{zM_N} \sin(\phi - \phi_s) \rangle_{UT} = \frac{2\sqrt{(1-C)\langle p_T^2 \rangle}}{M_N \sqrt{\pi}} \frac{A(y) \frac{1}{xy^2} \sum e_q^2 f_{1T}^{\perp(1/2)}(x) D_1(z)}{A(y) \frac{1}{xy^2} \sum e_q^2 f_1(x) D_1(z)} \\ -\langle \frac{|P_{h\perp}|}{zM_N} \sin(\phi - \phi_s) \rangle_{UT} = \frac{A(y) \frac{1}{xy^2} \sum e_q^2 f_{1T}^{\perp(1)}(x) D_1(z)}{A(y) \frac{1}{xy^2} \sum e_q^2 f_1(x) D_1(z)}$$

model-dependence on transverse momenta "swallowed" by p_T^2 - moment of Sivers fct.: $f_{1T}^{\perp(1)}$

Gunar Schnell

Sivers (azimuthal) Moments

use cross section expressions to evaluate azimuthal moments:

$$-\langle \sin(\phi - \phi_s) \rangle_{UT} = \frac{\sqrt{(1 - C)\langle p_T^2 \rangle}}{\sqrt{(1 - C)\langle p_T^2 \rangle + \langle k_T^2 \rangle}} \frac{A(y) \frac{1}{xy^2} \sum e_q^2 f_{1T}^{\perp(1/2)}(x) D_1(z)}{A(y) \frac{1}{xy^2} \sum e_q^2 f_1(x) D_1(z)}$$
$$-\langle \sin(\phi - \phi_s) \rangle_{UT} = \frac{M_N \sqrt{\pi}}{2\sqrt{(1 - C)\langle p_T^2 \rangle + \langle k_T^2 \rangle}} \frac{A(y) \frac{1}{xy^2} \sum e_q^2 f_{1T}^{\perp(1)}(x) D_1(z)}{A(y) \frac{1}{xy^2} \sum e_q^2 f_{1T}^{\perp(1)}(x) D_1(z)}$$

$$-\langle \frac{|P_{h\perp}|}{zM_N} \sin(\phi - \phi_s) \rangle_{UT} = \frac{2\sqrt{(1-C)\langle p_T^2 \rangle}}{M_N \sqrt{\pi}} \frac{A(y) \frac{1}{xy^2} \sum e_q^2 f_{1T}^{\perp(1/2)}(x) D_1(z)}{A(y) \frac{1}{xy^2} \sum e_q^2 f_1(x) D_1(z)} \\ -\langle \frac{|P_{h\perp}|}{zM_N} \sin(\phi - \phi_s) \rangle_{UT} = \frac{A(y) \frac{1}{xy^2} \sum e_q^2 f_{1T}^{\perp(1)}(x) D_1(z)}{A(y) \frac{1}{xy^2} \sum e_q^2 f_1(x) D_1(z)}$$

(similar for Collins moments)

Gunar Schnell

2nd Entrée: Selected Results

Gunar Schnell

Tuning the Gaussians in gmc_trans

constant Gaussian widths, i.e., no dependence on x or z: $\langle p_T \rangle = 0.44$ $\langle K_T \rangle = 0.44$

tune to data integrated over whole kinematic range

Transversity 2008, Beijing

Gunar Schnell

Tuning the Gaussians in gmc_trans $_{x10^2}$

Gunar Schnell

Comparison Data-MC:

Gunar Schnell

Tuning the Gaussians in gmc_trans in general: $\langle P_{h\perp}^2(x,z) \rangle = z^2 \langle p_T^2(x) \rangle + \langle K_T^2(z) \rangle$ so far: $\langle P_{h\perp}^2(z) \rangle = z^2 \langle p_T^2 \rangle + \langle K_T^2 \rangle$

constant!

Tuning the Gaussians in gmc_trans so far: $\langle P_{h\perp}^2(z) \rangle = z^2 \langle p_T^2 \rangle + \langle K_T^2 \rangle$

 $\langle p_T \rangle = 0.38$ $\langle K_T \rangle = 0.38$

 $\langle p_T^2 \rangle \simeq 0.185$ $\langle K_T^2 \rangle \simeq 0.185$

Tuning the Gaussians in gmc_trans now: $\langle P_{h\perp}^2(z) \rangle = z^2 \langle p_T^2 \rangle + \langle K_T^2(z) \rangle$

now z-dependent! tuned to HERMES data in acceptance "Hashi set"

Transversity 2008, Beijing

Gunar Schnell

Tuning the Gaussians in gmc_trans $\langle P_{h\perp}^2(z) \rangle = z^2 \langle p_T^2 \rangle + \langle K_T^2(z) \rangle$

z-dependent!

Transversity 2008, Beijing

Some Simple Models for Transversity & Friends

$$\begin{split} \delta u(x) &= \mathsf{0.7} \cdot \Delta u(x) \qquad f_{1T}^{\perp u}(x) = -\mathsf{0.3} \cdot u(x) \\ \delta d(x) &= \mathsf{0.7} \cdot \Delta d(x) \qquad f_{1T}^{\perp d}(x) = -\mathsf{0.9} \cdot d(x) \\ \delta q(x) &= \mathsf{0.3} \cdot \Delta q(x) \qquad f_{1T}^{\perp q}(x) = -\mathsf{0.0} \qquad q = \bar{u}, \bar{d}, s, \bar{s} \end{split}$$

$$H_{1,\text{fav}}^{\perp(1)}(z) = 0.65 \cdot D_{1,\text{fav}}(z)$$
$$H_{1,\text{dis}}^{\perp(1)}(z) = -1.30 \cdot D_{1,\text{dis}}(z)$$

GRSV for PDFs and Kretzer FF for *D*₁

Gunar Schnell

Generated vs. Extracted Amplitudes

Comparison for Weighted Moments

Not so good news for weighted moments

Gunar Schnell

GMC vs. Data Amplitudes

Gunar Schnell

GMC vs. Data Amplitudes

Positivity Limits Revisited

- least stringent positivity constraints only involve considered 'polarized' function and the corresponding unpolarized function, e.g., Sivers vs. f1
- more stringent relations arise from full density density matrix (e.g., Soffer relation for h₁ vs. g₁ and f₁):

A. Bacchetta, M. Boglione, A. Henneman, and P. Mulders, Phys. Rev. Lett. 85, 712 (2000).

$$\begin{pmatrix} f_{1} + g_{1L} & \frac{|p_{T}|}{M}e^{i\phi}(g_{1T} + if_{1T}^{\perp}) & \frac{|p_{T}|}{M}e^{-i\phi}(h_{1L}^{\perp} + ih_{1}^{\perp}) & 2h_{1} \\ \frac{|p_{T}|}{M}e^{-i\phi}(g_{1T} - if_{1T}^{\perp}) & f_{1} - g_{1L} & \frac{|p_{T}|^{2}}{M^{2}}e^{-2i\phi}h_{1T}^{\perp} & -\frac{|p_{T}|}{M}e^{-i\phi}(h_{1L}^{\perp} - ih_{1}^{\perp}) \\ \frac{|p_{T}|}{M}e^{i\phi}(h_{1L}^{\perp} - ih_{1}^{\perp}) & \frac{|p_{T}|^{2}}{M^{2}}e^{2i\phi}h_{1T}^{\perp} & f_{1} - g_{1L} & -\frac{|p_{T}|}{M}e^{i\phi}(g_{1T} - if_{1T}^{\perp}) \\ 2h_{1} & -\frac{|p_{T}|}{M}e^{i\phi}(h_{1L}^{\perp} + ih_{1}^{\perp}) & -\frac{|p_{T}|}{M}e^{-i\phi}(g_{1T} + if_{1T}^{\perp}) & f_{1} + g_{1L} \end{pmatrix}$$

has to be positive definite!

Gunar Schnell

Positivity Limits Revisited

- least stringent positivity constraints only involve considered 'polarized' function and the corresponding unpolarized function, e.g., Sivers vs. f1
- more stringent relations arise from full density density matrix (e.g., Soffer relation for h₁ vs. g₁ and f₁):

A. Bacchetta, M. Boglione, A. Henneman, and P. Mulders, Phys. Rev. Lett. 85, 712 (2000).

$$\begin{pmatrix} f_{1} + \mathfrak{g}_{L} & \frac{|p_{T}|}{M}e^{i\phi}(\mathfrak{g}_{T} + if_{1T}^{\perp}) & \frac{|p_{T}|}{M}e^{-i\phi}(\mathfrak{g}_{L} + i\mathfrak{g}_{L}^{\perp}) & 2h_{1} \\ \frac{|p_{T}|}{M}e^{-i\phi}(\mathfrak{g}_{T} - if_{1T}^{\perp}) & f_{1} - \mathfrak{g}_{L} & \frac{|p_{T}|^{2}}{M^{2}}e^{-2i\phi}\mathfrak{g}_{LT}^{\perp} & -\frac{|p_{T}|}{M}e^{-i\phi}(\mathfrak{g}_{L} - i\mathfrak{g}_{L}^{\perp}) \\ \frac{|p_{T}|}{M}e^{i\phi}(\mathfrak{g}_{L}^{\perp} - i\mathfrak{g}_{L}^{\perp}) & \frac{|p_{T}|^{2}}{M^{2}}e^{2i\phi}\mathfrak{g}_{LT}^{\perp} & f_{1} - \mathfrak{g}_{L} & -\frac{|p_{T}|}{M}e^{i\phi}(\mathfrak{g}_{L} - if_{1T}^{\perp}) \\ 2h_{1} & -\frac{|p_{T}|}{M}e^{i\phi}(\mathfrak{g}_{L}^{\perp} + i\mathfrak{g}_{L}^{\perp}) & -\frac{|p_{T}|}{M}e^{-i\phi}(\mathfrak{g}_{L}^{\perp} + if_{1T}^{\perp}) & f_{1} + \mathfrak{g}_{L} \end{pmatrix}$$

has to be positive definite!

Gunar Schnell

Positivity Limits Revisited

- least stringent positivity constraints only involve considered 'polarized' function and the corresponding unpolarized function, e.g., Sivers vs. f1
- more stringent relations arise from full helicity density matrix, e.g., Soffer relation for transversity vs. g₁ and f₁
 - A. Bacchetta, M. Boglione, A. Henneman, and P. Mulders, Phys. Rev. Lett. 85, 712 (2000).
- reanalysis yields a more complex positivity limit for Sivers:

$$\frac{\boldsymbol{p}_{\boldsymbol{T}}^{2}}{M^{2}} \left(f_{1T}^{\perp}(x, \boldsymbol{p}_{\boldsymbol{T}}^{2}) \right)^{2} \leq f_{1}(x, \boldsymbol{p}_{\boldsymbol{T}}^{2}) \left(f_{1}(x, \boldsymbol{p}_{\boldsymbol{T}}^{2}) - 2 |h_{1}(x, \boldsymbol{p}_{\boldsymbol{T}}^{2})| \right)$$

(required setting all other DF to zero)

Gunar Schnell

"Critique de Ferrara"

- "positivity limit has to involve either only f₁ or (almost) all PDFs"
- implemented positivity limit in gmc_trans (selfconsistently) involves only all in gmc_trans non-zero PDFs: f₁, h₁, Sivers (and if wanted BM)
- however, we know g₁ is not zero, thus at least g₁ has to be considered as well for gmc_trans to be realistic:

$$\frac{\boldsymbol{p}_{\boldsymbol{T}}^{2}}{M^{2}} \left(f_{1T}^{\perp}(x, \boldsymbol{p}_{\boldsymbol{T}}^{2}) \right)^{2} \leq \left\{ \left(f_{1}(x, \boldsymbol{p}_{\boldsymbol{T}}^{2}) \right)^{2} - \left(g_{1}(x, \boldsymbol{p}_{\boldsymbol{T}}^{2}) \right)^{2} \right\} \left\{ 1 - \frac{2 \left| h_{1}(x, \boldsymbol{p}_{\boldsymbol{T}}^{2}) \right|}{f_{1}(x, \boldsymbol{p}_{\boldsymbol{T}}^{2}) + g_{1}(x, \boldsymbol{p}_{\boldsymbol{T}}^{2})} \right\}$$

• which positivity constraint is stronger and what about other PDFs?

Gunar Schnell

Positivity for $g_1 = 0$ vs. $g_1 \neq 0$ $\Delta(P.L.) = (g_1(x, p_T^2))^2 - 2g_1(x, p_T^2) |h_1(x, p_T^2)|$

- for g₁<0 (e.g., down quarks) g₁=0 limit is <u>less</u> strict
- for g₁>0 (e.g., u-quarks) it depends on size of h₁
 so far in gmc_trans productions g₁=0 limit was <u>always less</u> strict
- nevertheless, now implemented P.L. check that involves g1 (and also BM function)
 - should check P.L. involving all functions, but too little known about other TMDs

"Problem" with Sea Quarks

	===== Check positivity limit for Transversity:		
	======== positivity violation:		
rks 🖦	iquark= -3: lhs= 24.5845945 > rhs= 0.5		
	iquark= -2: lhs= 0.48761702 < rhs= 0.5		
	iquark=-1:lhs= 0.08159421 < rhs= 0.5		
	iquark= 1:1hs= 0.35142772 < rhs= 0.5		
	iquark= 2:1hs= 0.25735636 < rhs= 0.5		
	======== positivity violation:		
rks 🖦	iquark= 3:1hs= 24.5845945 > rhs= 0.5		

 affected mainly (and strongly) strange-quark positivity limit

Gunar Schnell

s qua

aua

The Strange(!) Sea

f₁(x) + g₁(x) for strange quarks

LST(15) = 118; 'standard' scenario, leading order GRSV

• Q²=1

Soffer bound: |h₁(x)| < 0.5{f₁(x)+g₁(x)} can't be fulfilled for nonzero h₁

Sivers & Transversity Fits by Anselmino et al. $g_{I}\neq 0$

===== Check positivity limit for Transversity:	===== Check positivity limit for Transversity:
iquark = -2: $lhs = 0. < rhs = 0.5$	iquark = -2: lhs = 0. < rhs = 0.5
iquark=-1:1hs= 0. < rhs= 0.5	iquark= -1: lhs= 0. < rhs= 0.5
iquark= 1:1hs= 0.221290307 < rhs= 0.5	iquark= 1: lhs= 0.309999922 < rhs= 0.5
iquark= 2: lhs= 0.356384362 < rhs= 0.5	iquark= 2: lhs= 0.239999932 < rhs= 0.5
iquark= 3: lhs= 0. < rhs= 0.5	iquark= 3: lhs= 0. < rhs= 0.5
===== Check positivity limit for I-odd DFs:	====== Check positivity limit for I-odd DFs:
iquark= -3: lhs= 0.38756798 < rhs= 0.38756827	iquark= -3: lhs= 0.38756798 < rhs= 0.38756827
iquark= -2: lhs= 0.01550272 < rhs= 0.38756827	iquark= -2: lhs= 0.01550272 < rhs= 0.38756827
iquark=-1:1hs= 0.15502719 < rhs= 0.38756827	iquark = -1: lhs = 0.15502719 < rhs = 0.38756827
======== positivity violation!	======== positivity violation!
iguark= 1: lhs= 0.460370198 > rhs= 0.38756827	iguark = 1: lhs = 0.58568429 > rhs = 0.38756827

iquark= 2: lhs= 0.250900224 < rhs= 0.38756827 | iquark= 2: lhs= 0.21341756 < rhs= 0.38756827 | iquark= 3: lhs= 0.093016313 < rhs= 0.38756827 | iquark= 3: lhs= 0.09301631 < rhs= 0.38756827

- Sivers function rather close to positivity limit for anti-s
- Sivers function for d quarks 20% too large

Gunar Schnell

g1=0

Sivers & Transversity Fits by Anselmino et al.

====== Check positivity limit for Transversity: iquark= -3: lhs= 0. < rhs= 0.5 iquark= -2: lhs= 0. < rhs= 0.5 iquark= -1: lhs= 0. < rhs= 0.5 iquark= 1: lhs= 0.221290307 < rhs= 0.5 iquark= 2: lhs= 0.356384362 < rhs= 0.5 iquark= 3: lhs= 0. < rhs= 0.5

====== Check positivity limit for T-odd P iquark= -3: lhs= 0.38756798 < rhs= 0 iquark= -2: lhs= 0.01550272 < rhs= iquark= -1: lhs= 0.15502719 < ====== Check positivity iquark= -3: lhs= 0. <iquark= -2: lhs= iquark= -1: ll iquark= -

Check positivity limit for T-odd DFs: ark= -3: lhs= 0.38756798 < rhs= 0.38756827 iquark= -2: lhs= 0.01550272 < rhs= 0.38756827 iquark= -1: lhs= 0.15502719 < rhs= 0.38756827

====== positivity violation!
 iquark= 1: lhs= 0.4
 iquark= 2: lhs= 0.38756827
 iquark= 3: 0.38756827
 iquark= 3: 0.38756827
 iquark= 3: 0.38756827
 iquark= 3: lhs= 0.21341756 < rhs= 0.38756827
 iquark= 3: lhs= 0.09301631 < rhs= 0.38756827
 iquark= 3: lhs= 0.09301631 < rhs= 0.38756827

• Sivers function for d quarks 20% too large

Gunar Schnell

(finally) Dessert: the leaf of mint on the cake

Gunar Schnell

Beyond Collins and Sivers

- certainly would like to model all TMDs, e.g., Boer-Mulders function, to get full cross section
- even go to subleading-twist, e.g., Cahn effect
- first attempts to implement those have been made
- leading twist -- "straight forward" (just a few more convolution integrals)
- subleading twist -- "hmmmm..."
 - biggest problem there: positivity limits don't exist on DF and FF level

Current ToDo and Done List

- finish leading-twist implementation
- implement newest results from fits and model calculations on transversity, Sivers & Collins, ...
- add radiative corrections (e.g., RADGEN)
- make it portable to other experiments

(since Ferrara meeting:)

- Charged kaons and protons
- ✓ DSS FFs and published fits by Anselmino et al.
- neutron target

• comparison of HERMES and COMPASS data possible (but not yet done)

Gunar Schnell

Epilogue

Gunar Schnell

- Acceptance plays crucial part in analysis of multiparticle final states
- Acceptance studies and/or corrections (e.g., unfolding) require realistic Monte Carlo simulation of underlying physics
- gmc_trans provides Collins and Sivers amplitudes for pions and kaons based on Gaussian Ansatz for TMDs
- Positivity limits 🗯 smaller Gaussian width for TMDs
- Comparison of unpolarized hadron yield suggests z-dependent average fragmentation K_T
- Don't fully trust GRSV strange polarization at low Q²!
- Non-trivial role of unmeasured TMDs in fulfilling positivity of Sivers distribution

Gunar Schnell