QCD EVOLUTION 2021 UCLA QCD EVOLUTION WORKSHOP 2021

May 10-14, 2021 UCLA

Overview of recent HERMES results on transverse-momentum dependent spin asymmetries

Gunar.Schnell @ DESY.de

SIDIS: probing TMD PDFs through fragmentation

certain kinematic conditions

(TMD) $PDF \otimes (TMD) FF$

- scattering by partons
- sufficient energy for hadronization
- current vs. target fragmentation
- low enough transverse momentum for TMD factorization

π^0 final-state hadrons

iud

S _

 K^+

π

 π^0

Spin-momentum structure of the nucleon $\frac{1}{2} \operatorname{Tr} \left[\left(\gamma^{+} + \lambda \gamma^{+} \gamma_{5} \right) \Phi \right] = \frac{1}{2} \left| f_{1} + S^{i} \epsilon^{ij} k^{j} \frac{1}{m} f_{1T}^{\perp} + \lambda \Lambda g_{1} + \lambda S^{i} k^{i} \frac{1}{m} g_{1T} \right|$

 $\frac{1}{2} \operatorname{Tr} \left[\left(\gamma^{+} - s^{j} i \sigma^{+j} \gamma_{5} \right) \Phi \right] = \frac{1}{2} \left| f_{1} \right|$

Gunar Schnell

$$+ s^{i} (2k^{i}k^{j} - \mathbf{k}^{2}\delta^{ij})S^{j} \frac{1}{2m^{2}} h_{1T}^{\perp} + \Lambda s^{i}k^{i} \frac{1}{m} h_{1L}^{\perp}$$

- each TMD describes a particular spinmomentum correlation
- functions in black survive integration over transverse momentum
- functions in green box are chirally odd
- functions in red are naive T-odd

QCD-E 2021

Spin-momentum structure of the nucleon $\frac{1}{2} \operatorname{Tr} \left[\left(\gamma^{+} + \lambda \gamma^{+} \gamma_{5} \right) \Phi \right] = \frac{1}{2} \left| f_{1} + S^{i} \epsilon^{ij} k^{j} \frac{1}{m} f_{1T}^{\perp} + \lambda \Lambda g_{1} + \lambda S^{i} k^{i} \frac{1}{m} g_{1T} \right|$ $\frac{1}{2} \operatorname{Tr} \left[\left(\gamma^{+} - s^{j} i \sigma^{+j} \gamma_{5} \right) \Phi \right] = \frac{1}{2} \left| f_{1} + S^{i} \epsilon^{ij} k^{j} \frac{1}{m} f_{1T}^{\perp} + s^{i} \epsilon^{ij} k^{j} \frac{1}{m} h_{1}^{\perp} + s^{i} S^{i} h_{1} \right|$

 $+ s^{i} (2k^{i}k^{j} - \mathbf{k}^{2}\delta^{ij})S^{j} \frac{1}{2m^{2}} h_{1T}^{\perp} + \Lambda s^{i}k^{i} \frac{1}{m} h_{1L}^{\perp} \Big|$

- **Boer-Mulders**
- each TMD describes a particular spinmomentum correlation
- functions in black survive integration over transverse momentum
- pretzelosity
- functions in green box are chirally odd
- functions in red are naive T-odd

QCD-E 2021

Spin-momentum structure of the nucleon

$$+ S^{i} \epsilon^{ij} k^{j} \frac{1}{m} f_{1T}^{\perp} + \lambda \Lambda g_{1} + \lambda S^{i} k^{i} \frac{1}{m} g_{1T} \bigg]$$

$$+ S^{i} \epsilon^{ij} k^{j} \frac{1}{m} f_{1T}^{\perp} + s^{i} \epsilon^{ij} k^{j} \frac{1}{m} h_{1}^{\perp} + s^{i} S^{i} h_{1}$$

$$\left(2k^ik^j - \boldsymbol{k}^2\delta^{ij}\right)S^j\frac{1}{2m^2}\,\boldsymbol{h}_{1T}^{\perp} + \Lambda\,s^ik^i\frac{1}{m}\,\boldsymbol{h}_{1L}^{\perp}\right]$$

quark pol.

ron pol.		U	L	Т
	U	D_1		H_1^{\perp}
	L		G_1	H_{1L}^{\perp}
had	Τ	D_{1T}^{\perp}	G_{1T}^{\perp}	$H_1 H_{1T}^{\perp}$

Collins FF

Boer-Mulders

pretzelosity

2d kinematic phase space

2d kinematic phase space

the analysis of the z dependence.

2d kinematic phase space

Gunar Schnell

QCD-E 2021

U **U.D** current vs. tar

U **U.D** current vs. tar

U **U.**5 current vs. tar

selected hadrons at HERMES mainly forward-going in photon-nucleon c.m.s. Gunar Schnell

0

- TMD factorization requires a large scale (Q^2) and small transverse momentum
- overall, Q mainly larger than $P_{h\perp}$
- not fulfilled in all kinematic bins
- more challenging, especially at low x (=low Q^2), for more stringent constraint of $zQ \gg P_{h\perp}$

 $--- Q^2 = P^2_{h\perp}$

lowest x bin

lowest x bin

Gunar Schnell

--- $Q^2 = P^2_{h\perp}$ --- $Q^2 = 2 P^2_{h\perp}$ --- $Q^2 = 4 P^2_{h\perp}$

disclaimer: coloured lines drawn by hand

highest x bin

Gunar Schnell

disclaimer: coloured lines drawn by hand

highest x bin

Gunar Schnell

 $--- Q^2 = P^2_{h\perp}/z^2$ $Q^2 = 2 P^2_{h\perp}/z^2$ --- $Q^2 = 4 P^2_{h\perp}/z^2$

all other kinematic bins included in the Supplemental Material of <u>JHEP12(2020)010</u>

some recent highlights

excluding transverse polarization:

$$\frac{\mathrm{d}\sigma^{h}}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P_{h\perp}^{2}\,\mathrm{d}\phi} = \frac{2\pi\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\epsilon)}\left(\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \lambda\Lambda\sqrt{1-\epsilon^{2}}F_{LL}^{h}\right\} + \sqrt{2\epsilon}\left[\lambda\sqrt{1-\epsilon}F_{LU}^{h,\sin\phi} + \Lambda\sqrt{1+\epsilon}\right] + \sqrt{2\epsilon}\left[\lambda\sqrt{1-\epsilon}F_{LU}^{h,\sin\phi} + \sqrt{1+\epsilon}\right]$$

 $+\Lambda\epsilon F_{UL}^{h,\sin 2\phi}\sin 2\phi + \epsilon F_{UU}^{h,\cos 2\phi}\cos 2\phi$

Gunar Schnell

excluding transverse polarization:

$$\frac{\mathrm{d}\sigma^{h}}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P_{h\perp}^{2}\,\mathrm{d}\phi} = \frac{2\pi\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\epsilon)}\left(\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \lambda\Lambda\sqrt{1-\epsilon^{2}}F_{LL}^{h}\right.\right.\right.$$
$$\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \lambda\Lambda\sqrt{1-\epsilon^{2}}F_{LL}^{h}\right.$$
$$\left. + \sqrt{2\epsilon}\left[\lambda\sqrt{1-\epsilon}F_{LU}^{h,\sin\phi} + \Lambda\sqrt{1+\epsilon\epsilon}\right.\right.$$
$$\left. + \sqrt{2\epsilon}\left[\lambda\Lambda\sqrt{1-\epsilon}F_{LL}^{h,\cos\phi} + \sqrt{1+\epsilon\epsilon}\right.\right.$$
$$\left. + \Lambda\epsilon F_{UL}^{h,\sin2\phi}\sin2\phi + \epsilon F_{UU}^{h,\cos2\phi}\right.\right]$$

double-spin asymmetry:

Gunar Schnell

- in experiment extract instead A_{||} which differs from A_{LL} in the way the polarization is measured:
 - ALL: along virtual-photon direction
 - All: along beam direction (results in small admixture of transverse target polarization and thus contributions from A_{LT})
- All related to virtual-photon-nucleon asymmetry A1

$$A_1^h = \frac{1}{D(1+\eta\gamma)} A_{\parallel}^h$$

$$D = \frac{1 - (1 - y)\epsilon}{1 + \epsilon R}$$

$$\eta = \frac{\epsilon \gamma y}{1 - (1 - y) \epsilon}$$

re-analysis of double-spin asymmetries

- revisited [PRD 71 (2005) 012003] A1 analysis at HERMES in order to
 - exploit slightly larger data set (less restrictive momentum range)
 - provide A_{\parallel} in addition to A_1

$$A_1^h = \frac{1}{D(1+\eta\gamma)} A_{\parallel}^h$$

R (ratio of longitudinal-to-transverse cross-sec'n) still to be measured! [only available for inclusive DIS data, e.g., used in g1 SF measurements]

- correct for D-state admixture (deuteron case) on asymmetry level
- correct better for azimuthal asymmetries coupling to acceptance
- look at multi-dimensional (x, z, $P_{h\perp}$) dependences
- extract twist-3 cosine modulations

$$D = \frac{1 - (1 - y)\epsilon}{1 + \epsilon R}$$

x dependence of A_{||}

If fully consistent with previous HERMES publication [PRD 71 (2005) 012003]

Gunar Schnell

19

no strong dependence (beyond on x)

 $P_{h\perp}$ dependence of $A_{||}$ (three x ranges)

$P_{h\perp}$ dependence of $A_{||}$ (three x ranges)

no strong dependence (beyond on x)

also fit to A1 fit does not favor an additional dependence on $P_{h\perp}$ Gunar Schnell

3-dimensional binning

• first-ever 3d binning provides transverse-momentum dependence

3-dimensional binning

- first-ever 3d binning provides transverse-momentum dependence
- but also extra flavor sensitivity, e.g.,
 - π^{-} asymmetries mainly coming from low-z region where disfavored fragmentation large and thus sensitivity to the large positive up-quark polarization

 $A_1^{h^+ - h^-}(x) \equiv \frac{\left(\sigma_{1/2}^{h^+} - \frac{\sigma_{1/2}^{h^+}}{\sigma_{1/2}^{h^+}}\right)}{\left(\sigma_{1/2}^{h^+} - \frac{\sigma_{1/2}^{h^+}}{\sigma_{1/2}^{h^+}}\right)}$

Gunar Schnell

$$\begin{aligned} & -\sigma_{1/2}^{h^-} \right) - \left(\sigma_{3/2}^{h^+} - \sigma_{3/2}^{h^-} \right) \\ & -\sigma_{1/2}^{h^-} \right) + \left(\sigma_{3/2}^{h^+} - \sigma_{3/2}^{h^-} \right) \end{aligned} \tag{0.8}$$

0.2

0-

0.2

0-

$$A_{1}^{h^{+}-h^{-}}(x) \equiv \frac{\left(\sigma_{1/2}^{h^{+}} - \sigma_{1/2}^{h^{-}}\right) - \left(\sigma_{3/2}^{h^{+}} - \sigma_{3/2}^{h^{-}}\right)}{\left(\sigma_{1/2}^{h^{+}} - \sigma_{1/2}^{h^{-}}\right) + \left(\sigma_{3/2}^{h^{+}} - \sigma_{3/2}^{h^{-}}\right)} \qquad \qquad \textbf{0.8}$$

0.2 • at leading-order and leading-twist, assuming charge conjugation sy fragmentation functions: 0-

 $A_{1,d}^{h^+ - h^- L}$

Gunar Schnell

$$\underbrace{\stackrel{\text{O LT}}{=} \frac{g_1^{u_v} + g_1^{d_v}}{f_1^{u_v} + f_1^{d_v}} }_{ 1$$

0.2

$$A_{1}^{h^{+}-h^{-}}(x) \equiv \frac{\left(\sigma_{1/2}^{h^{+}} - \sigma_{1/2}^{h^{-}}\right) - \left(\sigma_{3/2}^{h^{+}} - \sigma_{3/2}^{h^{-}}\right)}{\left(\sigma_{1/2}^{h^{+}} - \sigma_{1/2}^{h^{-}}\right) + \left(\sigma_{3/2}^{h^{+}} - \sigma_{3/2}^{h^{-}}\right)} \qquad \qquad \textbf{0.8}$$

• at leading-order and leading-twist, assuming charge conjugation syl fragmentation functions:

 $A_{1,d}^{h^+-h^- L}$

assuming also isospin symmetry in fragmentation:

 $A_{1.n}^{h^+ - h^- \ \text{L}}$

Gunar Schnell

$$\stackrel{\text{O LT}}{=} \frac{g_1^{u_v} + g_1^{d_v}}{f_1^{u_v} + f_1^{d_v}}$$

$$\stackrel{\text{lo lt}}{=} \frac{4g_1^{u_v} - g_1^{d_v}}{4f_1^{u_v} - f_1^{d_v}}$$

0.2

0.2

0-

$$A_{1}^{h^{+}-h^{-}}(x) \equiv \frac{\left(\sigma_{1/2}^{h^{+}} - \sigma_{1/2}^{h^{-}}\right) - \left(\sigma_{3/2}^{h^{+}} - \sigma_{3/2}^{h^{-}}\right)}{\left(\sigma_{1/2}^{h^{+}} - \sigma_{1/2}^{h^{-}}\right) + \left(\sigma_{3/2}^{h^{+}} - \sigma_{3/2}^{h^{-}}\right)} \qquad \qquad \textbf{0.8}$$

• at leading-order and leading-twist, assuming charge conjugation syl fragmentation functions:

$$A_{1,d}^{h^+ - h^-} \stackrel{\text{lolt}}{=} \frac{g_1^{u_v} + g_1^{d_v}}{f_1^{u_v} + f_1^{d_v}}$$

assuming also isospin symmetry in fragmentation:

 $A_{1}^{h^{+}-h^{-}}$

• can be used to extract valence helicity distributions

Gunar Schnell

$$= \frac{4g_1^{u_v} - g_1^{d_v}}{4f_1^{u_v} - f_1^{d_v}}$$

0.2

0-

Gunar Schnell

- no significant hadron-type dependence for deuterons
- deuteron results (unidentified hadrons) consistent with COMPASS

QCD-E 2021

Gunar Schnell

- no significant hadron-type dependence for deuterons
- deuteron results (unidentified hadrons) consistent with COMPASS
- valence distributions consistent with JETSET-based extraction:

X QCD-E 2021

excluding transverse polarization:

$$\frac{\mathrm{d}\sigma^{h}}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P_{h\perp}^{2}\,\mathrm{d}\phi} = \frac{2\pi\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\epsilon)}\left(\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \lambda\Lambda\sqrt{1-\epsilon^{2}}F_{LL}^{h}\right\}\right)\right)$$

$$+\sqrt{2\epsilon}\left[\lambda\sqrt{1-\epsilon}F_{LU}^{h,\sin\phi} + \Lambda\sqrt{1+\epsilon}\right]$$

$$+\sqrt{2\epsilon}\left[\lambda\sqrt{1-\epsilon}F_{LL}^{h,\cos\phi} + \sqrt{1+\epsilon}\right]$$

 $+\Lambda\epsilon F_{UL}^{h,\sin 2\phi}\sin 2\phi + \epsilon F_{UU}^{h,\cos 2\phi}\cos 2\phi \left.\right\}$

Gunar Schnell

excluding transverse polarization:

$$\frac{\mathrm{d}\sigma^{h}}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P_{h\perp}^{2}\,\mathrm{d}\phi} = \frac{2\pi\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\epsilon)}\left(\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \lambda\Lambda\sqrt{1-\epsilon^{2}}F_{LL}^{h}\right\} + \sqrt{2\epsilon}\left[\lambda\sqrt{1-\epsilon}F_{LU}^{h,\sin\phi} + \Lambda\sqrt{1+\epsilon}\right] + \sqrt{2\epsilon}\left[\lambda\sqrt{1-\epsilon}F_{LU}^{h,\sin\phi} + \sqrt{1+\epsilon}F_{LL}^{h,\cos\phi} + \sqrt{1+\epsilon}\right]$$

$$+\Lambda\epsilon F_{UL}^{h,\sin 2\phi}\sin 2\phi + \epsilon F_{UU}^{h,\cos 2\phi}$$

single-spin asymmetry:

Gunar Schnell

semi-inclusive DIS

- naive-T-odd Boer-Mulders (BM) function coupled to a twist-3 FF
 - signs of BM from unpolarized SIDIS
 - Ittle known about interaction-dependent FF

 $\frac{M_h}{M_z}h_1^{\perp}\tilde{E} \oplus xg^{\perp}D_1 \oplus \frac{M_h}{M_z}f_1\tilde{G}^{\perp} \oplus xeH_1^{\perp}$

- naive-T-odd Boer-Mulders (BM) function coupled to a twist-3 FF
 - signs of BM from unpolarized SIDIS
 - Ittle known about interaction-dependent FF
- little known about naive-T-odd g^{\perp} ; singled out in A_{LU} in jet production

 $\frac{M_h}{M_z} h_1^{\perp} \tilde{E} \oplus xg^{\perp} D_1 \oplus \frac{M_h}{M_z} f_1 \tilde{G}^{\perp} \oplus xeH_1^{\perp}$

- naive-T-odd Boer-Mulders (BM) function coupled to a twist-3 FF
 - signs of BM from unpolarized SIDIS
 - Ittle known about interaction-dependent FF
- little known about naive-T-odd g^{\perp} ; singled out in A_{LU} in jet production
- Iarge unpolarized f₁, coupled to interaction-dependent FF

 $\frac{M_h}{M_z}h_1^{\perp}\tilde{E} \oplus xg^{\perp}D_1 \oplus \frac{M_h}{M_z}f_1\tilde{G}^{\perp} \oplus xeH_1^{\perp}$

- naive-T-odd Boer-Mulders (BM) function coupled to a twist-3 FF
 - signs of BM from unpolarized SIDIS
 - Ittle known about interaction-dependent FF
- little known about naive-T-odd g^{\perp} ; singled out in A_{LU} in jet production
- Iarge unpolarized f₁, coupled to interaction-dependent FF
- twist-3 e survives integration over $P_{h\perp}$; here coupled to Collins FF
 - e linked to the pion-nucleon σ -term
 - being struck by virtual photon

 $\frac{M_h}{M_z}h_1^{\perp}\tilde{E} \oplus xg^{\perp}D_1 \oplus \frac{M_h}{M_z}f_1\tilde{G}^{\perp} \oplus xeH_1^{\perp}$

Interpreted as color force (from remnant) on transversely polarized quarks at the moment of

3d beam-helicity asymmetry for π^{-}

Gunar Schnell

most comprehensive presentation, for discussion use 1d binning 29

 $\frac{M_h}{Mz}h_1^{\perp}\tilde{E} \oplus xg^{\perp}D_1 \oplus \frac{M_h}{Mz}f_1\tilde{G}^{\perp} \oplus xeH_1^{\perp}$

[arXiv:1903.08544]

30

[arXiv:1903.08544]

[arXiv:1903.08544]

opposite behavior at HERMES/CLAS of negative pions in z projection due to different x-range probed

Gunar Schnell

[arXiv:1903.08544]

- CLAS more sensitive to $e(x) \otimes$ Collins term due to higher x probed?

Gunar Schnell

opposite behavior at HERMES/CLAS of negative pions in z projection due to different x-range probed

[arXiv:1903.08544]

• CLAS more sensitive to $e(x) \otimes$ Collins term due to higher x probed?

consistent behavior for charged pions / hadrons at HERMES / COMPASS for isoscalar targets Gunar Schnell 32

 $\frac{M_h}{Mz}h_1^{\perp}\tilde{E} \oplus xg^{\perp}D_1 \oplus \frac{M_h}{Mz}f_1\tilde{G}^{\perp} \oplus xeH_1^{\perp}$

opposite behavior at HERMES/CLAS of negative pions in z projection due to different x-range probed

with transverse target polarization:

$$\begin{aligned} \frac{\mathrm{d}\sigma^{h}}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P_{h\perp}^{2}\,\mathrm{d}\phi\,\mathrm{d}\phi_{s}} &= \frac{2\pi\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\epsilon)}\left(1+\frac{\gamma^{2}}{2x}\right) \\ \left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \text{terms not involving transv. polarization} \right. \\ &+ S_{T}\left[\left(F_{UT,T}^{h,\sin\left(\phi-\phi_{s}\right)} + \epsilon F_{UT,L}^{h,\sin\left(\phi-\phi_{s}\right)}\right)\sin\left(\phi-\phi_{s}\right) \\ &+ \epsilon F_{UT}^{h,\sin\left(\phi+\phi_{s}\right)}\sin\left(\phi+\phi_{s}\right) + \epsilon F_{UT}^{h,\sin\left(3\phi-\phi_{s}\right)}\sin\left(3\phi-\phi_{s}\right) \\ &+ \sqrt{2\epsilon(1+\epsilon)}F_{UT}^{h,\sin\phi_{s}}\sin\phi_{s} + \sqrt{2\epsilon(1+\epsilon)}F_{UT}^{h,\sin\left(2\phi-\phi_{s}\right)}\sin\left(2\phi-\phi_{s}\right)\right] \\ &+ S_{T}\lambda\left[\sqrt{1-\epsilon^{2}}F_{LT}^{h,\cos\left(\phi-\phi_{s}\right)}\cos\left(\phi-\phi_{s}\right) \\ &+ \sqrt{2\epsilon(1-\epsilon)}F_{LT}^{h,\cos\phi_{s}}\cos\phi_{s} + \sqrt{2\epsilon(1-\epsilon)}F_{LT}^{h,\cos\left(2\phi-\phi_{s}\right)}\cos\left(2\phi-\phi_{s}\right)\right] \right\} \end{aligned}$$

Gunar Schnell

semi-inclusive DIS

with transverse target polarization:

$$\begin{aligned} \frac{\mathrm{d}\sigma^{h}}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P_{h\perp}^{2}\,\mathrm{d}\phi\,\mathrm{d}\phi_{s}} &= \frac{2\pi\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\epsilon)}\left(1+\frac{\gamma^{2}}{2x}\right) \\ \left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \text{ terms not involving transv. polarization} \right. \\ &+ S_{T}\left[\left(F_{UT,T}^{h,\sin\left(\phi-\phi_{s}\right)} + \epsilon F_{UT,L}^{h,\sin\left(\phi-\phi_{s}\right)}\right)\sin\left(\phi-\phi_{s}\right) \\ &+ \epsilon F_{UT}^{h,\sin\left(\phi+\phi_{s}\right)}\sin\left(\phi+\phi_{s}\right) + \epsilon F_{UT}^{h,\sin\left(3\phi-\phi_{s}\right)}\sin\left(3\phi-\phi_{s}\right) \\ &+ \sqrt{2\epsilon(1+\epsilon)}F_{UT}^{h,\sin\phi_{s}}\sin\phi_{s} + \sqrt{2\epsilon(1+\epsilon)}F_{UT}^{h,\sin\left(2\phi-\phi_{s}\right)}\sin\left(2\phi-\phi_{s}\right) \\ &+ S_{T}\lambda\left[\sqrt{1-\epsilon^{2}}F_{LT}^{h,\cos\left(\phi-\phi_{s}\right)}\cos\left(\phi-\phi_{s}\right) \\ &+ \sqrt{2\epsilon(1-\epsilon)}F_{LT}^{h,\cos\phi_{s}}\cos\phi_{s} + \sqrt{2\epsilon(1-\epsilon)}F_{LT}^{h,\cos\left(2\phi-\phi_{s}\right)}\cos\left(2\phi-\phi_{s}\right)\right] \end{aligned}$$

Gunar Schnell

semi-inclusive DIS

with transverse target polarization:

$$\frac{\mathrm{d}\sigma^{h}}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}P_{h\perp}^{2}\,\mathrm{d}\phi\,\mathrm{d}\phi_{s}} = \frac{2\pi\alpha^{2}}{xyQ^{2}}\frac{y^{2}}{2(1-\epsilon)}\left(1+\frac{\gamma^{2}}{2x}\right)$$

$$\left\{F_{UU,T}^{h} + \epsilon F_{UU,L}^{h} + \text{ terms not involving transv.}\right.$$

$$+ S_{T}\left[\left(F_{UT,T}^{h,\sin\left(\phi-\phi_{s}\right)} + \epsilon F_{UT,L}^{h,\sin\left(\phi-\phi_{s}\right)}\right)\sin\left(\phi-\phi_{s}\right)\right] + \epsilon F_{UT}^{h,\sin\left(\phi+\phi_{s}\right)}\sin\left(\phi+\phi_{s}\right) + \epsilon F_{UT}^{h,\sin\left(\phi+\phi_{s}\right)}\sin\left(\phi+\phi_{s}\right) + \epsilon F_{UT}^{h,\sin\left(\phi+\phi_{s}\right)}\sin\left(\phi+\phi_{s}\right) + \epsilon F_{UT}^{h,\sin\left(\phi+\phi_{s}\right)}\sin\left(\phi+\phi_{s}\right) + \epsilon F_{UT}^{h,\sin\left(\phi+\phi_{s}\right)}\sin\left(\phi-\phi_{s}\right)$$

$$+ \sqrt{2\epsilon(1+\epsilon)}F_{LT}^{h,\cos\left(\phi-\phi_{s}\right)}\cos\left(\phi-\phi_{s}\right)$$

$$+ \sqrt{2\epsilon(1-\epsilon)}F_{LT}^{h,\cos\phi_{s}}\cos\phi_{s} + \sqrt{2\epsilon}$$

Gunar Schnell

semi-inclusive DIS

[A. Airapetian et al., JHEP12(2020)010]

Gunar Schnell

Sivers amplitudes for pions

- high-z data probes region where contributions from exclusive vector-meson production becomes significant
- only last z bin shows indication of sizable ρ^0 contribution (decaying into charged pions)

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

Sivers amplitudes pions vs. (anti)protons

similar-magnitude asymmetries for (anti)protons and pions

consequence of u-quark dominance in both cases?

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

Sivers amplitudes pions vs. (anti)protons

similar-magnitude asymmetries for (anti)protons and pions consequence of u-quark dominance in both cases?

possibly, onset of target fragmentation only at lower z

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

Sivers amplitudes pions vs. (anti)protons

similar-magnitude asymmetries for (anti)protons and pions

consequence of u-quark dominance in both cases?

possibly, onset of target fragmentation only at lower z

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

Sivers amplitudes multi-dimensional analysis

- 3d analysis: 4x4x4 bins in $(x, z, P_{h\perp})$
 - reduced systematics
 - disentangle correlations
 - isolate phase-space region with large signal strength

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

Sivers amplitudes multi-dimensional analysis

- 3d analysis: 4x4x4 bins in $(x, z, P_{h\perp})$
 - reduced systematics
 - disentangle correlations
 - isolate phase-space region with large signal strength
- allows more detailed comparison with calculations

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

Sivers amplitudes multi-dimensional analysis

- 3d analysis: 4x4x4 bins in $(x, z, P_{h\perp})$
 - reduced systematics
 - disentangle correlations
 - isolate phase-space region with large signal strength
- allows more detailed comparison with calculations
- accompanied by kinematic distribution to guide phenomenology

TMDs: from JLab to EIC - May 6-7, 2021

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

new HERMES results on Collins amplitudes

- results for (anti-)protons consistent with zero vanishing Collins effect for (spin-1/2) baryons?
- analysis now performed in 3d, both including or not including kinematic "depolarization" prefactor

Gunar Schnell

high-z region probes transition region to exclusive domain (with increasing amplitudes for positive pions and kaons) 40 TMDs: from JLab to EIC - May 6-7, 2021

Clearly non-zero asymmetries with opposite sign for charged pions (Collins-like behavior)

striking z dependence and in particular magnitude

Gunar Schnell

subleading twist $-\langle sin(\phi_s) \rangle_{UT}$

Clearly non-zero asymmetries with opposite sign for charged pions (Collins-like behavior)

- striking z dependence and in particular magnitude
- hint of Q suppression

- chiral even, couples to D₁
- evidences from
 - ³He target at JLab
 - H target at COMPASS & HERMES

2 $\langle \cos(\phi - \phi_S) / (1 - \epsilon^2)^{1/2} \rangle_{L_{-}}$ 0.3 0.2 0.1 -0 -0.1 -0.2 -0.3 0.3 0.2 0.1 -0 -0.1 -0.2 -0.3

Gunar Schnell

Worm-Gear II

[A. Airapetian et al., arXiv:2007.07755]

HERMES continues producing results

- Intest three publications provide 3-dimensional presentations of longitudinal and transverse SSA and DSA
 - completes the TMD analysis of single-hadron production
 - by now, basically all but one (A_{UL}) asymmetries extracted in three or even four dimensions — a rich data set on transverse-momentum distributions
- multi-d analyses not only important to reduce experimental systematics but also to permit the isolation of the phase space of interest
- complementary to data from other facilities, and needed for evolution studies
- paves the way to high-statistics measurements of JLab12 and the future EIC

Gunar Schnell

conclusions

backup slides

 $A_{\parallel}^{h} \equiv \frac{C_{\phi}^{h}}{f_{D}} \left[\frac{L_{\Rightarrow} N_{\rightleftharpoons}^{h} - L_{\rightleftharpoons} N_{\Rightarrow}^{h}}{L_{P,\Rightarrow} N_{\rightleftharpoons}^{h} + L_{P,\rightleftharpoons} N_{\Rightarrow}^{h}} \right]_{\mathrm{R}}$

double-spin asymmetry A_{||}

double-spin asymmetry A_{||}

 $A^{h}_{\parallel} \equiv \frac{C^{h}_{\phi}}{f_{D}} \left[\frac{L_{\Rightarrow} N^{h}_{\rightleftharpoons} - L_{\rightleftharpoons} N^{h}_{\Rightarrow}}{L_{P,\Rightarrow} N^{h}_{\rightleftharpoons} + L_{P,\rightleftharpoons} N^{h}_{\Rightarrow}} \right]_{\mathrm{R}}$

double-spin asymmetry A_{||}

 $A^{h}_{\parallel} \equiv \frac{C^{h}_{\phi}}{f_{D}} \left[\frac{L_{\Rightarrow} N^{h}_{\rightleftharpoons} - L_{\rightleftharpoons} N^{h}_{\Rightarrow}}{L_{P,\Rightarrow} N^{h}_{\rightleftharpoons} + L_{P,\rightleftharpoons} N^{h}_{\Rightarrow}} \right]_{B}$

double-spin asymmetry A_{||}

luminosities. $\frac{C_{\phi}^{h}}{f_{D}} \left[\frac{L_{\Rightarrow} N_{\rightleftharpoons}^{h} - L_{\rightleftharpoons} N_{\Rightarrow}^{h}}{L_{P,\Rightarrow} N_{\rightleftharpoons}^{h} + L_{P,\rightleftharpoons} N_{\Rightarrow}^{h}} \right]_{\mathsf{R}}$

double-spin asymmetry A_{||}

double-spin asymmetry A_{||}

 $A_{\parallel}^{h} \equiv \frac{C_{\phi}^{h}}{f_{D}} \left[\frac{L_{\Rightarrow} N_{\rightleftharpoons}^{h} - L_{\rightleftharpoons} N_{\Rightarrow}^{h}}{L_{P,\Rightarrow} N_{\rightleftharpoons}^{h} + L_{P,\rightleftharpoons} N_{\Rightarrow}^{h}} \right]_{\mathrm{R}}$

double-spin asymmetry A

• dominated by statistical uncertainties

Gunar Schnell

double-spin asymmetry A_{||}

 $A^{h}_{\parallel} \equiv \frac{C^{h}_{\phi}}{f_{D}} \left[\frac{L_{\Rightarrow} N^{h}_{\rightleftharpoons} - L_{\rightleftharpoons} N^{h}_{\Rightarrow}}{L_{P,\Rightarrow} N^{h}_{\rightleftharpoons} + L_{P,\rightleftharpoons} N^{h}_{\Rightarrow}} \right]_{\mathsf{R}}$

- dominated by statistical uncertainties
- main systematics arise from
 - polarization measurements [6.6% for hydrogen, 5.7% for deuterium)
 - azimuthal correction [O(few %)]

Gunar Schnell

double-spin asymmetry A

 $A^{h}_{\parallel} \equiv \frac{C^{h}_{\phi}}{f_{D}} \left[\frac{L_{\Rightarrow} N^{h}_{\rightleftharpoons} - L_{\rightleftharpoons} N^{h}_{\Rightarrow}}{L_{P,\Rightarrow} N^{h}_{\rightleftharpoons} + L_{P,\rightleftharpoons} N^{h}_{\Rightarrow}} \right]_{\mathsf{R}}$

measured

• both numerator and in particular denominator ϕ dependent

- in theory integrated out
- in praxis, detector acceptance also ϕ dependent

Gunar Schnell

convolution of physics & acceptance leads to bias in normalization of asymmetries

measured

• both numerator and in particular denominator ϕ dependent

in theory integrated out

• in praxis, detector acceptance also ϕ dependent

convolution of physics & acceptance leads to bias in normalization of asymmetries

implement data-driven model for azimuthal modulations [PRD 87 (2013) 012010] into MC extract correction factor & apply to data

Gunar Schnell

z dependence of $A_{||}$ (three x ranges)

in general, no strong z-dependence visible

Gunar Schnell

$A_{LU}^{h} \stackrel{\text{M.L. fit}}{\simeq} \sqrt{2\epsilon(1-\epsilon)} A_{LU}^{h,\sin\phi} \sin\phi$

Gunar Schnell

choice of fitting function

 $A_{LU}^{h} \simeq \sqrt{2\epsilon(1-\epsilon)} \; \frac{F_{LU}^{h,\sin\phi}}{F_{UU}^{h}} \; \sin\phi$ $A_{LU}^{h} \stackrel{\text{M.L. fit}}{\simeq} \tilde{A}_{LU}^{h,\sin\phi} \sin\phi$

 $A_{LU}^{h} \stackrel{\text{M.L. fit}}{\simeq} \sqrt{2\epsilon(1-\epsilon)} A_{LU}^{h,\sin\phi} \sin\phi$

dependences by removing known dependences

Gunar Schnell

choice of fitting function

- Ieft one facilitates comparisons between experiments and simplifies kinematic
 - what about twist suppression and other kinematically suppressed contributions?

dependences by removing known dependences

• asymmetry amplitudes extracted by minimizing

$$-\ln \mathbb{L} = -\sum_{i} w_{i} \ln \left[1 + P_{B,i} \sqrt{2\epsilon_{i}(1-\epsilon_{i})} A_{LU}^{h,\sin(\phi)} \sin(\phi_{i}) \right]$$

where w_i is event weight from hadron-ID, charge-symmetric BG etc.

Gunar Schnell

choice of fitting function

- Ieft one facilitates comparisons between experiments and simplifies kinematic
 - what about twist suppression and other kinematically suppressed contributions?

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

- chiral-odd >> needs Collins FF (or similar)
- ¹H, ²H & ³He data consistently small
- cancelations? pretzelosity=zero? or just the additional suppression by two powers of $P_{h\perp}$

Gunar Schnell

Pretzelosity

Subtracting mesons from decay of excl. VM production

Multiplicity \mathbf{Q} **10**⁻¹ 0 **10**⁻¹ **10⁻²** corrected uncorrected Batio 1.4 1.2 **0.8** 0.6 1.4 **K**⁺ N 1.2 · **. Y. . Y. . . X 0.8** 0.6 0.6 0.8 0.2 0.2 0.4 0.4 0.6 **8.0** Ζ

PHYSICAL REVIEW D 87, 074029 (2013)

Gunar Schnell

"corrected" should better read "VM subtracted"

FIG. 3 (color online). Fraction of mesons generated by the decay of exclusive vector mesons as a function of z, from PYTHIA (see text). The widths of the bands indicate the uncertainty in the corresponding fractions. The vertical dashed lines are the limits in z used in the multiplicity extractions.

Gunar Schnell

hadron production at HERMES

- forward-acceptance favors current fragmentation
- backward rapidity populates large- $P_{h\perp}$ region [as expected]
- rapidity distributions available for all kinematic bins (e.g., highest-x bin protons)

current vs. target fragmentation

Gunar Schnell

QCD-E 2021

10² 10 1

1

TMD factorization: a 2-scale problem

lowest x bin

Gunar Schnell

-- $Q^2 = P^2_{h\perp}/z^2$

all other x-bins included in the Supplemental Material of JHEP12(2020)010

- theory done w.r.t. virtual-photon direction
- experiments use targets polarized w.r.t. lepton-beam direction

Gunar Schnell

- theory done w.r.t. virtual-photon direction
- experiments use targets polarized w.r.t. lepton-beam direction
- mixing of longitudinal and transverse polarization effects [Diehl & Sapeta, EPJ C 41 (2005) 515], e.g.,

$$\begin{pmatrix} \left\langle \sin \phi \right\rangle_{UL}^{\mathsf{I}} \\ \left\langle \sin(\phi - \phi_S) \right\rangle_{UT}^{\mathsf{I}} \\ \left\langle \sin(\phi + \phi_S) \right\rangle_{UT}^{\mathsf{I}} \end{pmatrix}^{\mathsf{I}} = \begin{pmatrix} \cos \theta_{\gamma^*} \\ \frac{1}{2} \sin \theta_{\gamma^*} \\ \frac{1}{2} \sin \theta_{\gamma^*} \\ \frac{1}{2} \sin \theta_{\gamma^*} \end{pmatrix}$$

Gunar Schnell

 $\mathbf{P}_{h\perp}$ \mathbf{P}_h

 $\begin{array}{ccc} -\sin\theta_{\gamma^{*}} & -\sin\theta_{\gamma^{*}} \\ \cos\theta_{\gamma^{*}} & 0 \\ 0 & \cos\theta_{\gamma^{*}} \end{array} \right) \left(\begin{array}{c} \left\langle \sin\phi \right\rangle_{UL}^{\mathsf{q}} \\ \left\langle \sin(\phi - \phi_{S}) \right\rangle_{UT} \\ \left\langle \sin(\phi + \phi_{S}) \right\rangle_{UT} \end{array} \right)$

- theory done w.r.t. virtual-photon direction
- experiments use targets polarized w.r.t. lepton-beam direction
- mixing of longitudinal and transverse polarization effects [Diehl & Sapeta, EPJ C 41 (2005) 515], e.g.,

$$\begin{pmatrix} \left\langle \sin \phi \right\rangle_{UL}^{\mathsf{I}} \\ \left\langle \sin(\phi - \phi_S) \right\rangle_{UT}^{\mathsf{I}} \\ \left\langle \sin(\phi + \phi_S) \right\rangle_{UT}^{\mathsf{I}} \end{pmatrix}^{\mathsf{I}} = \begin{pmatrix} \cos \theta_{\gamma^*} \\ \frac{1}{2} \sin \theta_{\gamma^*} \\ \frac{1}{2} \sin \theta_{\gamma^*} \\ \frac{1}{2} \sin \theta_{\gamma^*} \end{pmatrix}$$

need data on same target for both polarization orientations!

Gunar Schnell

 $\begin{array}{ccc} -\sin\theta_{\gamma^{*}} & -\sin\theta_{\gamma^{*}} \\ \cos\theta_{\gamma^{*}} & 0 \\ 0 & \cos\theta_{\gamma^{*}} \end{array} \right) \left(\begin{array}{c} \left\langle \sin\phi \right\rangle_{UL}^{\mathsf{q}} \\ \left\langle \sin(\phi - \phi_{S}) \right\rangle_{UT} \\ \left\langle \sin(\phi + \phi_{S}) \right\rangle_{UT} \end{array} \right)$

 $\mathbf{P}_{h\perp}$

 \mathbf{P}_h

- theory done w.r.t. virtual-photon direction
- experiments use targets polarized w.r.t. lepton-beam direction
- mixing of longitudinal and transverse polarization effects

Gunar Schnell

 $\mathbf{P}_{h\perp}$ \mathbf{P}_h S $\int x$

