

Exclusive processes at hermes

Generalized parton distributions

 I believe Peter has done a good job this morning introducing generalized parton distributions (GPDs) ...

Generalized parton distributions

 I believe Peter has done a good job this morning introducing generalized parton distributions (GPDs) ...

... thanks!

Generalized parton distributions

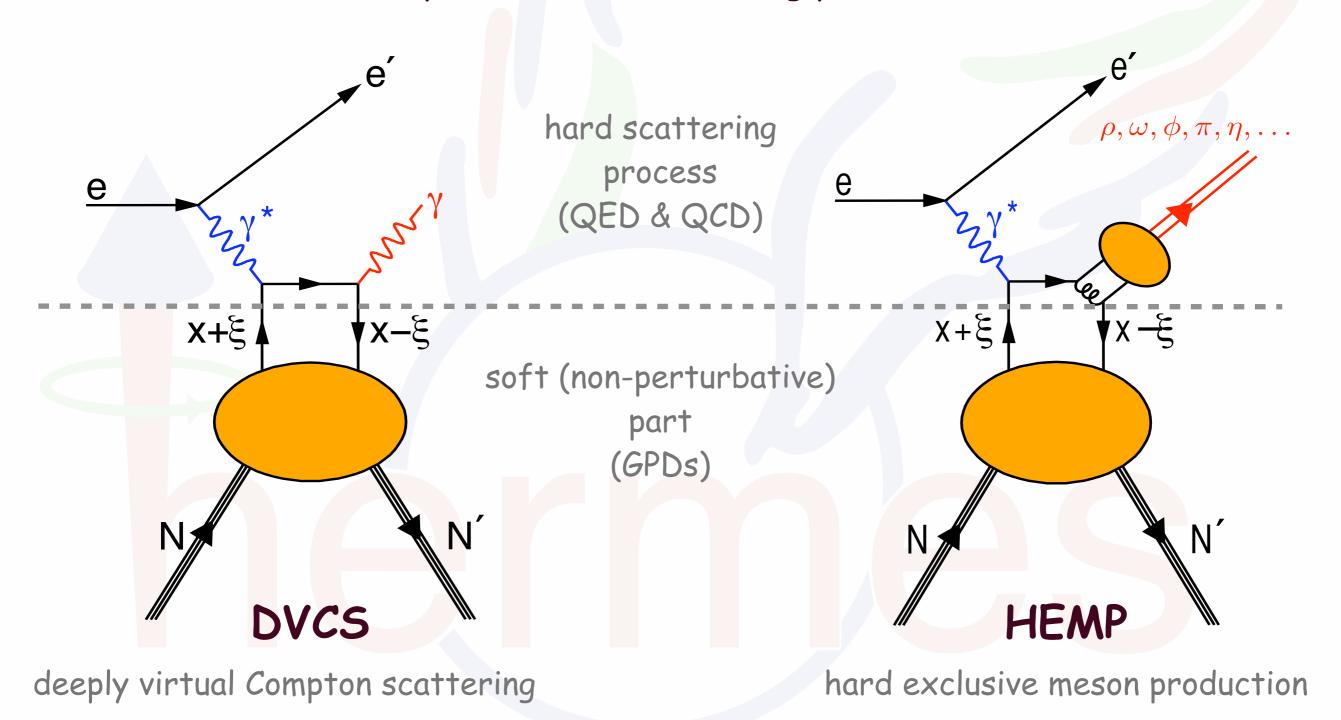
I believe Peter has done a good job this morning introducing generalized parton distributions (GPDs) ...

... thanks!

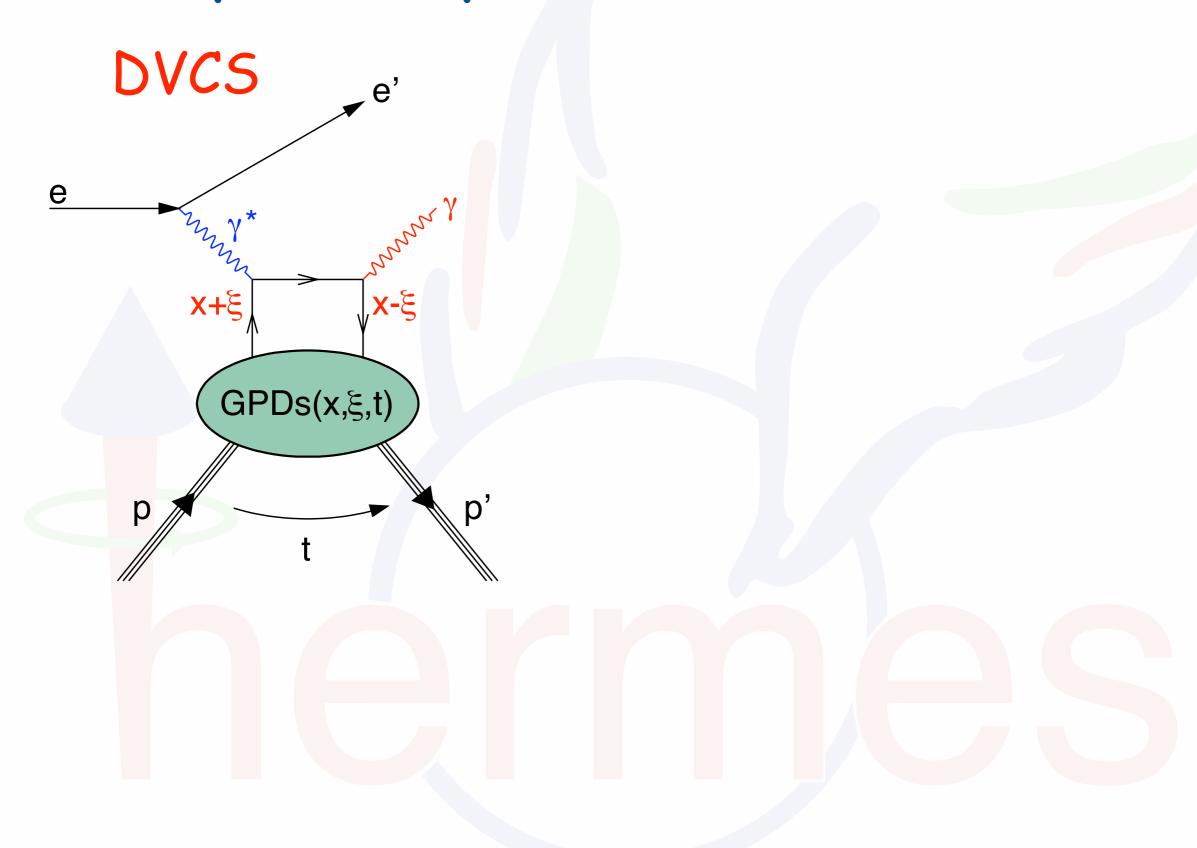
... also to Erik Etzelmüller and Charlotte Van Hulse for "slides support"

GPDs in exclusive reactions

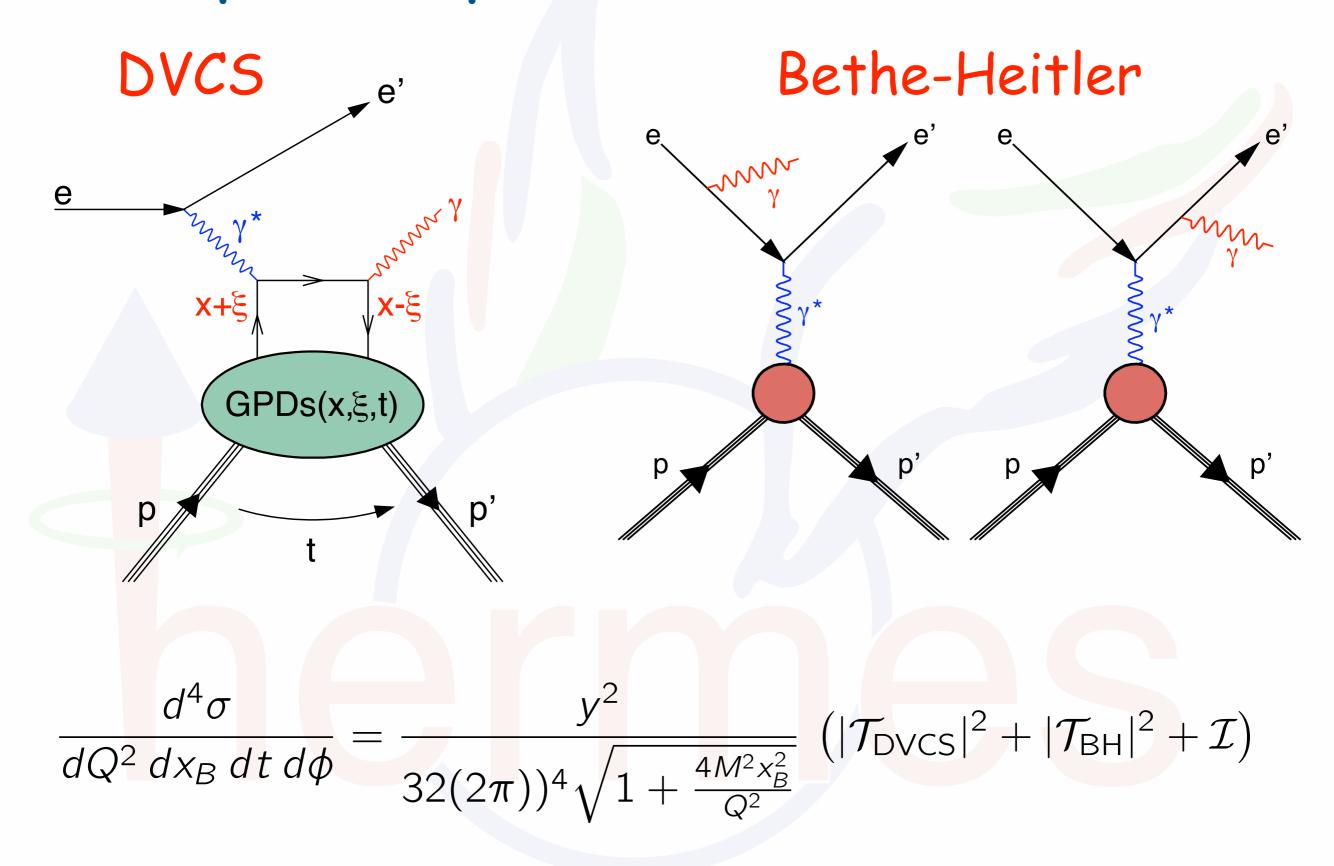
Experimentally GPDs can be accessed through measurements of hard exclusive lepton-nucleon scattering processes.



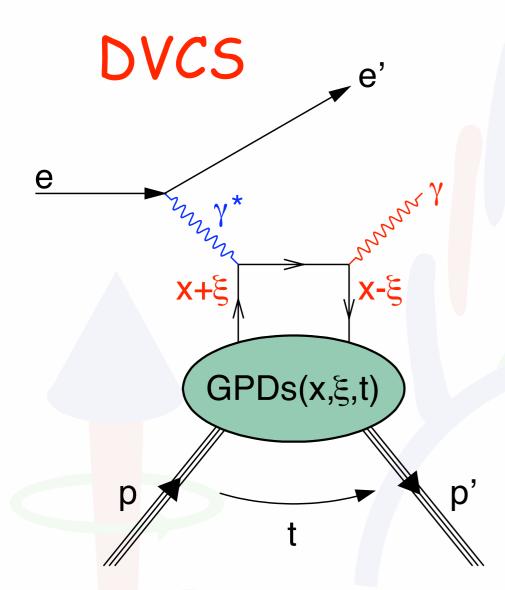
Real-photon production



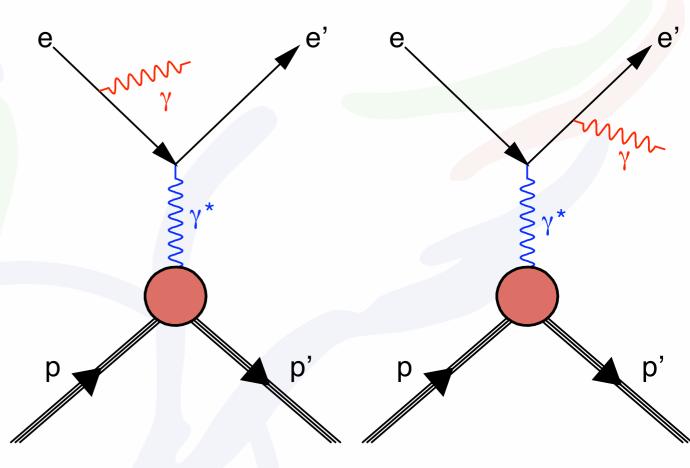
Real-photon production



Real-photon production



Bethe-Heitler



Amplitude of Bethe-Heitler scattering is dominant at HERMES kinematics

$$\frac{d^4\sigma}{dQ^2 dx_B dt d\phi} = \frac{y^2}{32(2\pi)^4 \sqrt{1 + \frac{4M^2x_B^2}{Q^2}}} \left(|\mathcal{T}_{\text{DVCS}}|^2 + |\mathcal{T}_{\text{BH}}|^2 + \mathcal{I} \right)$$

$$\frac{d^4\sigma}{dQ^2 dx_B dt d\phi} = \frac{32(2\pi)^4 \sqrt{1 + \frac{4M^2x_B^2}{Q^2}}}{32(2\pi)^4 \sqrt{1 + \frac{4M^2x_B^2}{Q^2}}} \left(|\mathcal{T}_{\text{DVCS}}|^2 + |\mathcal{T}_{\text{BH}}|^2 + \mathcal{I} \right)$$

$$\frac{d^4\sigma}{dQ^2 dx_B dt d\phi} = \frac{y^2}{32(2\pi)^4 \sqrt{1 + \frac{4M^2x_B^2}{Q^2}}} \left(|\mathcal{T}_{\text{DVCS}}|^2 + |\mathcal{T}_{\text{BH}}|^2 + \mathcal{I} \right)$$

$$\left(|\mathcal{T}_{\mathsf{DVCS}}|^2 + |\mathcal{T}_{\mathsf{BH}}|^2 + \mathcal{I}\right)$$

DVCS amplitude is amplified by BH in the interference term

- beam polarization P_B
- beam charge CB
- · here: unpolarized target

Fourier expansion for ϕ :

$$|\mathcal{T}_{\text{BH}}|^2 = \frac{K_{\text{BH}}}{\mathcal{P}_1(\phi)\mathcal{P}_2(\phi)} \sum_{n=0}^2 c_n^{\text{BH}} \cos(n\phi)$$

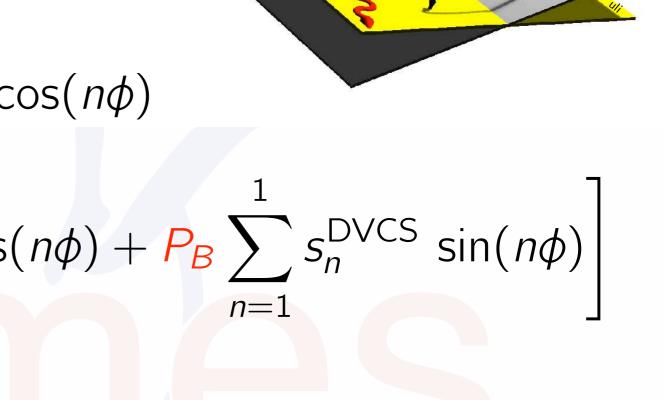
calculable in QED (using form-factor measurements)

- beam polarization P_B
- beam charge CB
- · here: unpolarized target

Fourier expansion for ϕ :

$$|\mathcal{T}_{\mathsf{BH}}|^2 = rac{\mathcal{K}_{\mathsf{BH}}}{\mathcal{P}_1(\phi)\mathcal{P}_2(\phi)} \sum_{n=0}^2 c_n^{\mathsf{BH}} \cos(n\phi)$$

$$|\mathcal{T}_{\text{DVCS}}|^2 = K_{\text{DVCS}} \left[\sum_{n=0}^{2} c_n^{\text{DVCS}} \cos(n\phi) + P_B \sum_{n=1}^{1} s_n^{\text{DVCS}} \sin(n\phi) \right]$$



- beam polarization P_B
- beam charge CB
- · here: unpolarized target

Fourier expansion for ϕ :

$$|\mathcal{T}_{\text{BH}}|^2 = \frac{K_{\text{BH}}}{\mathcal{P}_1(\phi)\mathcal{P}_2(\phi)} \sum_{n=0}^2 c_n^{\text{BH}} \cos(n\phi)$$

$$|\mathcal{T}_{\text{DVCS}}|^2 = K_{\text{DVCS}} \left[\sum_{n=0}^{2} c_n^{\text{DVCS}} \cos(n\phi) + P_B \sum_{n=1}^{1} s_n^{\text{DVCS}} \sin(n\phi) \right]$$

$$\mathcal{I} = \frac{C_B K_{\mathcal{I}}}{\mathcal{P}_1(\phi) \mathcal{P}_2(\phi)} \left[\sum_{n=0}^3 c_n^{\mathcal{I}} \cos(n\phi) + \frac{2}{P_B} \sum_{n=1}^2 s_n^{\mathcal{I}} \sin(n\phi) \right]$$

- beam polarization P_B
- beam charge CB
- · here: unpolarized target

Fourier expansion for ϕ :

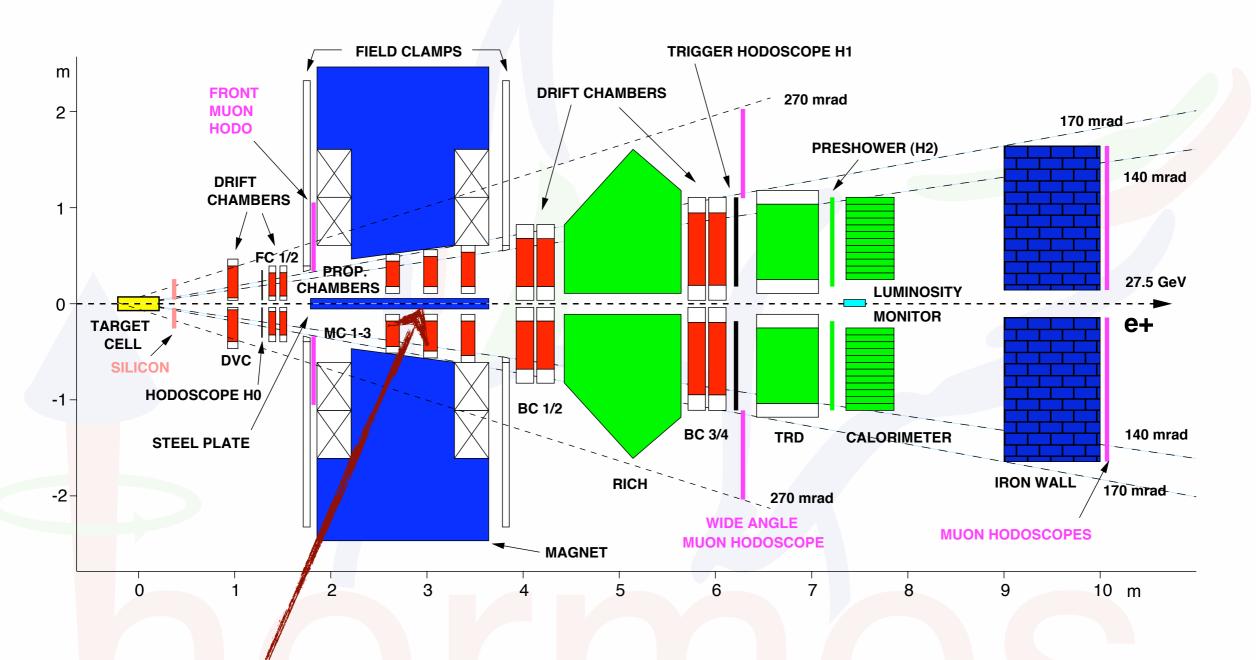
$$|\mathcal{T}_{\mathsf{BH}}|^2 = rac{\mathcal{K}_{\mathsf{BH}}}{\mathcal{P}_1(\phi)\mathcal{P}_2(\phi)} \sum_{n=0}^2 c_n^{\mathsf{BH}} \cos(n\phi)$$

$$|\mathcal{T}_{\text{DVCS}}|^2 = K_{\text{DVCS}} \left[\sum_{n=0}^2 c_n^{\text{DVCS}} \cos(n\phi) + P_B \sum_{n=1}^1 s_n^{\text{DVCS}} \sin(n\phi) \right]$$

$$\mathcal{I} = \frac{C_B K_{\mathcal{I}}}{\mathcal{P}_1(\phi) \mathcal{P}_2(\phi)} \left[\sum_{n=0}^3 c_n^{\mathcal{I}} \cos(n\phi) + P_B \sum_{n=1}^2 s_n^{\mathcal{I}} \sin(n\phi) \right]$$

bilinear ("DVCS") or linear ("I") in GPDs

HERMES (1998-2005) schematically

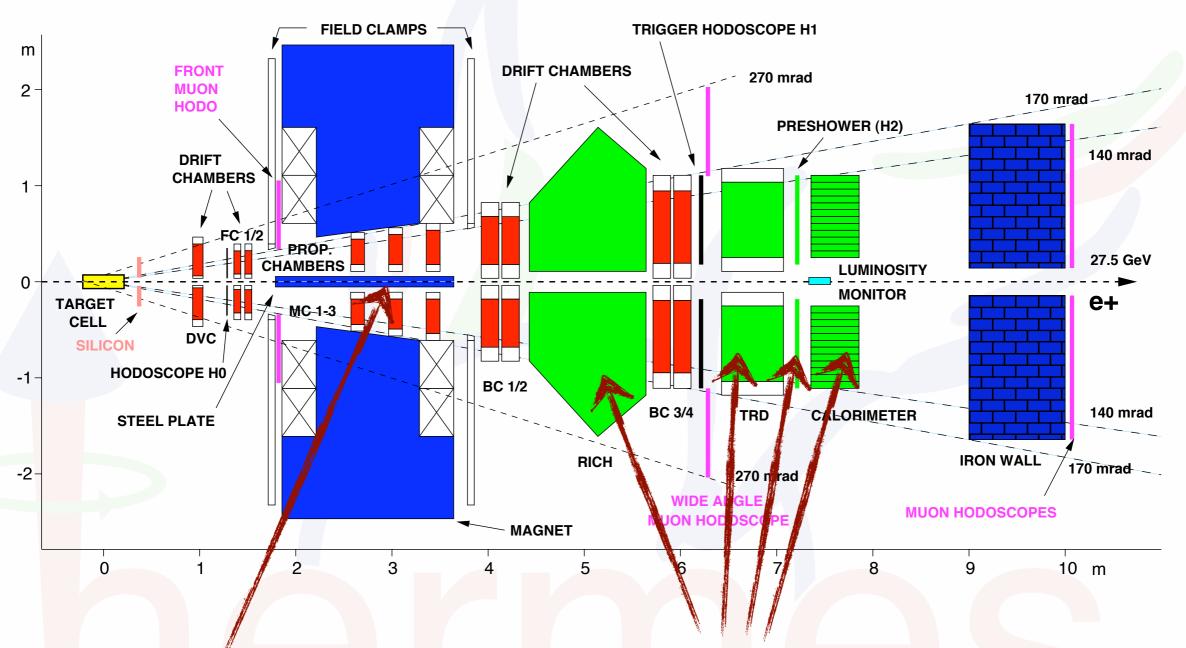


two (mirror-symmetric) halves

-> no homogenous azimuthal

coverage

HERMES (1998-2005) schematically



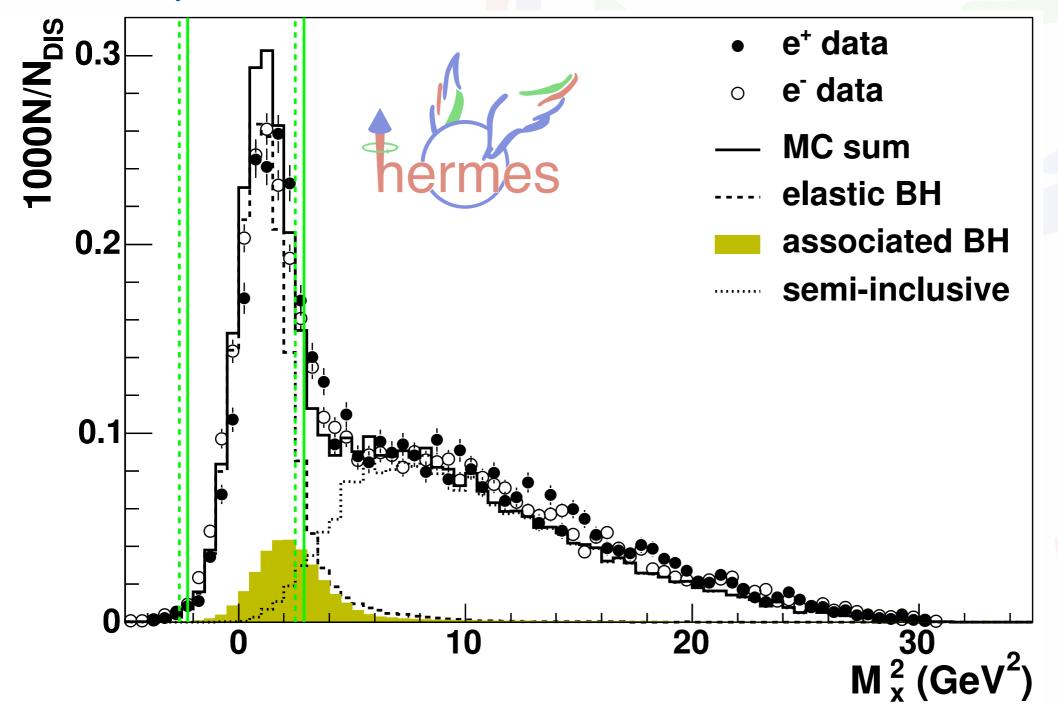
two (mirror-symmetric) halves
-> no homogenous azimuthal
coverage

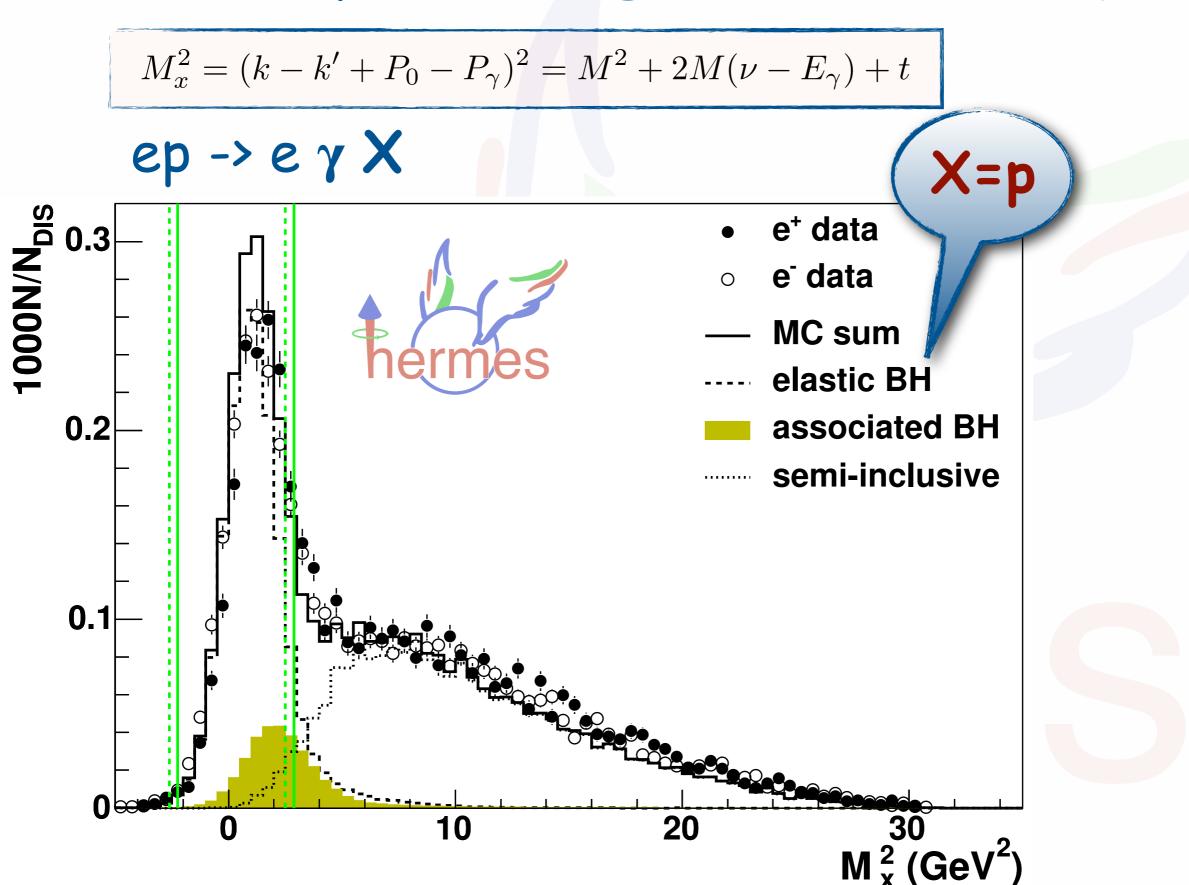
Particle ID detectors allow for

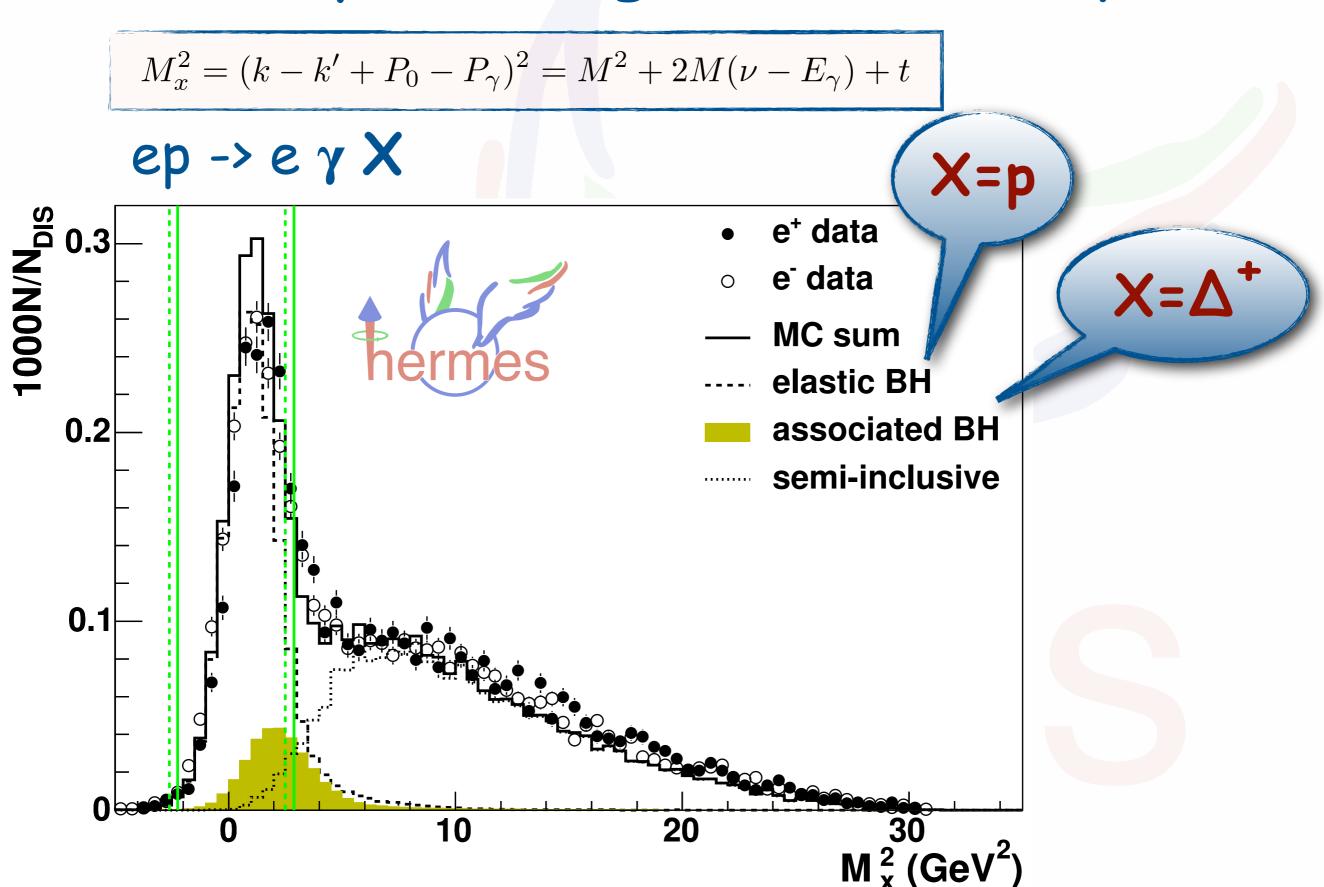
- lepton/hadron separation
- RICH: pion/kaon/proton discrimination 2GeV<p<15GeV

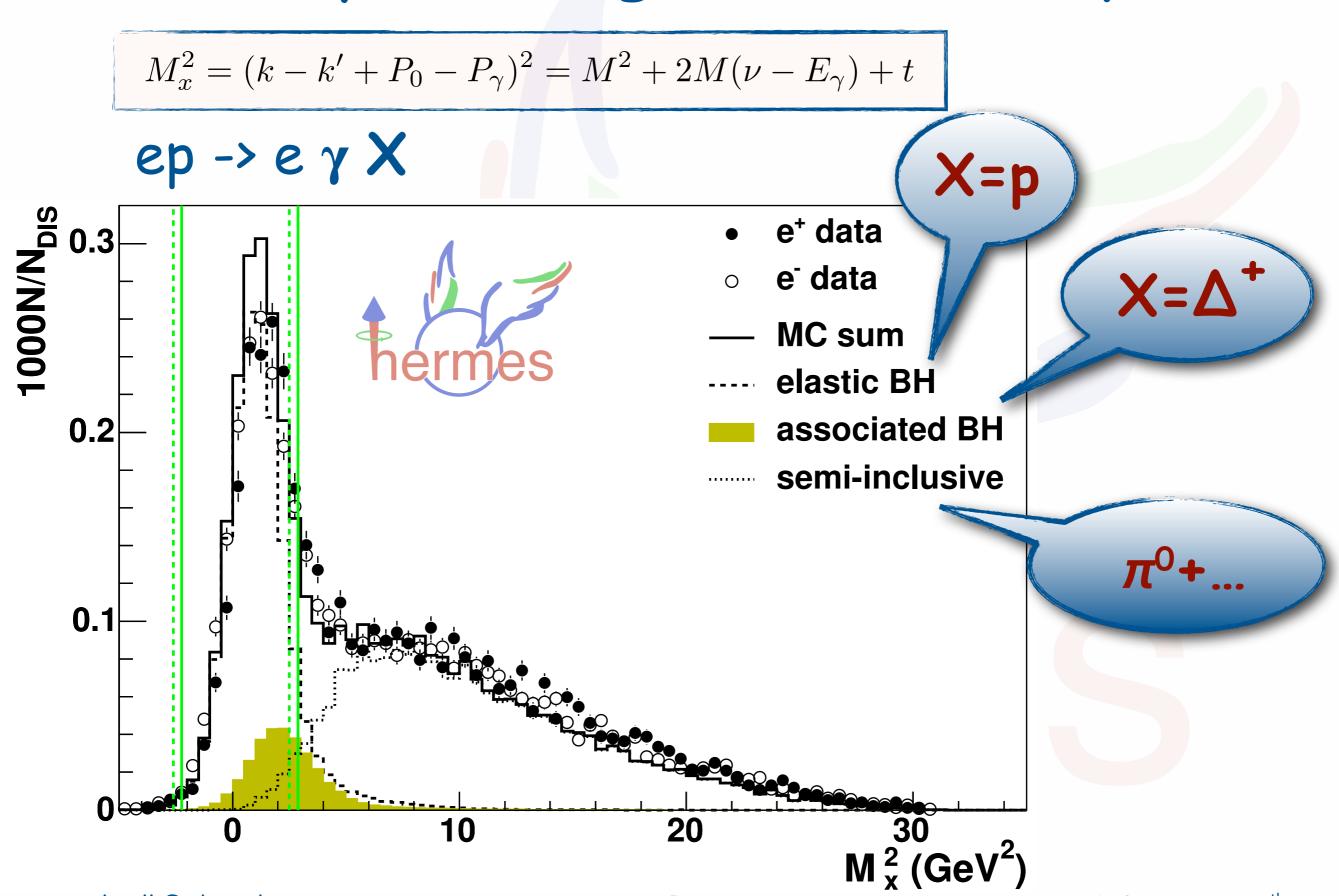
$$M_x^2 = (k - k' + P_0 - P_\gamma)^2 = M^2 + 2M(\nu - E_\gamma) + t$$

ep -> e y X

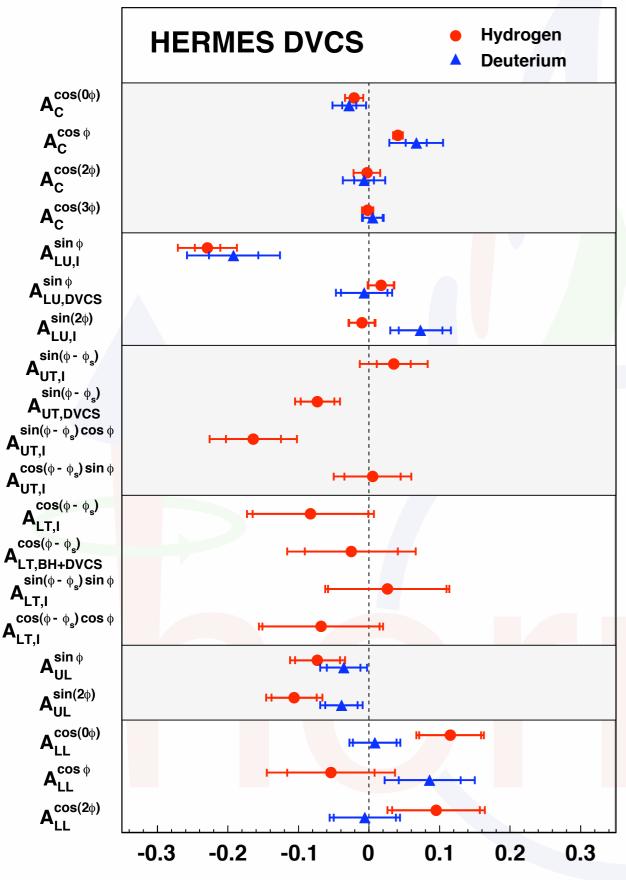








A wealth of azimuthal amplitudes



Amplitude Value

Beam-charge asymmetry:

GPD H

Beam-helicity asymmetry:

GPD H

PRD 75 (2007) 011103

NPB 829 (2010) 1

JHEP 11 (2009) 083

PRC 81 (2010) 035202

PRL 87 (2001) 182001

JHEP 07 (2012) 032

Transverse target spin asymmetries:

GPD E from proton target

JHEP 06 (2008) 066 PLB 704 (2011) 15

Longitudinal target spin asymmetry:

GPD H

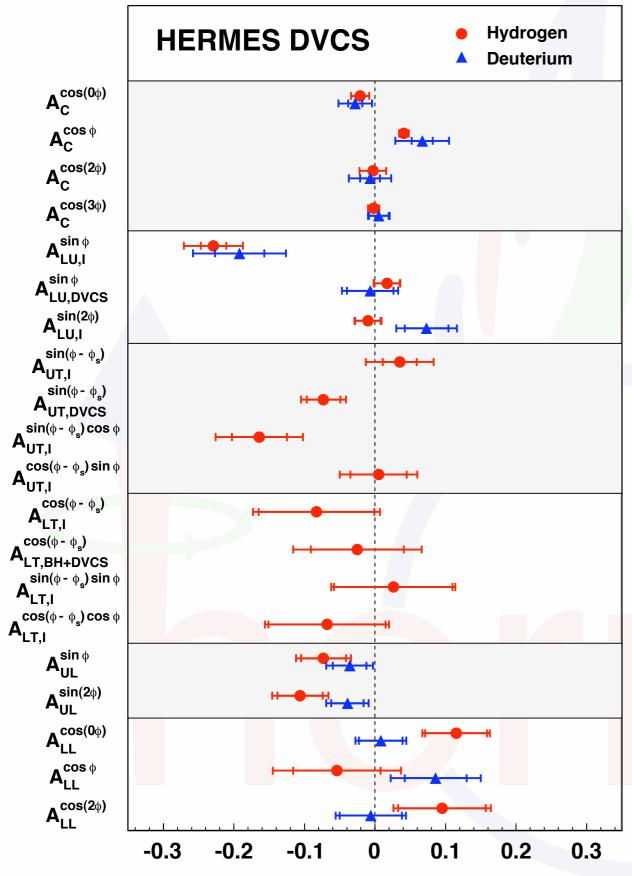
JHEP 06 (2010) 019

Double-spin asymmetry:

NPB 842 (2011) 265

GPD H

A wealth of azimuthal amplitudes



Amplitude Value

Beam-charge asymmetry:

GPD H

Beam-helicity asymmetry:

GPD H

PRD 75 (2007) 011103

NPB 829 (2010) 1

JHEP 11 (2009) 083

PRC 81 (2010) 035202

PRL 87 (2001) 182001

JHEP 07 (2012) 032

Transverse target spin asymmetries:

GPD E from proton target

JHEP 06 (2008) 066 PLB 704 (2011) 15

Longitudinal target spin asymmetry:

GPD H

JHEP 06 (2010) 019

Double-spin asymmetry:

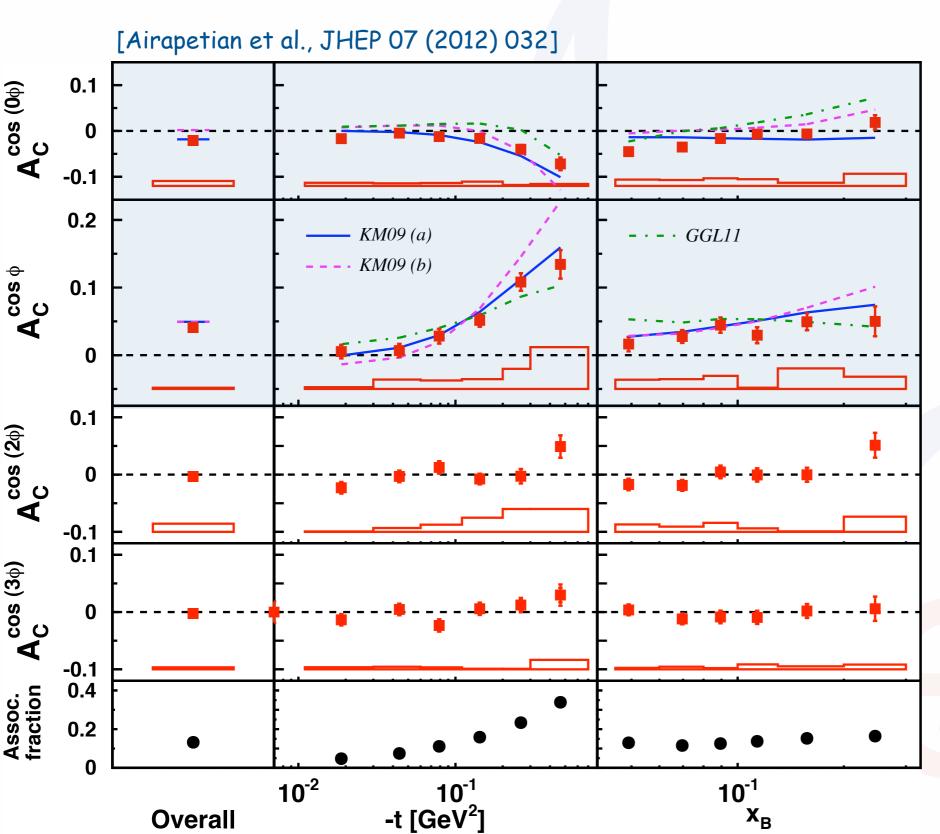
NPB 842 (2011) 265

GPD H

PacSPIN 2015 - Taipei - Oct. 6th, 2015

complete data set!

Beam-charge asymmetry



constant term:

$$\propto -A_C^{\cos\phi}$$

 $\propto \text{Re}[F_1\mathcal{H}]$

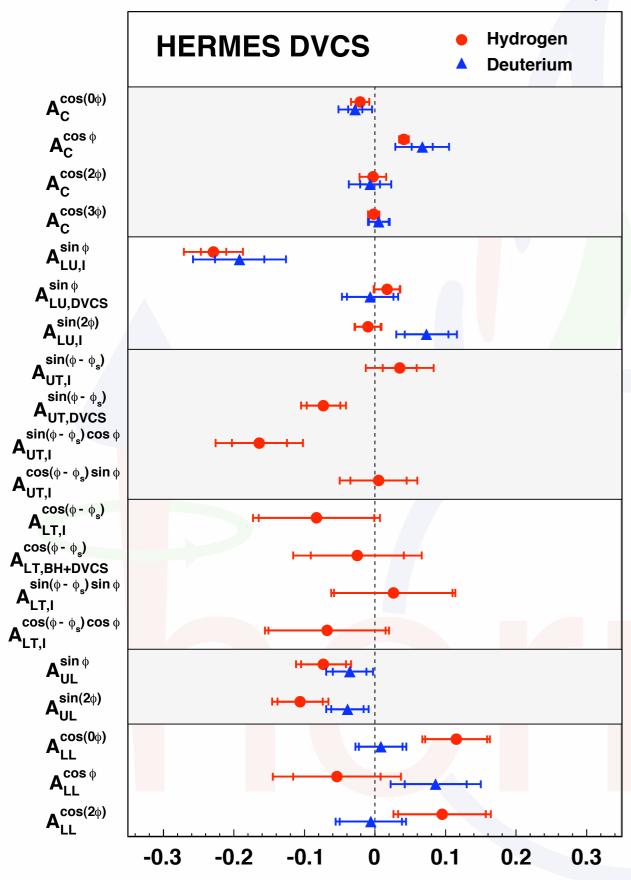
[higher twist]

[gluon leading twist]

Resonant fraction:

$$ep \rightarrow e\Delta^+ \gamma$$

A wealth of azimuthal amplitudes



Amplitude Value

Beam-charge asymmetry:

GPD H

Beam-helicity asymmetry:

GPD H

PRD 75 (2007) 011103

NPB 829 (2010) 1

JHEP 11 (2009) 083

PRC 81 (2010) 035202

PRL 87 (2001) 182001

JHEP 07 (2012) 032

Transverse target spin asymmetries:

GPD E from proton target

JHEP 06 (2008) 066 PLB 704 (2011) 15

Longitudinal target spin asymmetry:

GPD H

JHEP 06 (2010) 019

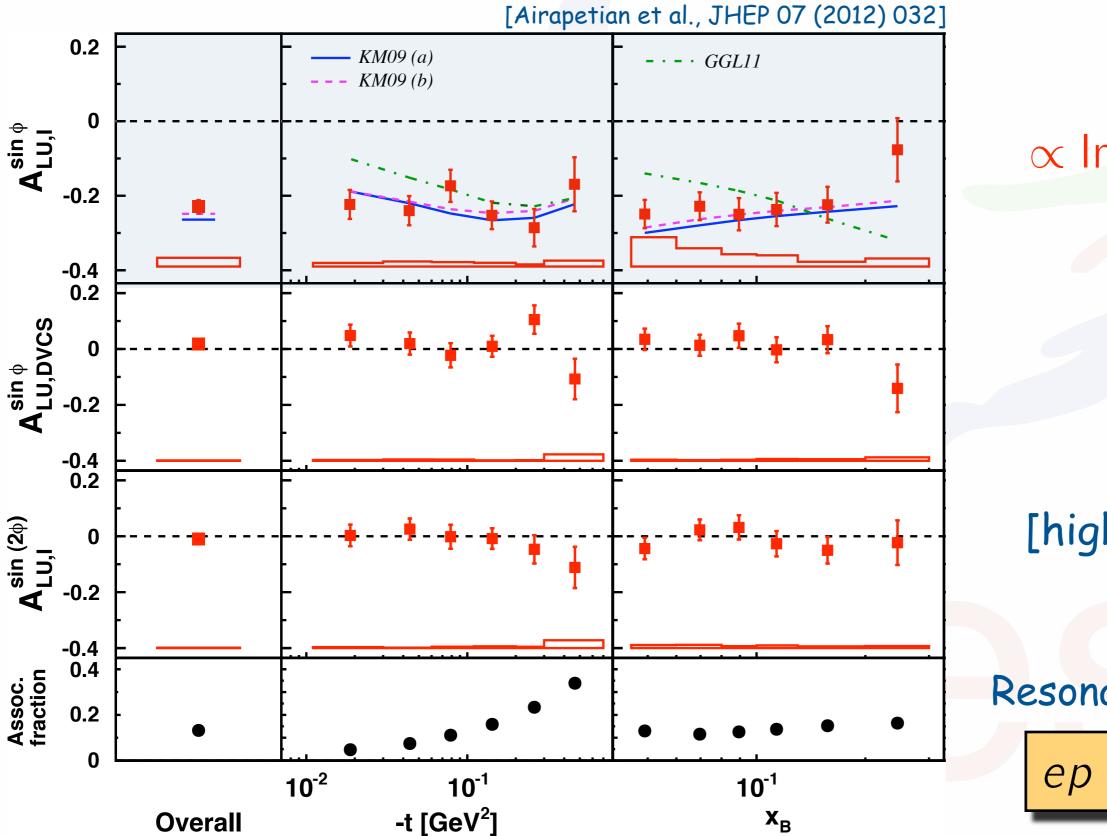
Double-spin asymmetry:

NPB 842 (2011) 265

GPD H

complete data set!

Beam-spin asymmetry

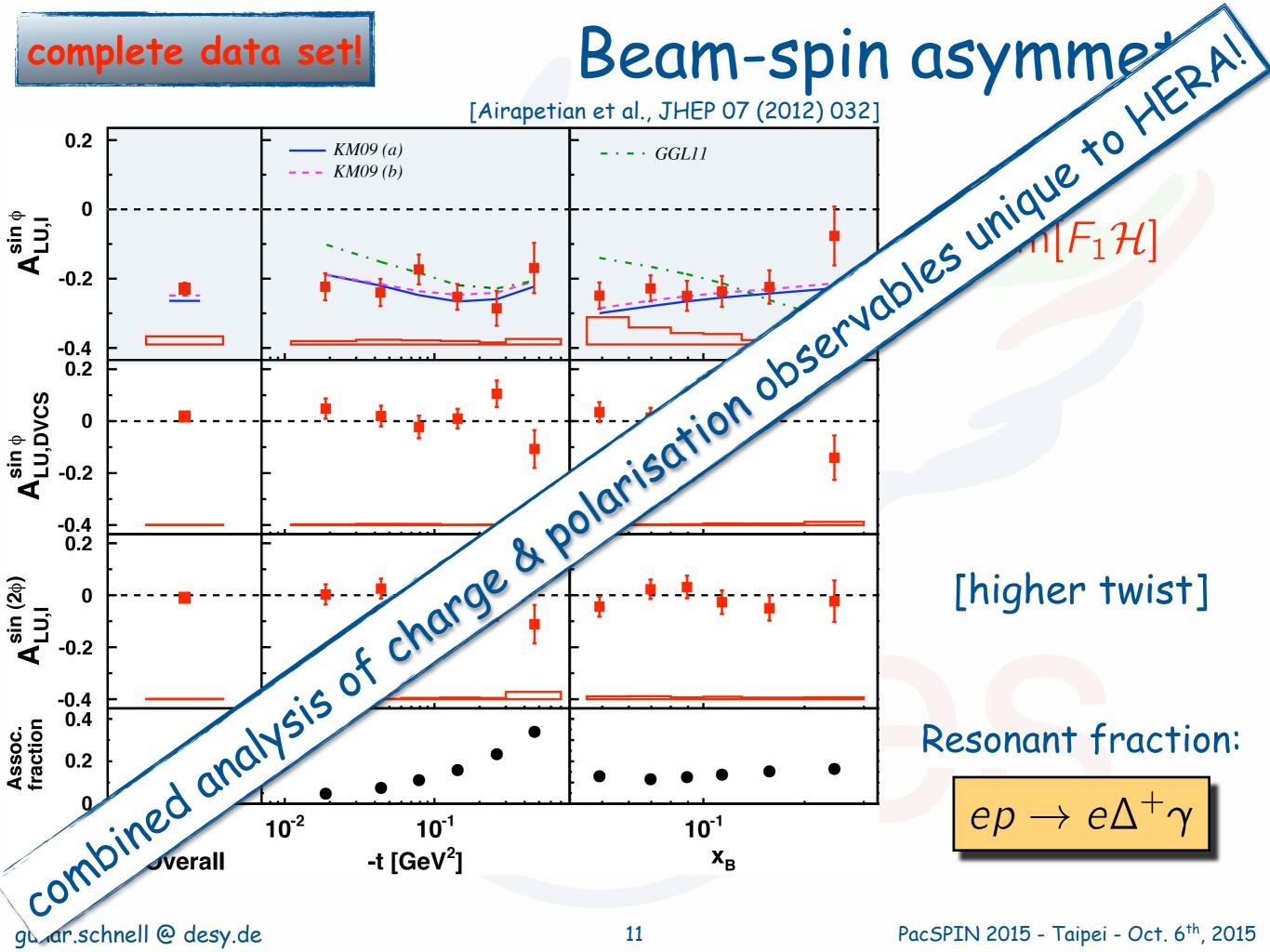


 $\propto \text{Im}[F_1\mathcal{H}]$

[higher twist]

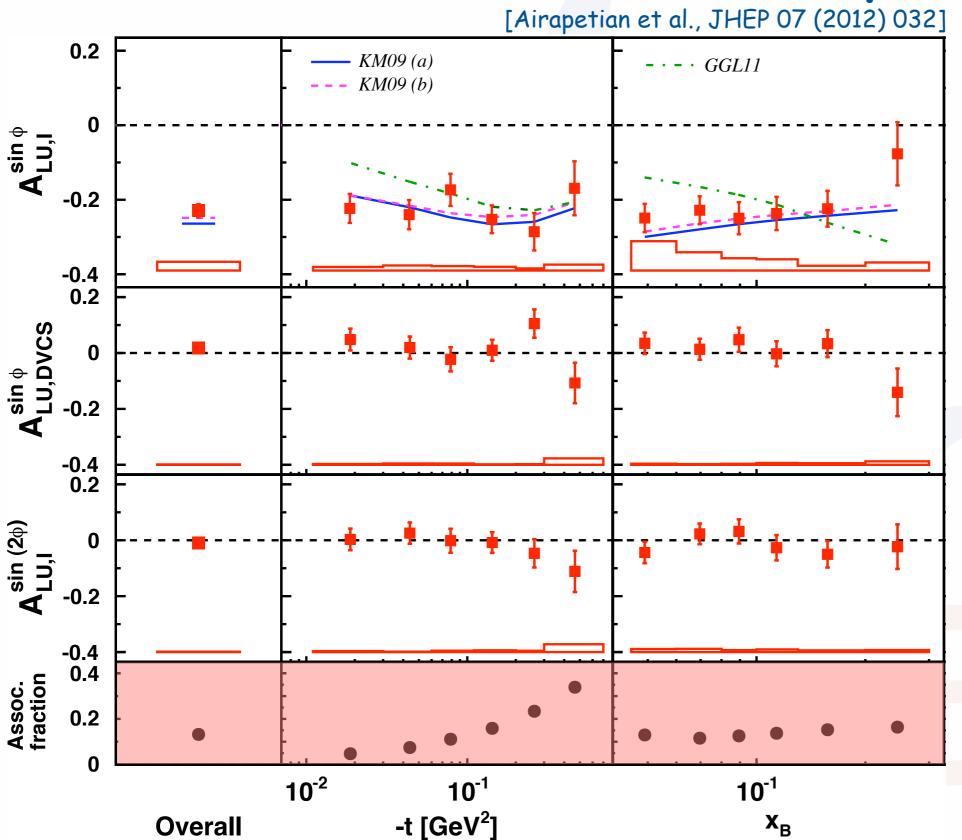
Resonant fraction:

$$ep o e\Delta^+ \gamma$$



complete data set!

Beam-spin asymmetry

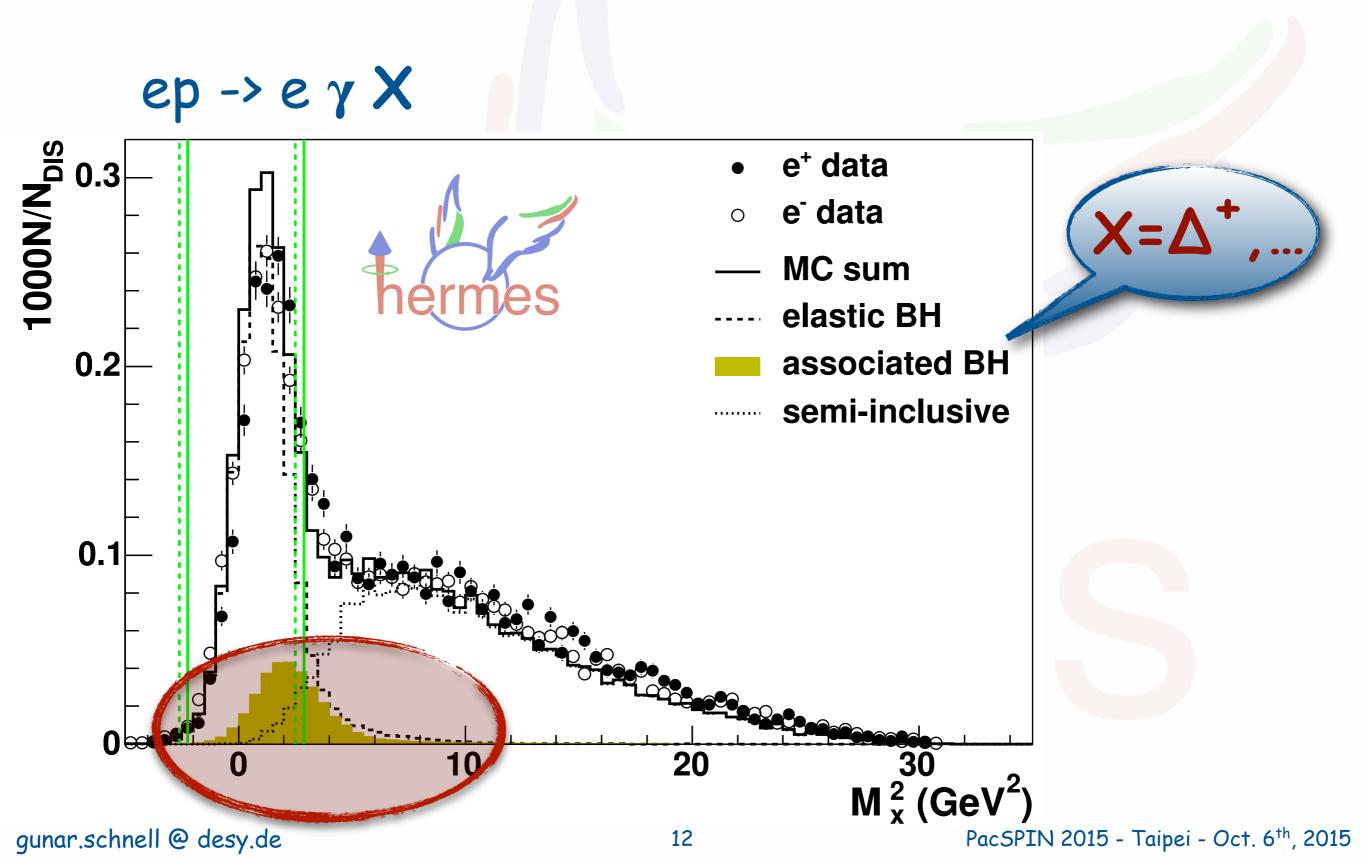


 $\propto \text{Im}[F_1\mathcal{H}]$

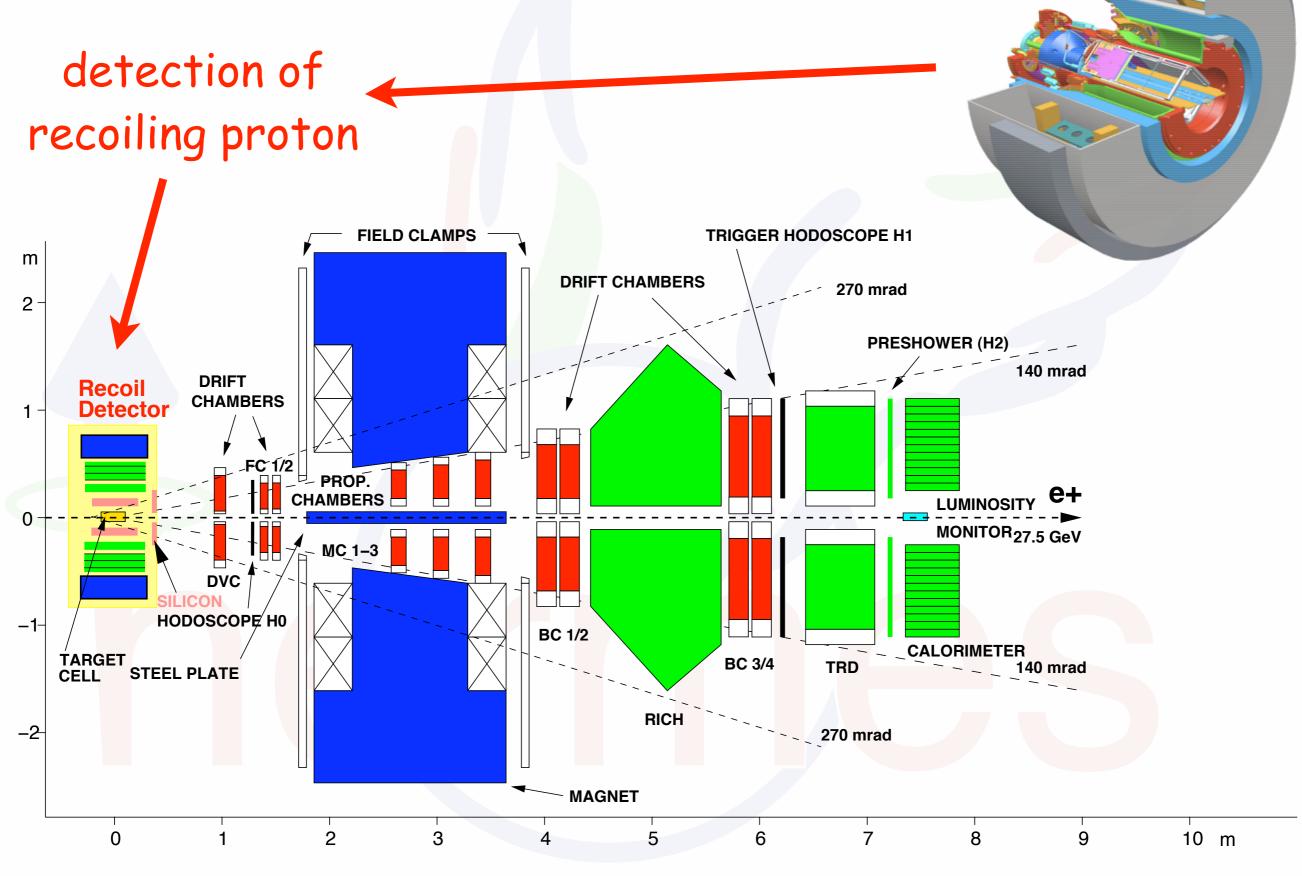
[higher twist]

Resonant fraction:

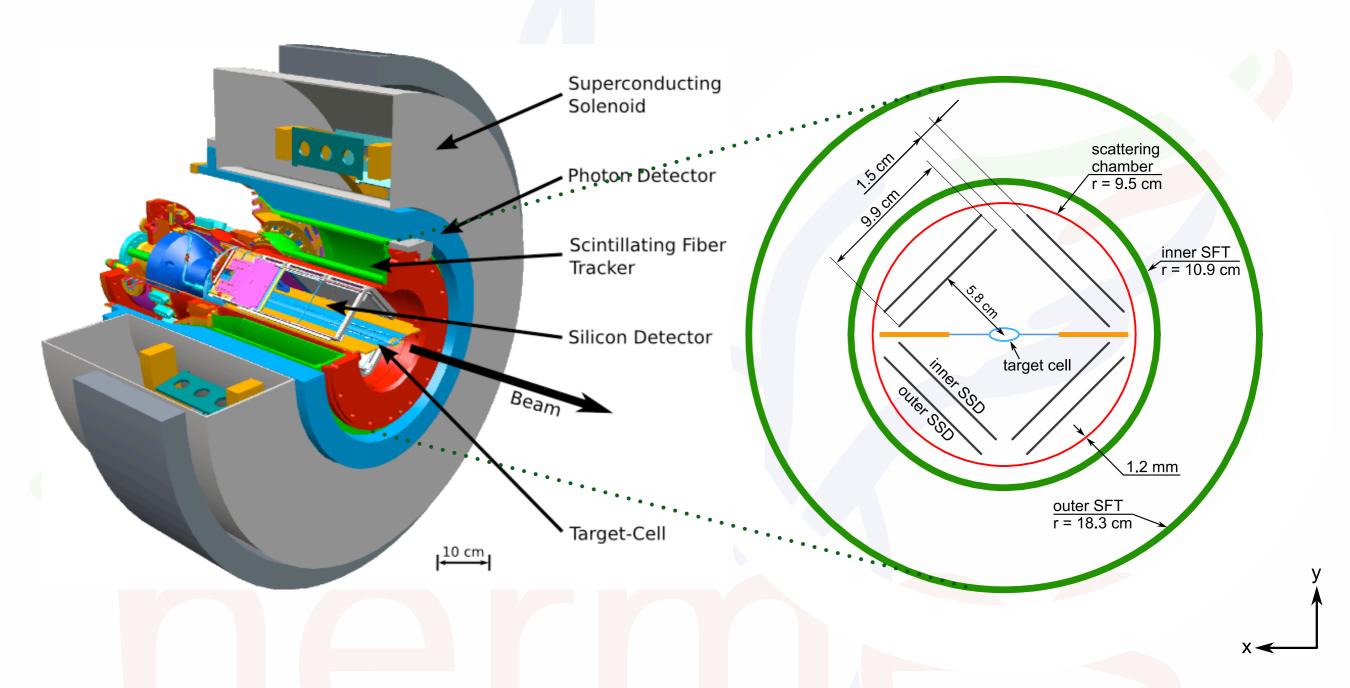
$$ep o e\Delta^+ \gamma$$



HERMES detector (2006/07)



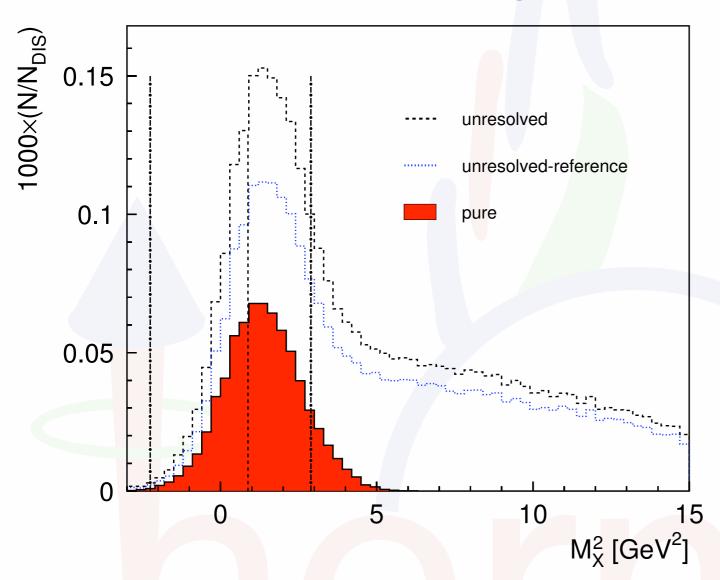
The HERMES Recoil detector

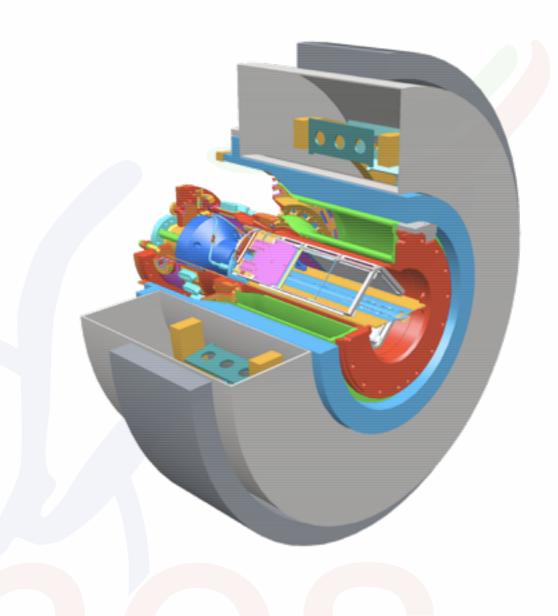


Enables the measurement of the recoiling charged particle and therefore full ep \rightarrow ep γ event reconstruction

HERMES detector (2006/07)

kinematic fitting





- All particles in final state detected \rightarrow 4 constraints from energy-momentum conservation
- Selection of pure BH/DVCS (ep \rightarrow ep γ) with high efficiency (~83%)
- Allows to suppress background from associated and semi-inclusive processes to a negligible level (<0.2%)

Exclusivity with recoil detector

forward spectrometer only measured similar background proton kinematic acceptance unresolved-reference sample unresolved sample pure sample 1000×(N/N_{DIS}) 0.2 experimental data simulation (sum) 0.15 $ep \rightarrow e\Delta^{\dagger}\gamma$ 0.1 semi-inclusive 0.05

associated processes (ep \rightarrow e γ Δ ⁺)

10

 M_X^2 [GeV²]

pure $ep \rightarrow e \gamma p$

 M_X^2 [GeV²]

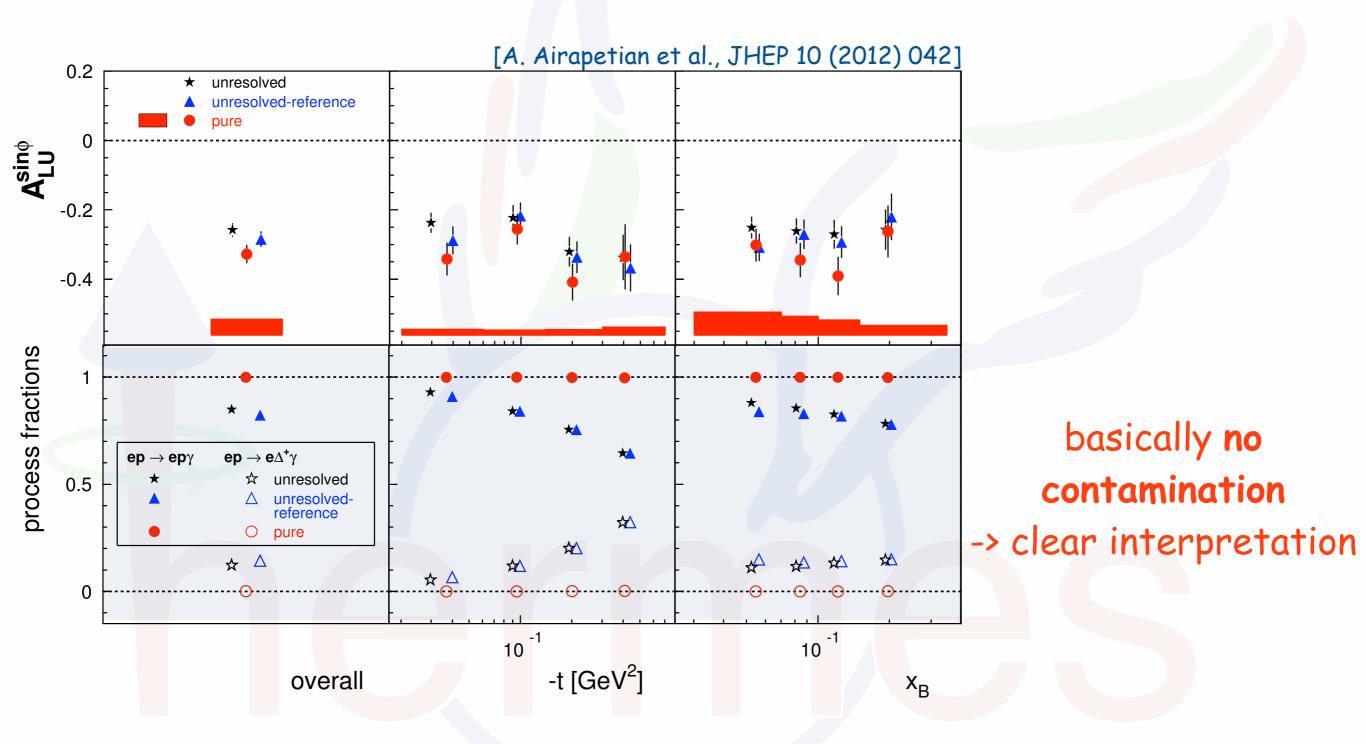
Missing mass:

$$M_x^2 = (k - k' + P_0 - P_\gamma)^2 = M^2 + 2M(\nu - E_\gamma) + t$$

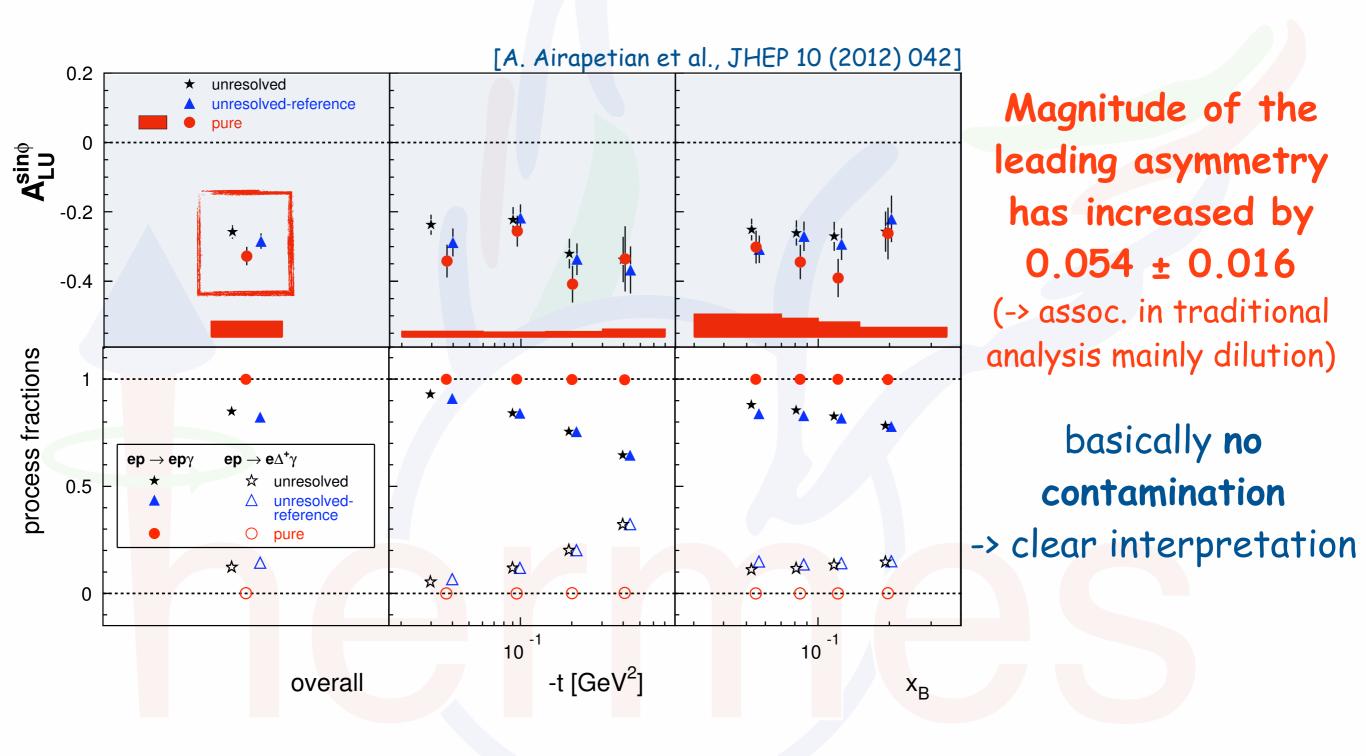
 M_X^2 [GeV²]

10

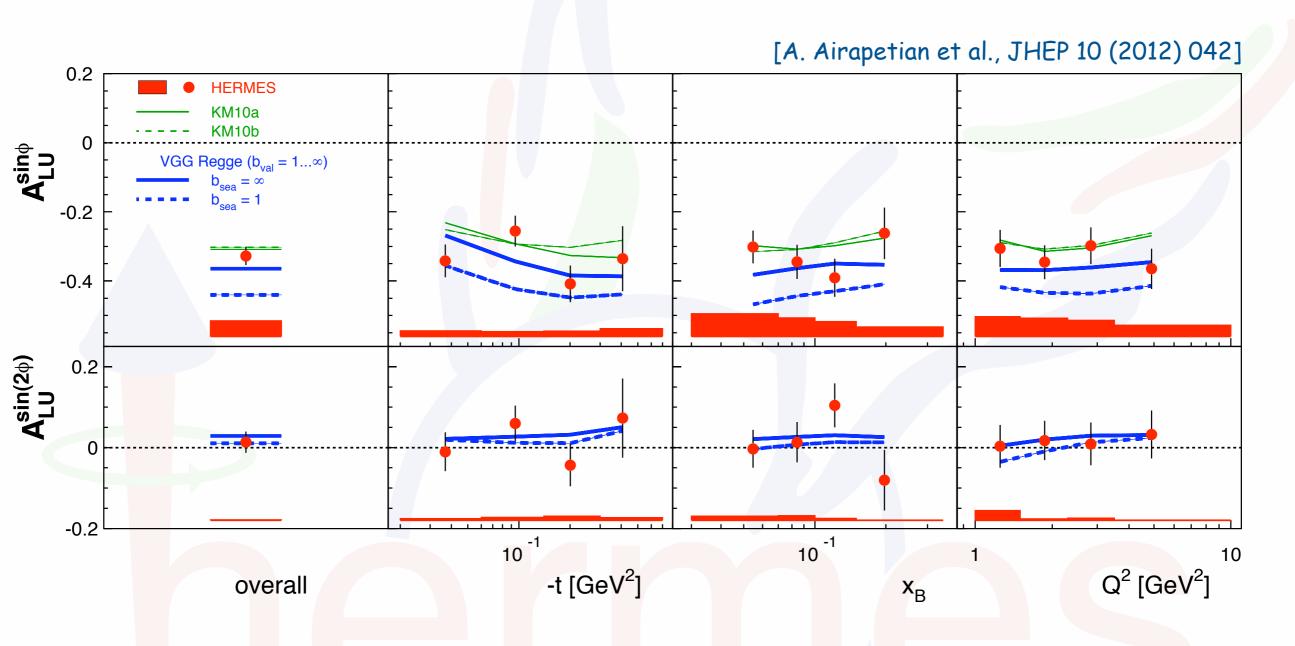
Single-charge BSA with recoil proton



Single-charge BSA with recoil proton



Single-charge BSA with recoil proton



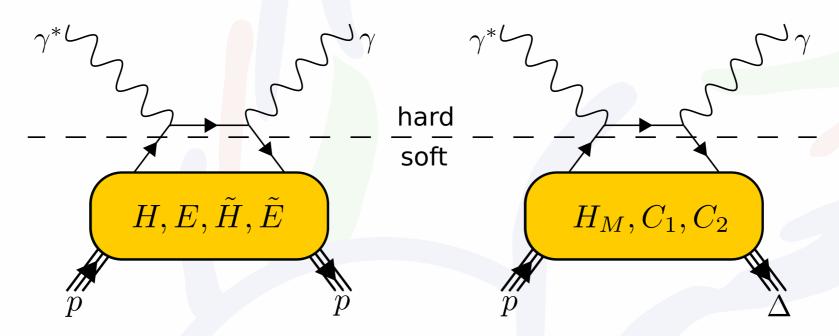
good agreement with models

KM10 - K. Kumericki and D. Müller, Nucl. Phys. B 841 (2010) 1

VGG - M. Vanderhaeghen et al., Phys. Rev. D 60 (1999) 094017

Beam-spin asymmetries ep \rightarrow e γ $N\pi$

Besides a better understanding of the unresolved sample, associated DVCS in principle also allows further access to GPDs.



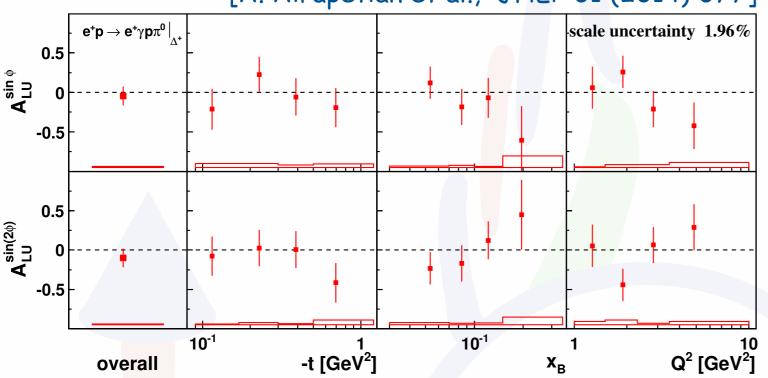
In the large-N_c limit the remaining N $\rightarrow\Delta$ GPDs can be related to the N \rightarrow N iso-vector GPDs:

$$H_{M}(x,\xi,t) = \frac{2}{\sqrt{3}} \left[E^{u}(x,\xi,t) - E^{d}(x,\xi,t) \right],$$

$$C_{1}(x,\xi,t) = \sqrt{3} \left[\tilde{H}^{u}(x,\xi,t) - \tilde{H}^{d}(x,\xi,t) \right],$$

$$C_{2}(x,\xi,t) = \frac{\sqrt{3}}{4} \left[\tilde{E}^{u}(x,\xi,t) - \tilde{E}^{d}(x,\xi,t) \right]$$

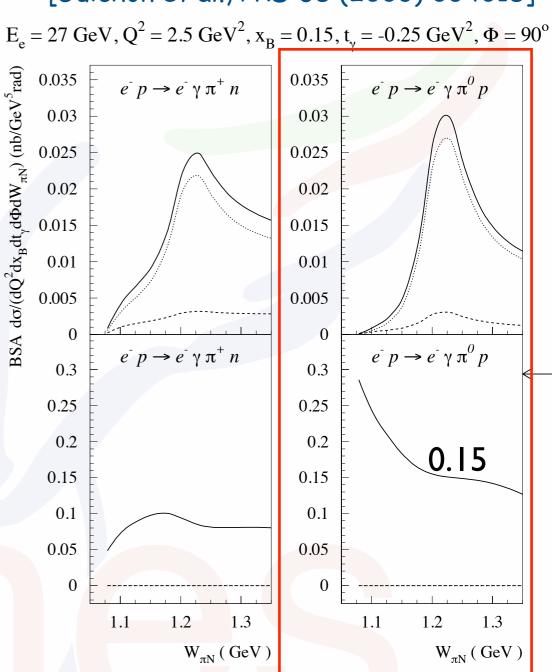
Beam-spin asymmetries ep \rightarrow e γ p π^0



Shown amplitudes corrected for background (only overall fractions are listed here):

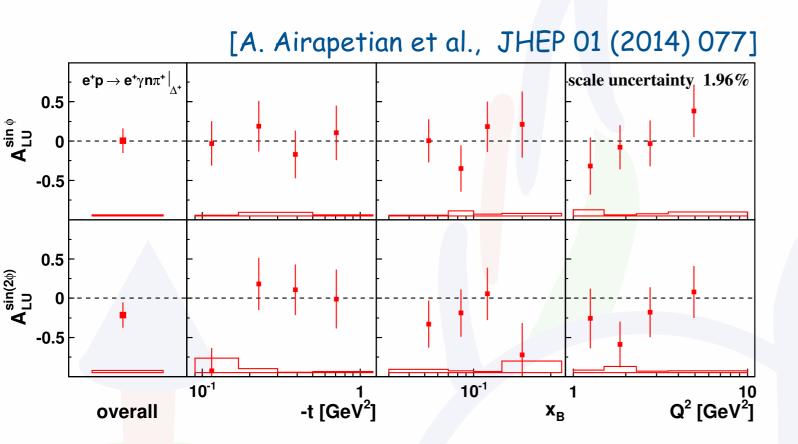
Associated DVCS/BH (ep
$$\rightarrow$$
e γ p π ⁰) 85 ± 1
Elastic DVCS/BH (ep \rightarrow e γ p) 4.6 ± 0.1
SIDIS (ep \rightarrow eX π ⁰) 11 ± 1

[Guichon et al., PRD 68 (2003) 034018]



opposite sign conventions!

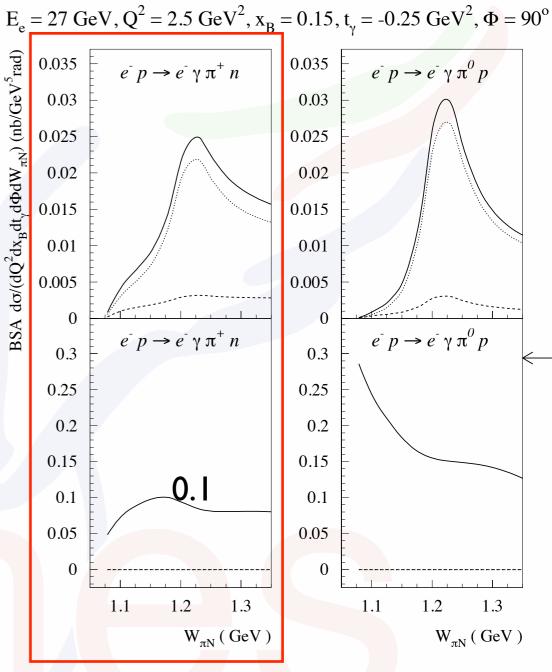
Beam-spin asymmetries ep \rightarrow e γ $n\pi^{+}$



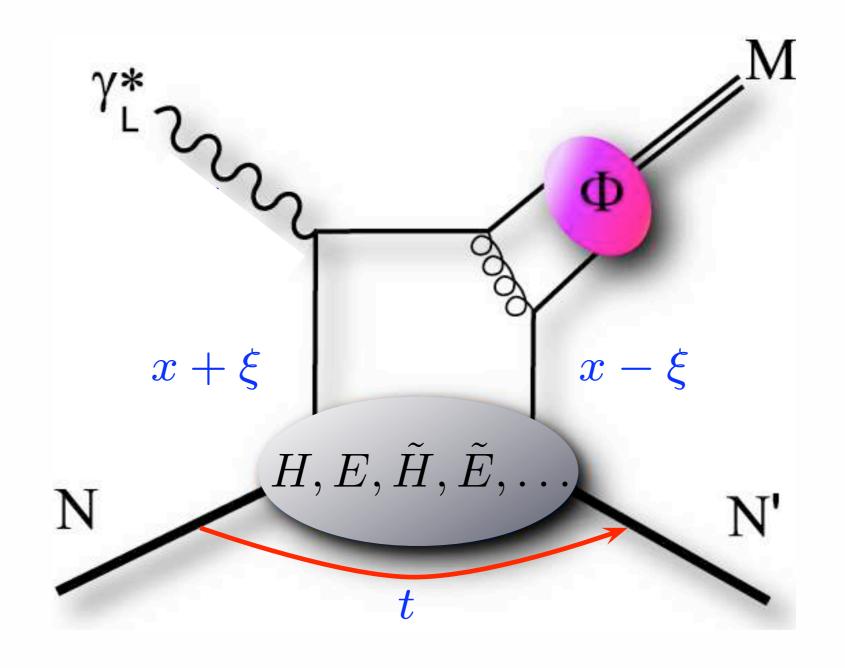
Shown amplitudes corrected for background (only overall fractions are listed here):

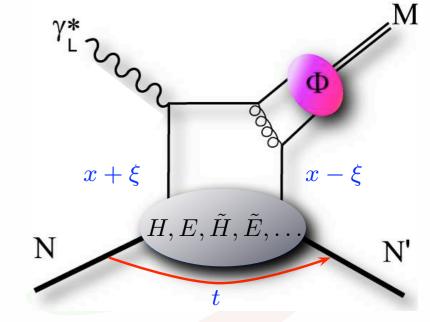
Associated DVCS/BH (ep
$$\rightarrow$$
e γ n π ⁺) 77 ± 2
Elastic DVCS/BH (ep \rightarrow e γ p) 0.2 ± 0.1
SIDIS (ep \rightarrow eX π ⁰) 23 ± 3

[Guichon et al., PRD 68 (2003) 034018]

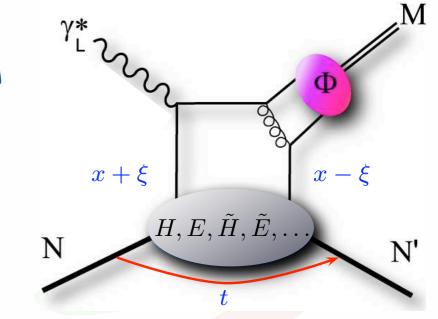


opposite sign convention!

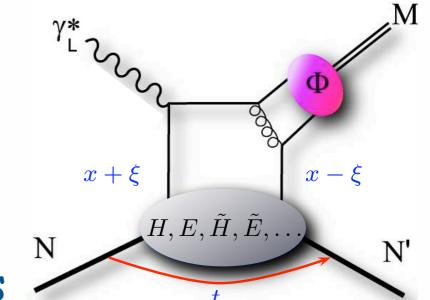




GPDs convoluted with meson amplitude

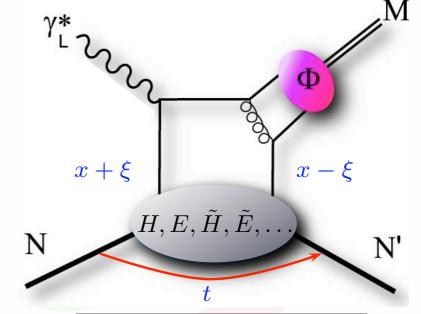


- GPDs convoluted with meson amplitude
- access to various quark-flavor combinations



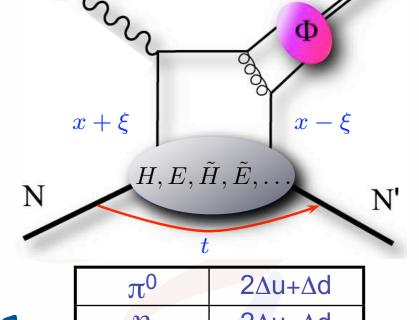
π^0	2∆u+∆d
η	2∆u–∆d
ρ^0	2u+d, 9g/4
ω	2u-d, 3g/4
ф	s, g
ρ+	u–d
J/ψ	g

- GPDs convoluted with meson amplitude
- access to various quark-flavor combinations
- factorization proven for longitudinal photons



π^0	2∆u+∆d
η	2∆u–∆d
ρ^0	2u+d, 9g/4
ω	2u-d, 3g/4
ф	s, g
ρ+	u–d
J/ψ	g

- GPDs convoluted with meson amplitude
- access to various quark-flavor combinations
- factorization proven for longitudinal photons
- generalized to transverse photons in GK model



π^0	2∆u+∆d
η	2∆u–∆d
ρ^0	2u+d, 9g/4
ω	2u-d, 3g/4
ф	s, g
ρ+	u–d
J/ψ	g

- GPDs convoluted with meson amplitude
- access to various quark-flavor combinations
- factorization proven for longitudinal photons
- generalized to transverse photons in GK model
- vector-meson cross section:

π^0	2∆u+∆d	
η	2∆u–∆d	
ρ^0	2u+d, 9g/4	
ω	2u-d, 3g/4	
ф	s, g	
ρ+	u–d	
J/ψ	g	

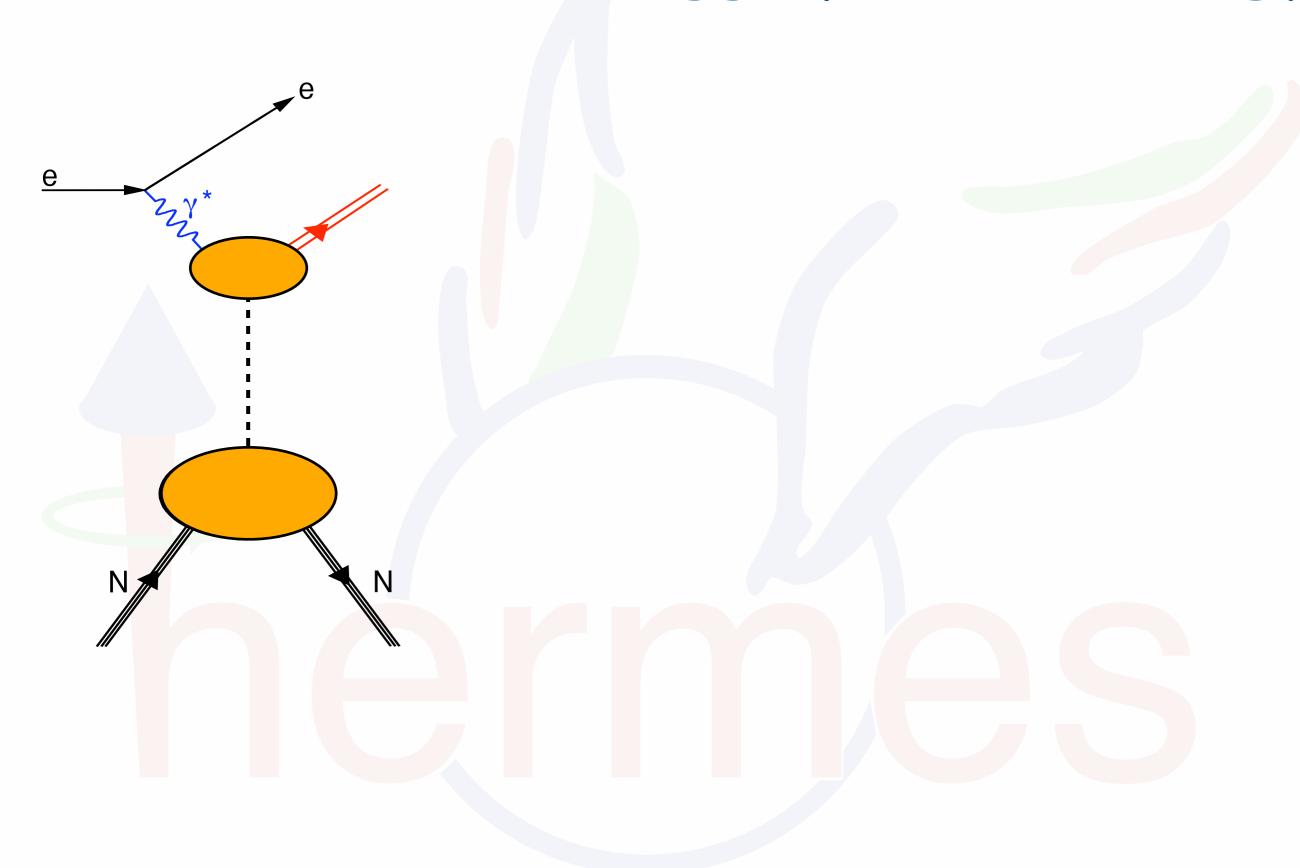
 $H, E, \tilde{H}, \tilde{E}, .$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}x_B\,\mathrm{d}Q^2\,\mathrm{d}t\,\mathrm{d}\phi_S\,\mathrm{d}\phi\,\mathrm{d}\cos\theta\,\mathrm{d}\varphi} = \frac{\mathrm{d}\sigma}{\mathrm{d}x_B\,\mathrm{d}Q^2\,\mathrm{d}t}W(x_B, Q^2, t, \phi_S, \phi, \cos\theta, \varphi)$$

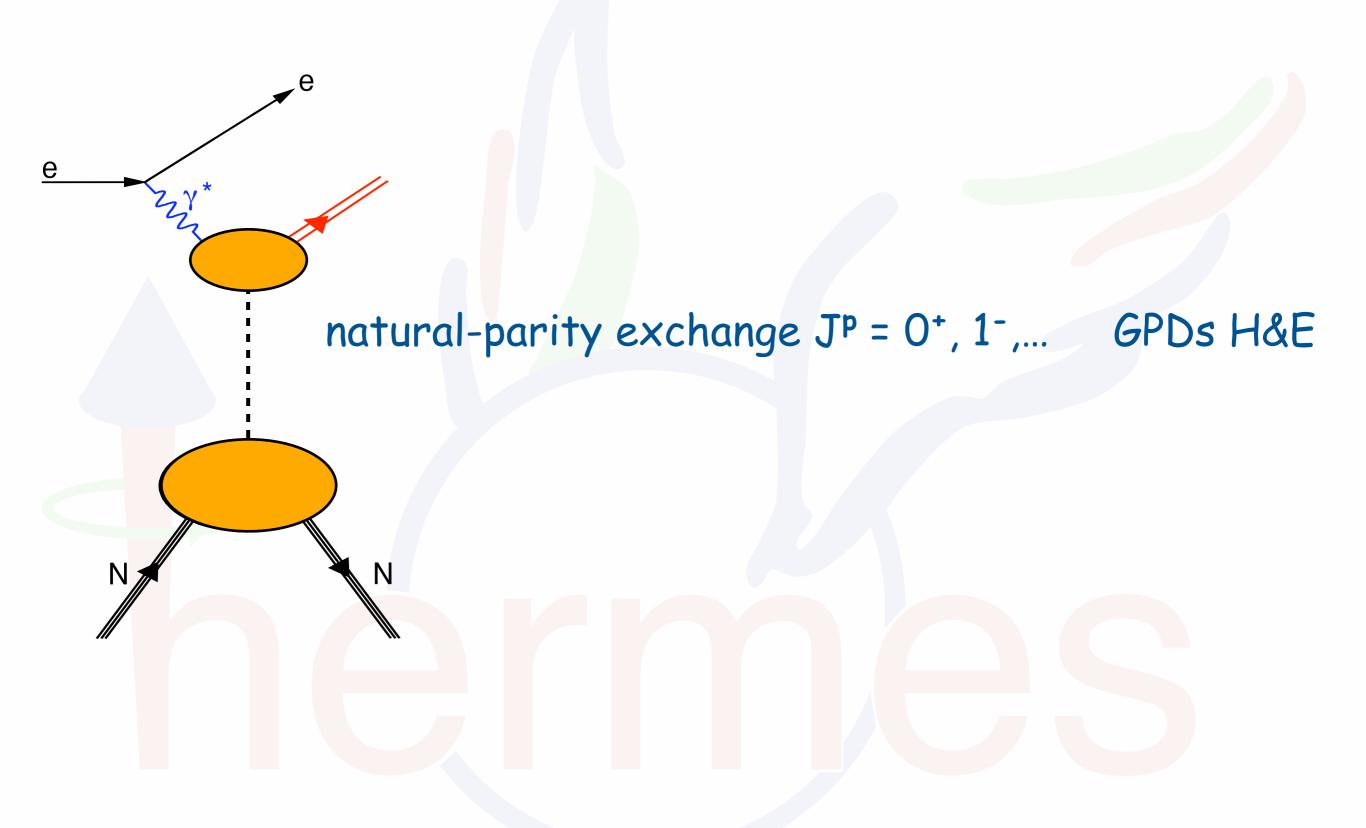
$$W = W_{UU} + P_B W_{LU} + S_L W_{UL} + P_B S_L W_{LL} + S_T W_{UT} + P_B S_T W_{LT}$$

look at various angular (decay) distributions to study helicity transitions ("spin-density matrix elements")

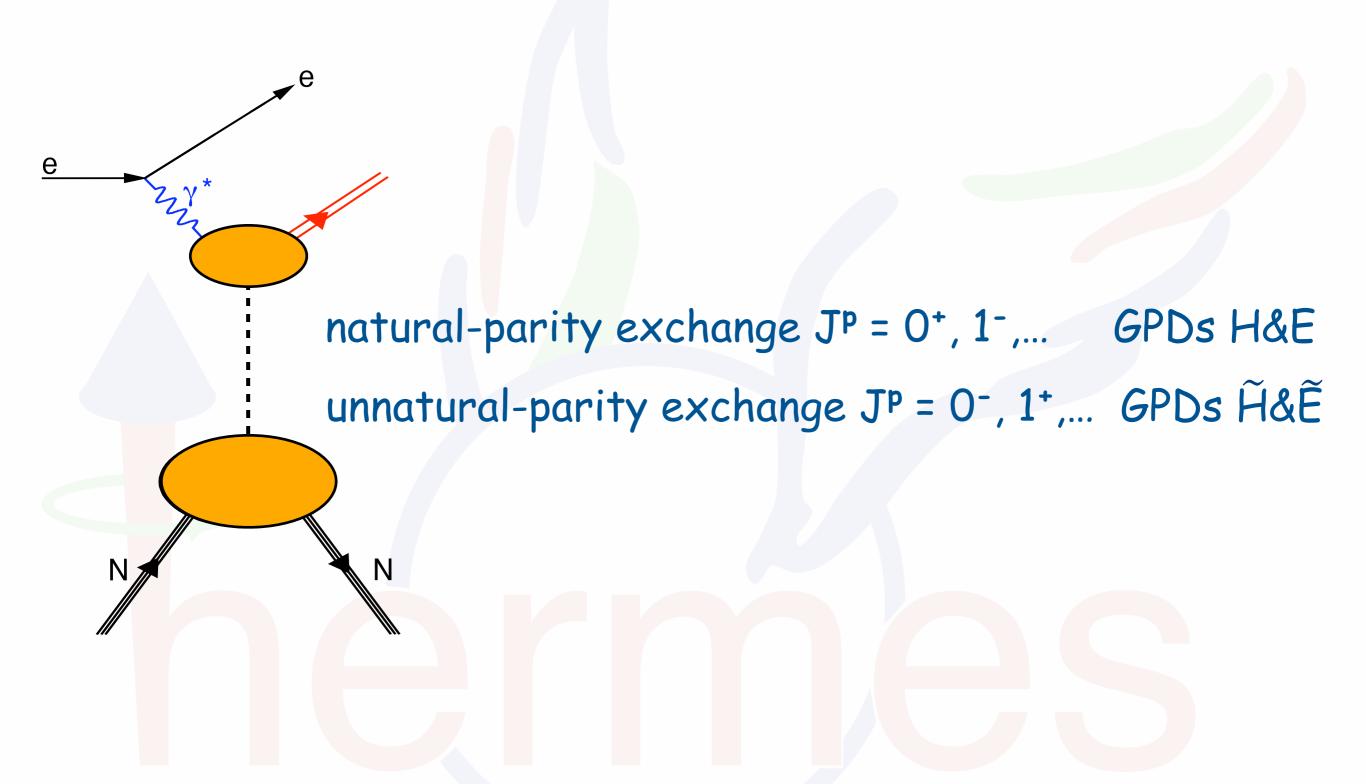
"Regge phenomenology"



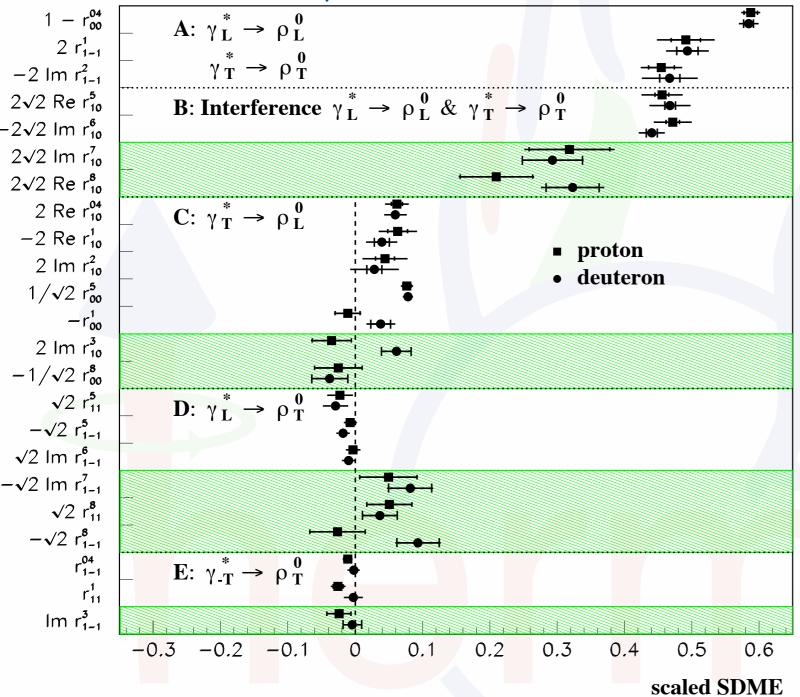
"Regge phenomenology"



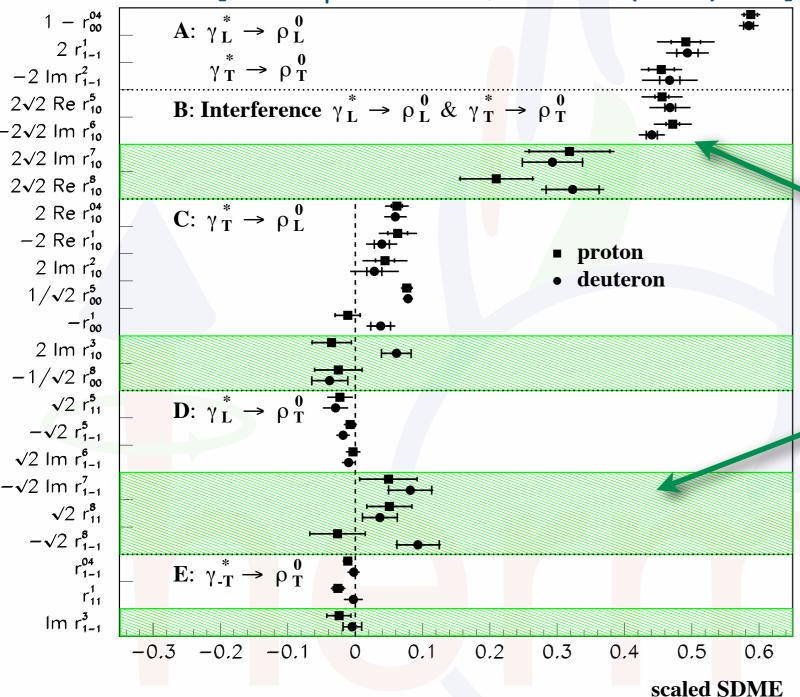
"Regge phenomenology"



ρ⁰ SDMEs from HERMES

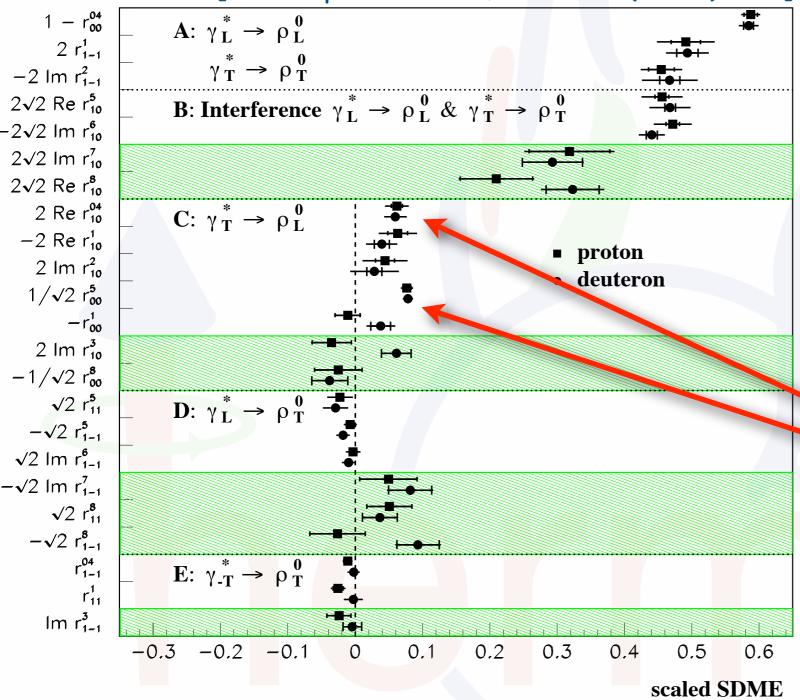


target-polarization independent SDMEs



helicity non-flip much larger than helicity-flip and double helicity-flip

target-polarization independent SDMEs

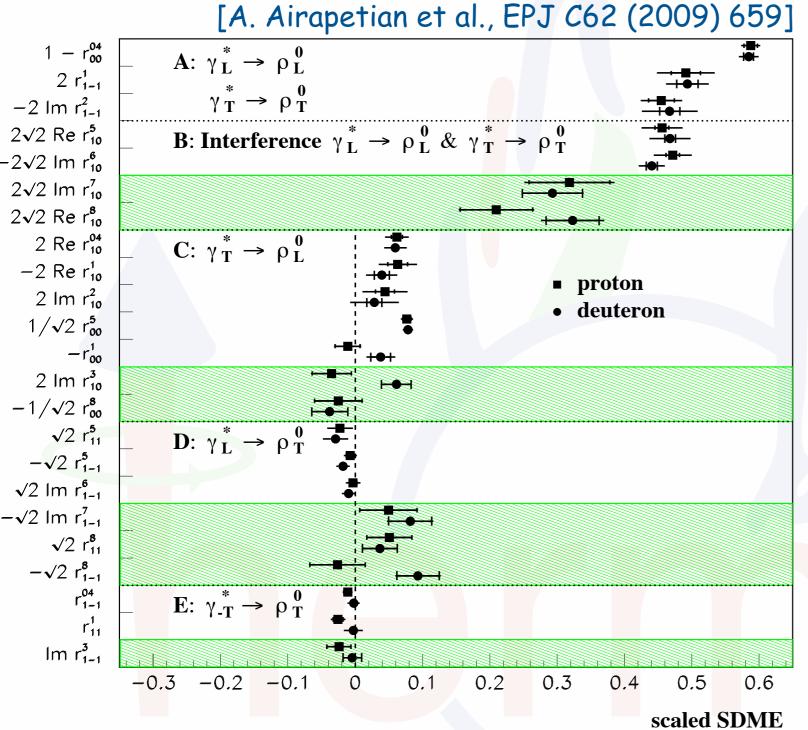


clear breaking of s-channel helicity conservation

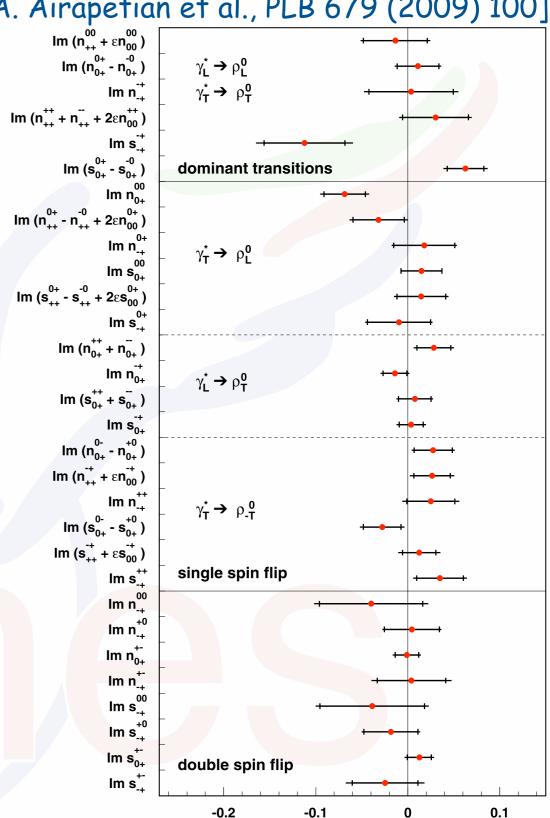
target-polarization independent SDMEs

O SDMEs from HERMES

[A. Airapetian et al., PLB 679 (2009) 100]

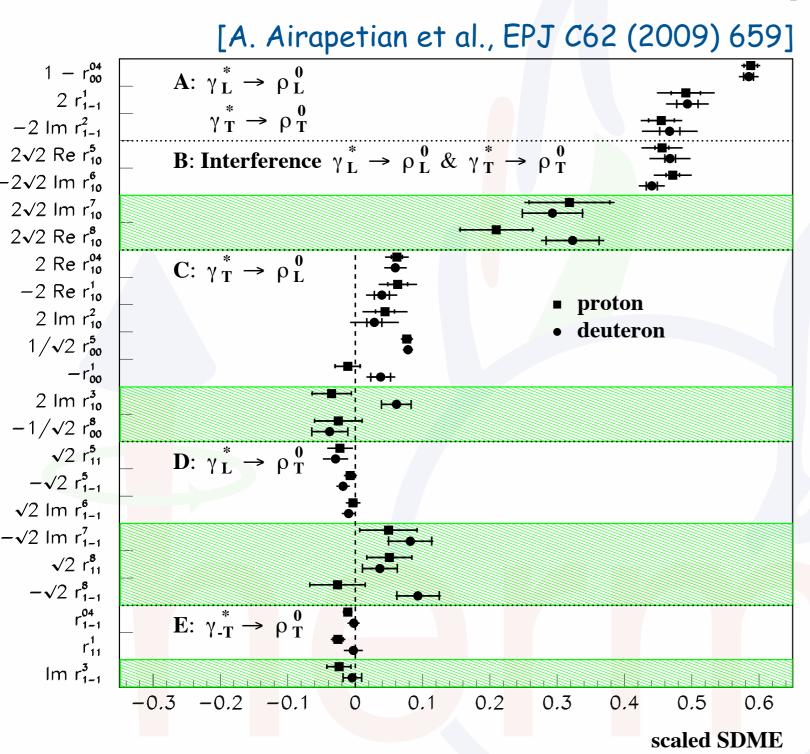


target-polarization independent SDMEs

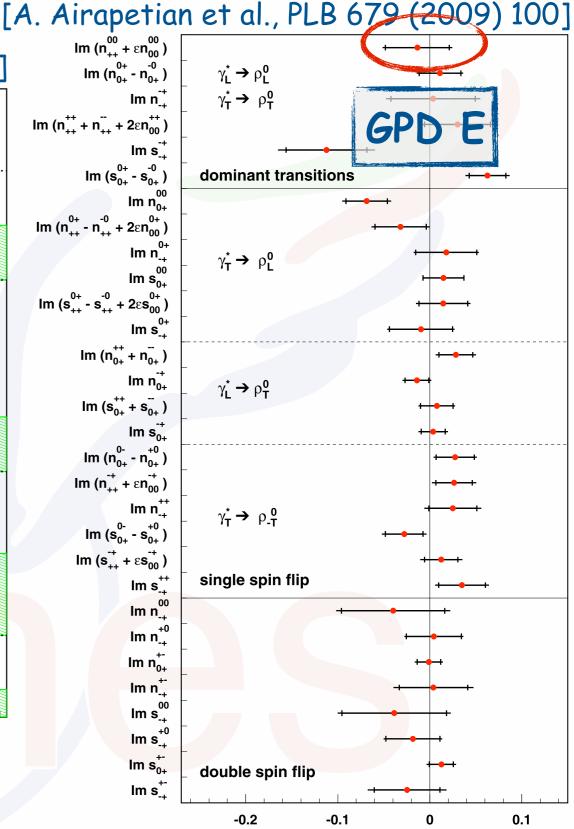


transverse" SDMEs **SDME values**

PacSPIN 2015 - Taipei - Oct. 6th, 2015

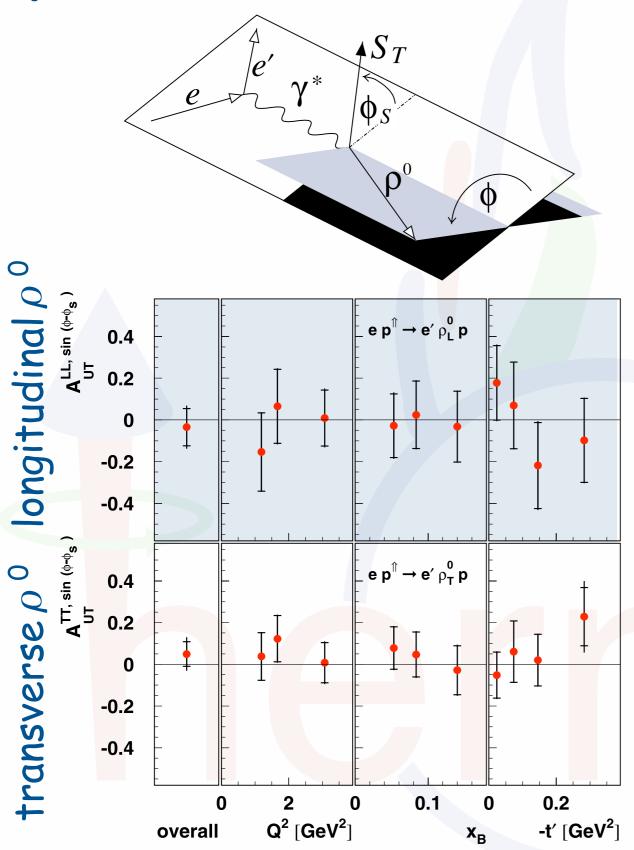


target-polarization independent SDMEs

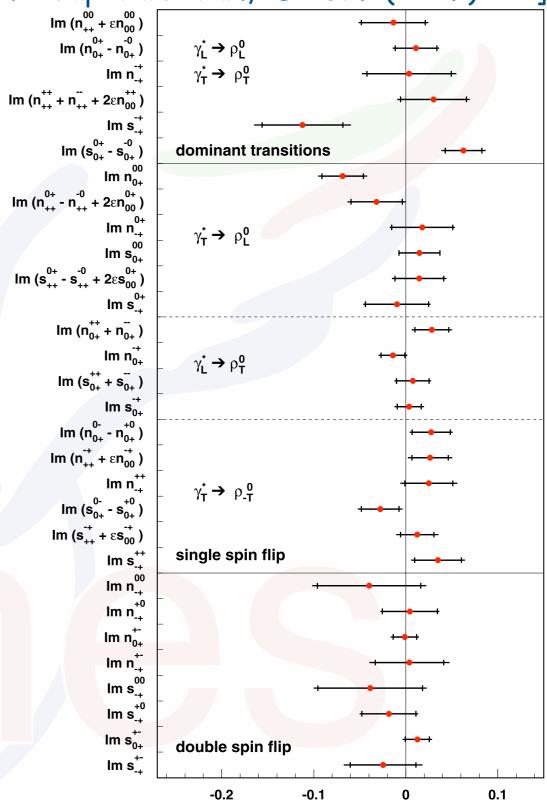


"transverse" SDMEs SDME values

PacSPIN 2015 - Taipei - Oct. 6th, 2015

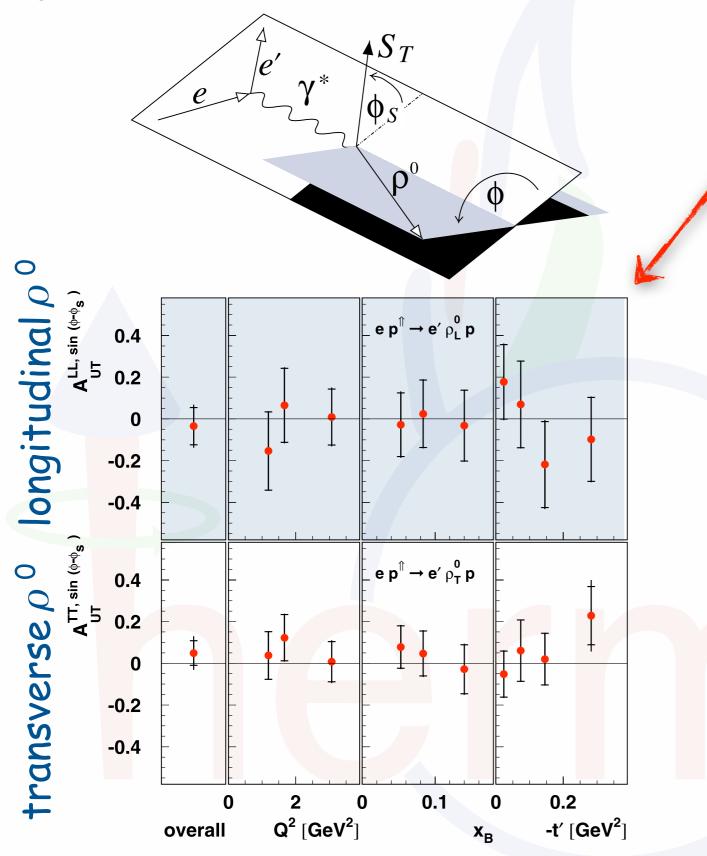


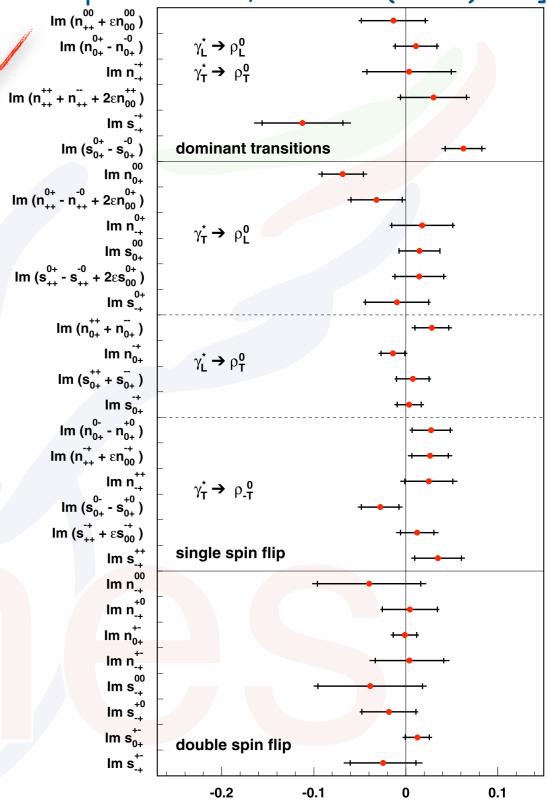
[A. Airapetian et al., PLB 679 (2009) 100]



"transverse" SDMEs SDME values

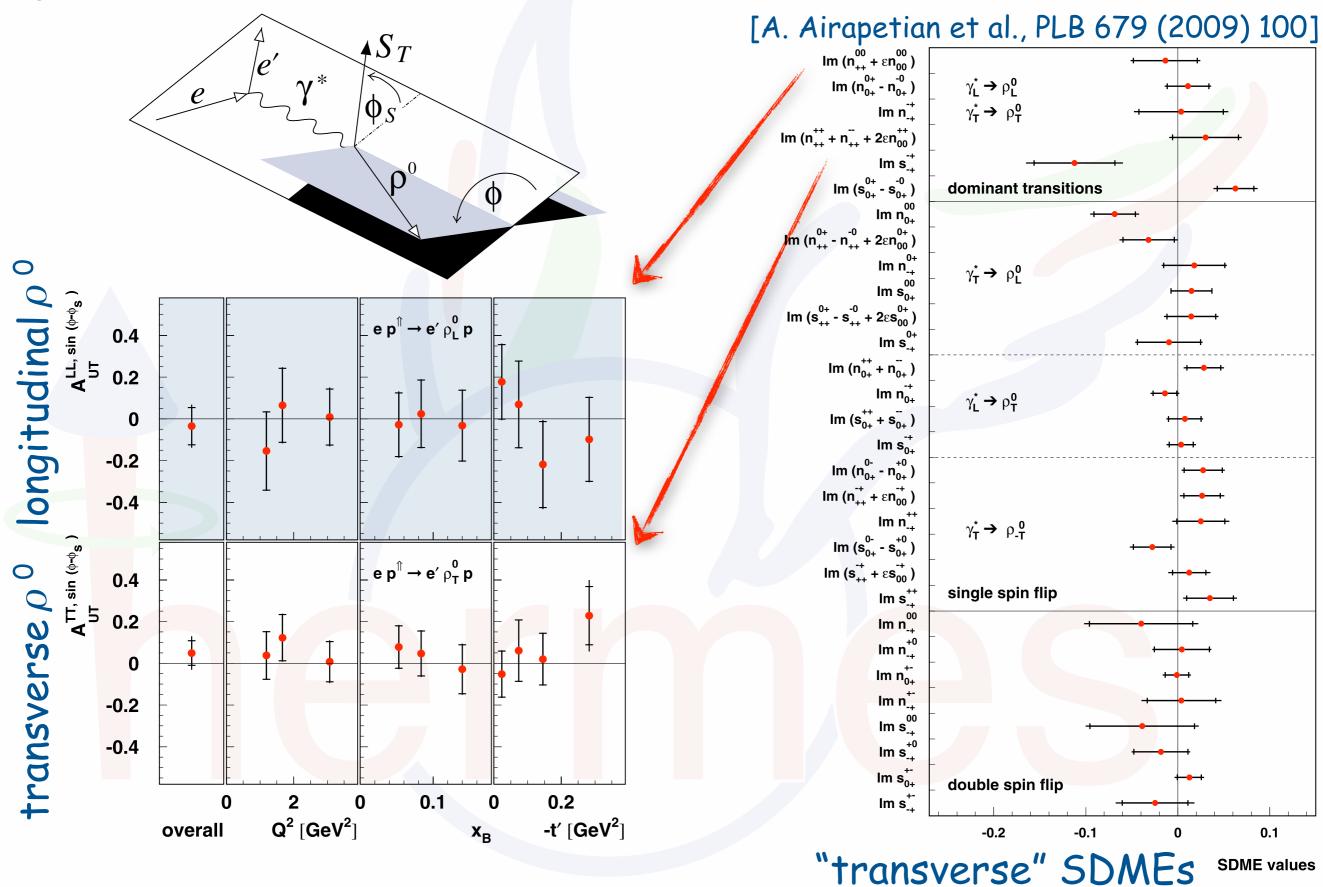
PacSPIN 2015 - Taipei - Oct. 6th, 2015



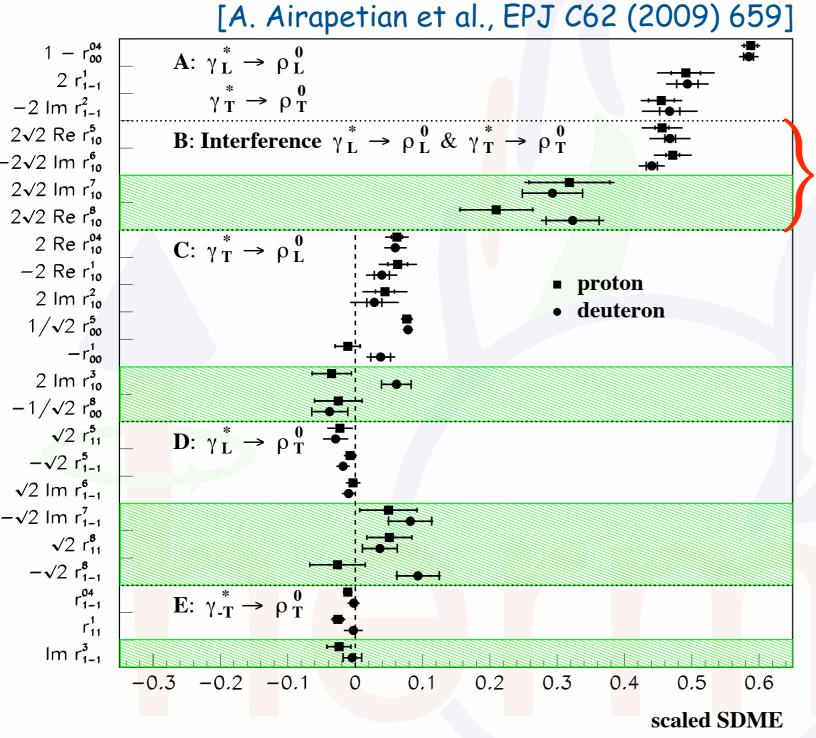


"transverse" SDMEs SDME values

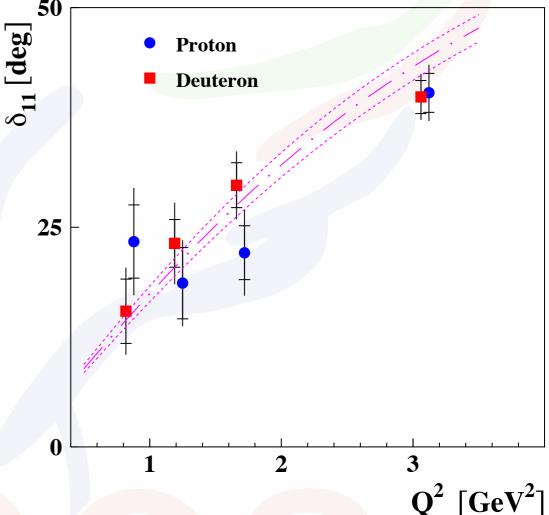
PacSPIN 2015 - Taipei - Oct. 6th, 2015



$\rho^{\,0}$ SDMEs from HERMES: challenges



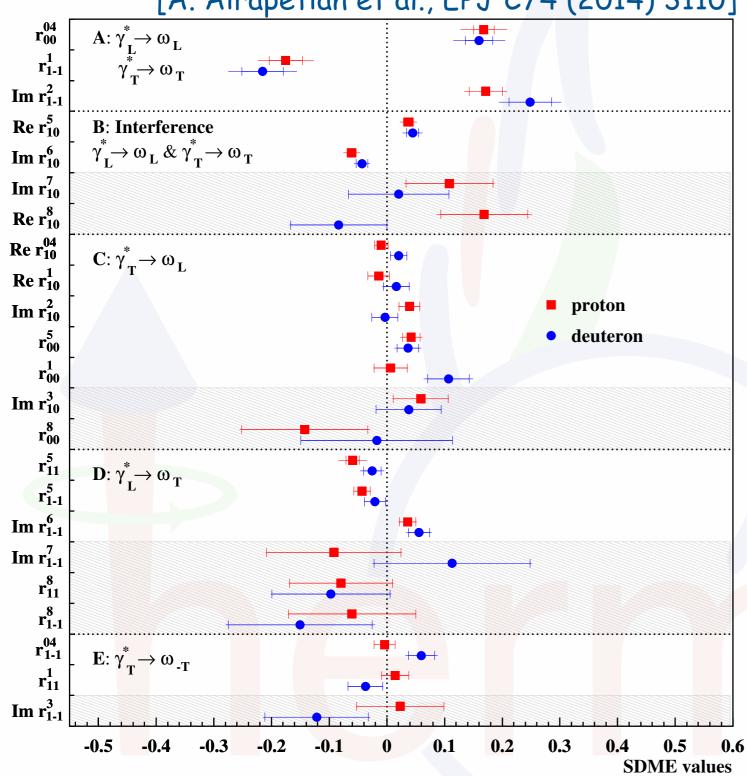
[A. Airapetian et al, EPJ C71 (2011) 1609]

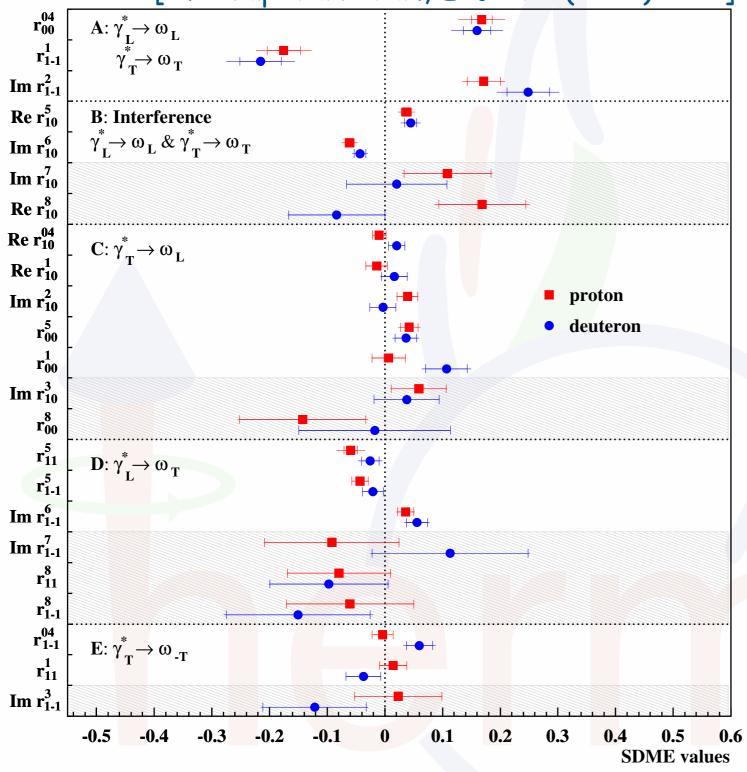


Extraction of SDMEs and helicity amplitude ratios at HERMES for ρ mesons challenges GPD-based calculations (giving small values)

... w production

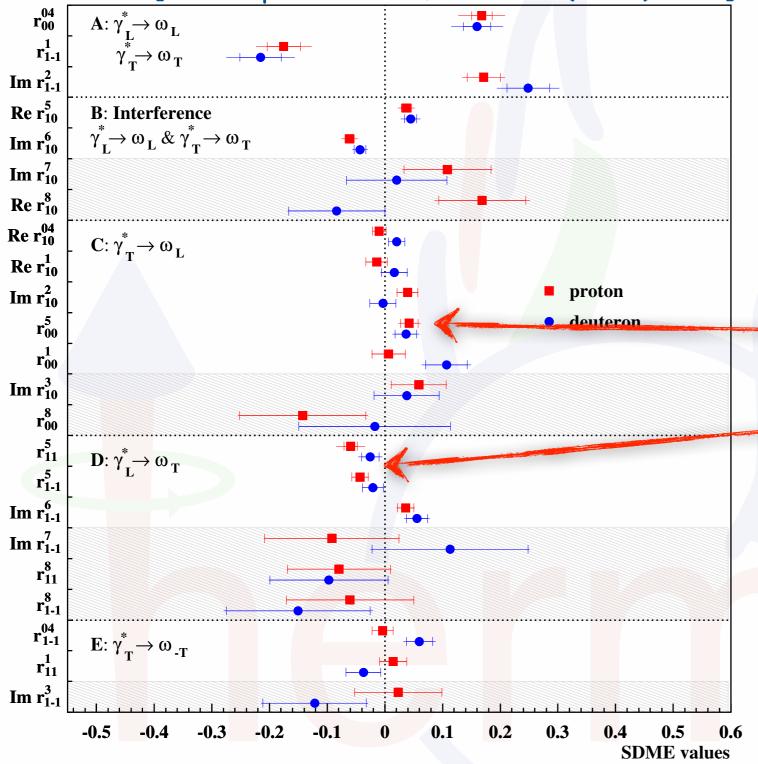
[A. Airapetian et al., EPJ C74 (2014) 3110]





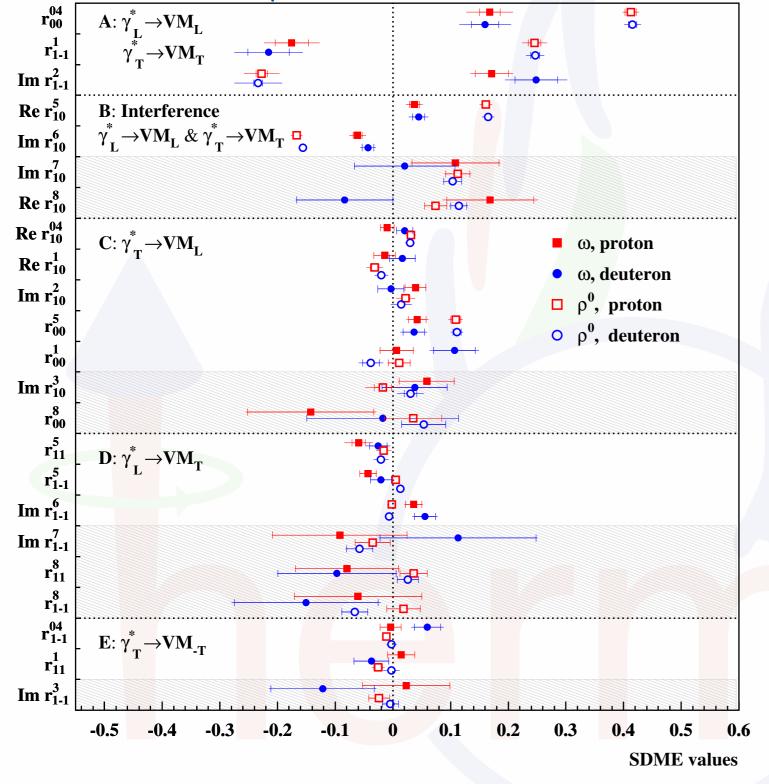
... w production

helicity-conservingSDMEs dominate



... w production

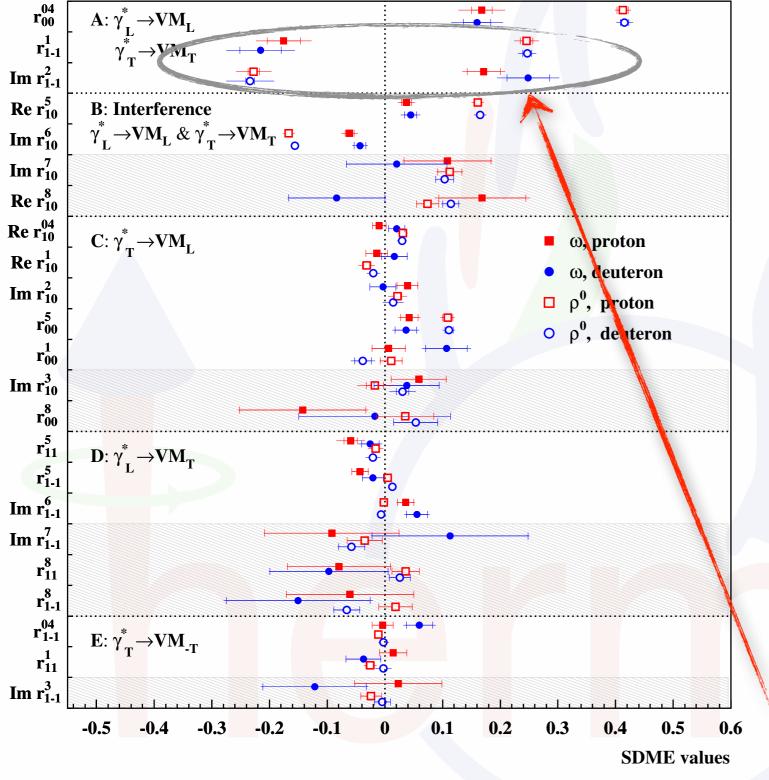
- helicity-conservingSDMEs dominate
- hardly any violation of SCHC, except maybe for
 - r_{00}^5
 - $r_{11}^5 + r_{1-1}^5 \Im r_{1-1}^6$



... w production

- helicity-conservingSDMEs dominate
- hardly any violation of SCHC, except maybe for
 - r_{00}^5
 - $r_{11}^5 + r_{1-1}^5 \Im r_{1-1}^6$

• interference smaller than for ρ^0 ...



... w production

- helicity-conservingSDMEs dominate
- hardly any violation of SCHC, except maybe for
 - r_{00}^5
 - $r_{11}^5 + r_{1-1}^5 \Im r_{1-1}^6$
- interference smaller than for ρ^0 ...

... and opposite signs for

$$r_{1-1}^1 \& \Im r_{1-1}^2$$

(un)natural-parity exchange contributions

$$\Im \, r_{1-1}^2 - r_{1-1}^1 = \frac{1}{\mathcal{N}} \underbrace{\sum (|U_{11}|^2 - |T_{11}|^2)}_{\text{UPE contribution}}$$

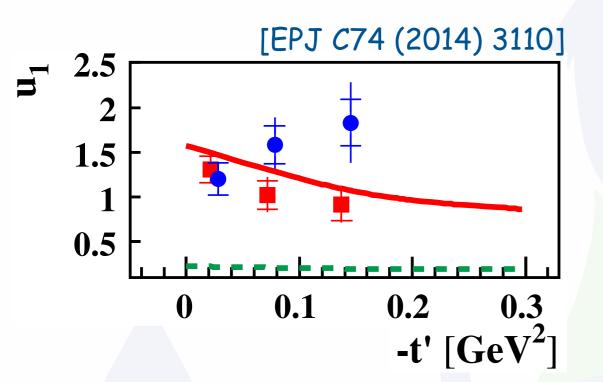
- positive for omega -> large UPE contributions (unlike for rho)
- can construct various UPE quantities:

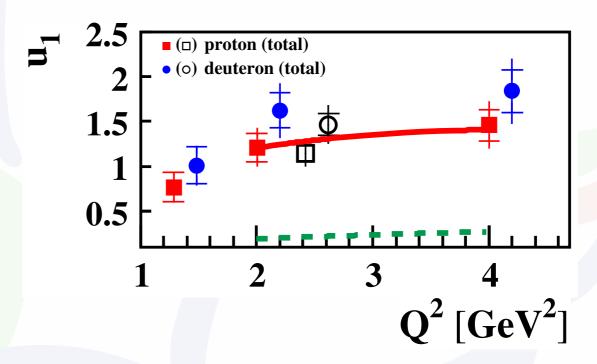
$$u_{1} = 1 - r_{00}^{04} + 2r_{1-1}^{04} - 2r_{11}^{1} - 2r_{1-1}^{1}$$

$$u_{2} = r_{11}^{5} + r_{1-1}^{5}$$

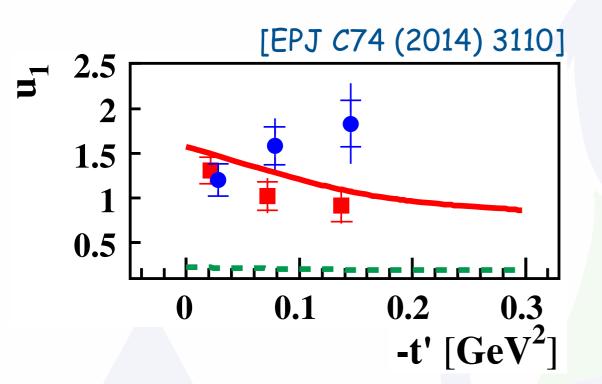
$$u_{3} = r_{11}^{8} + r_{1-1}^{8}$$

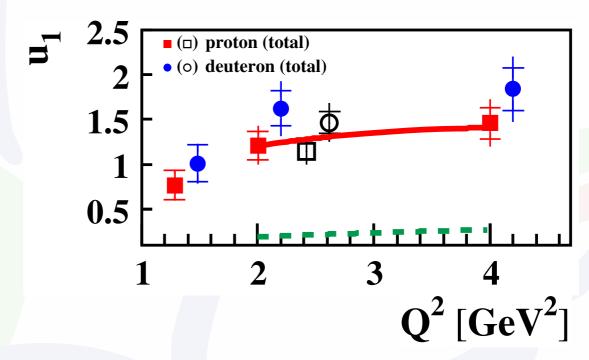
test of UPE





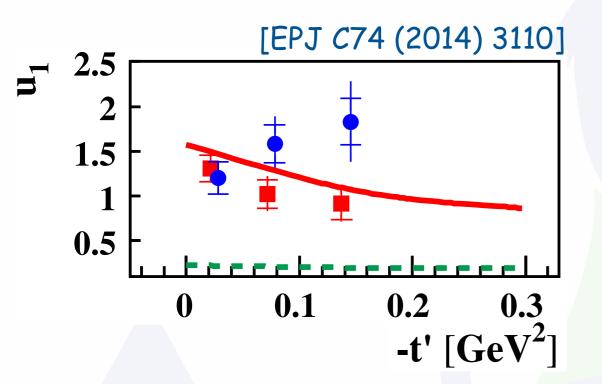
test of UPE

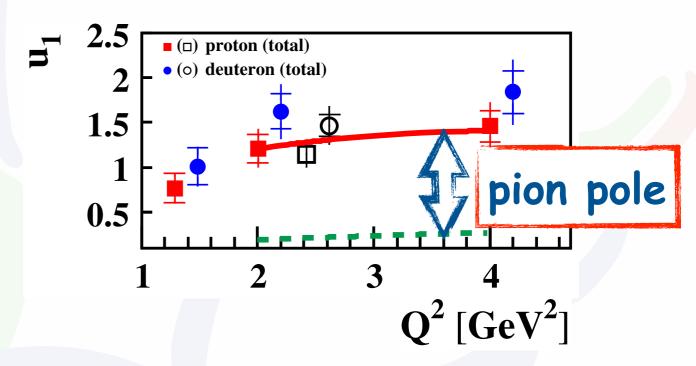




large UPE contributions

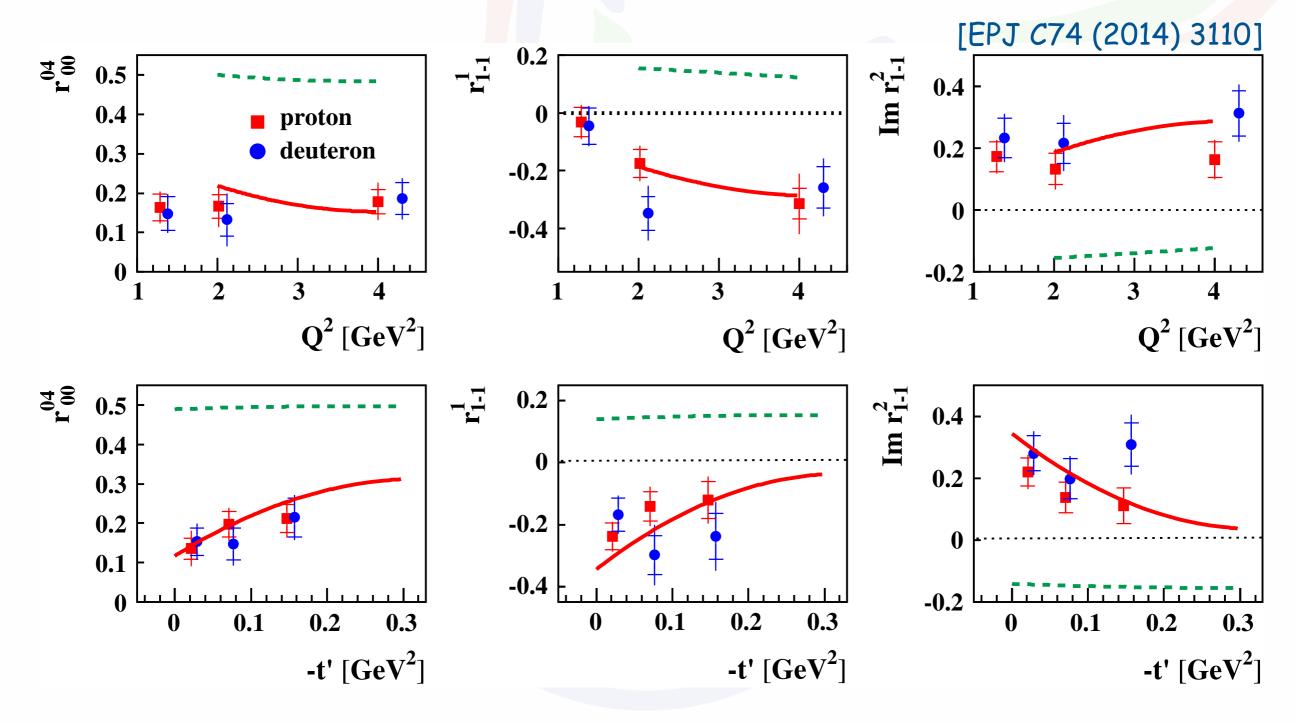
test of UPE



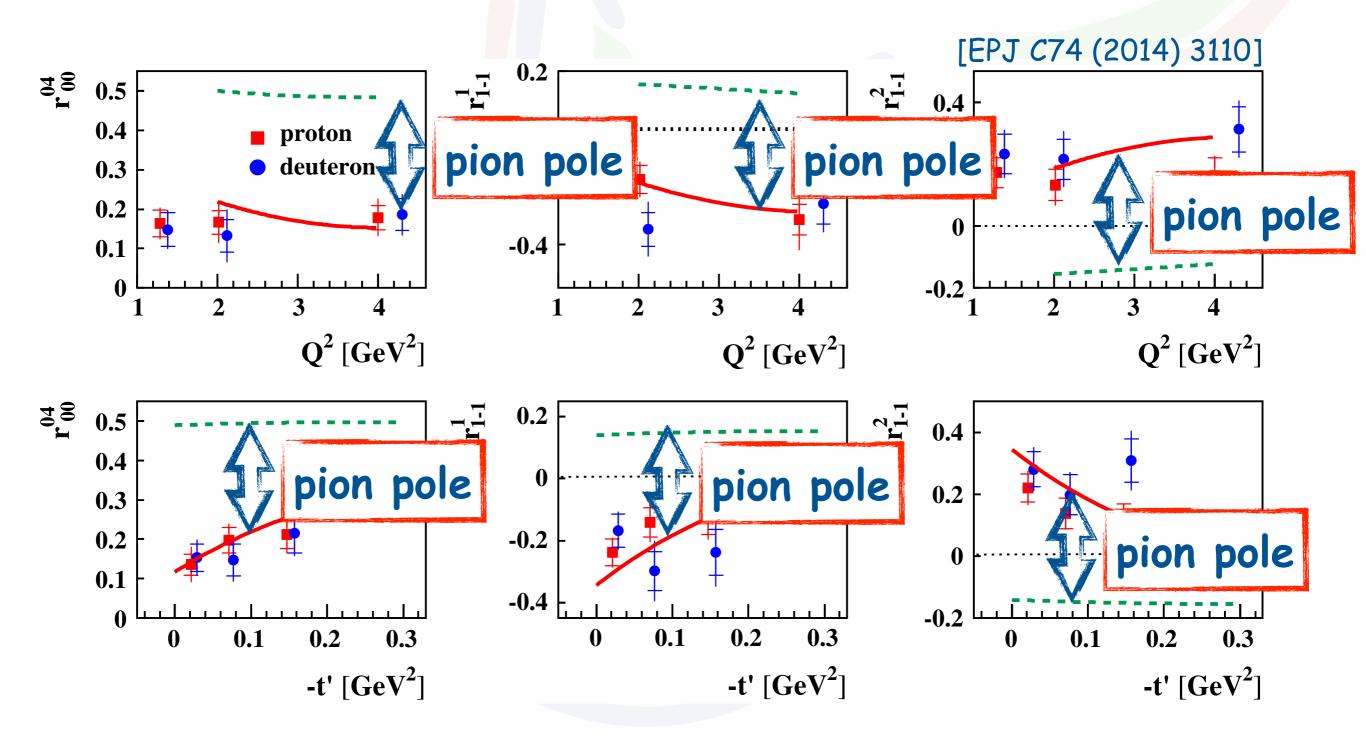


- large UPE contributions
- modified GK model [EPJ A50 (2014) 146] can describe data when including
 - pion pole contribution (red curve)
 - \bullet corresponding $\pi\omega$ transition form factor (fit to these data)

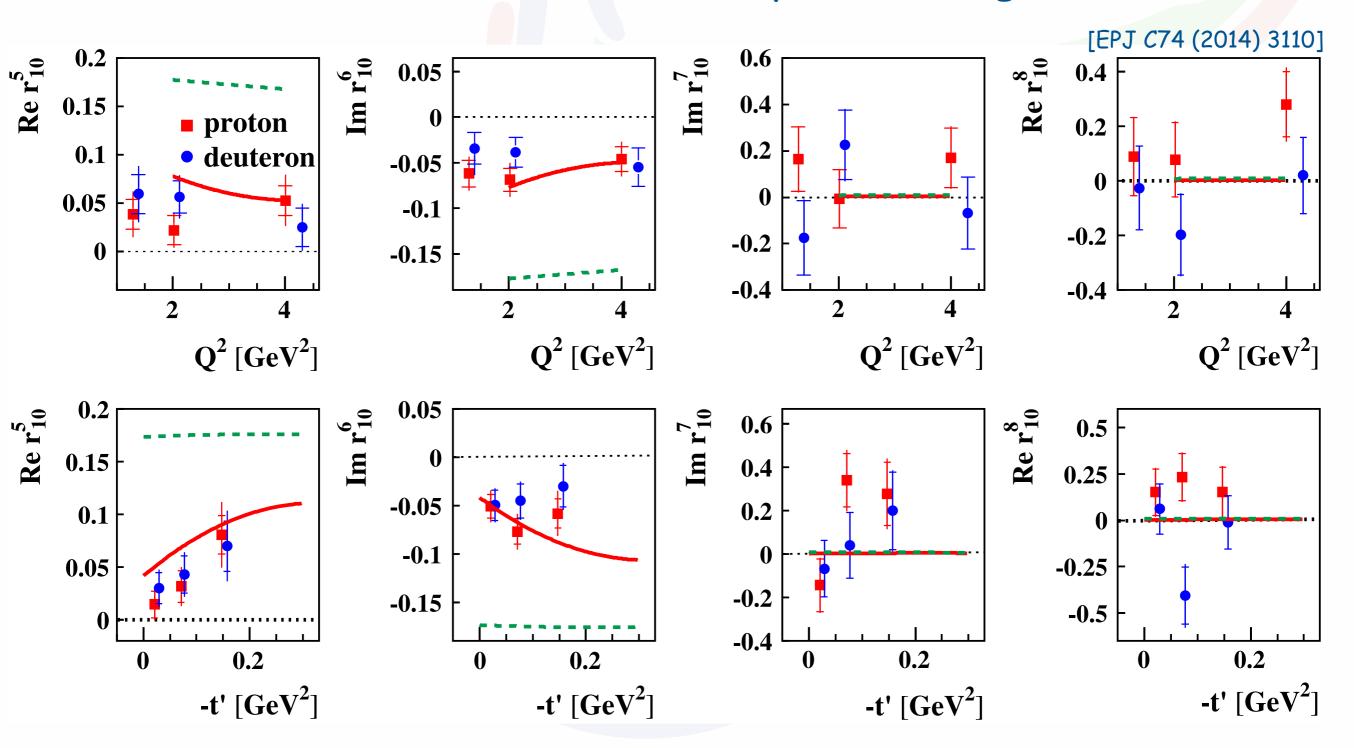
"class-A" - helicity-conserving transitions



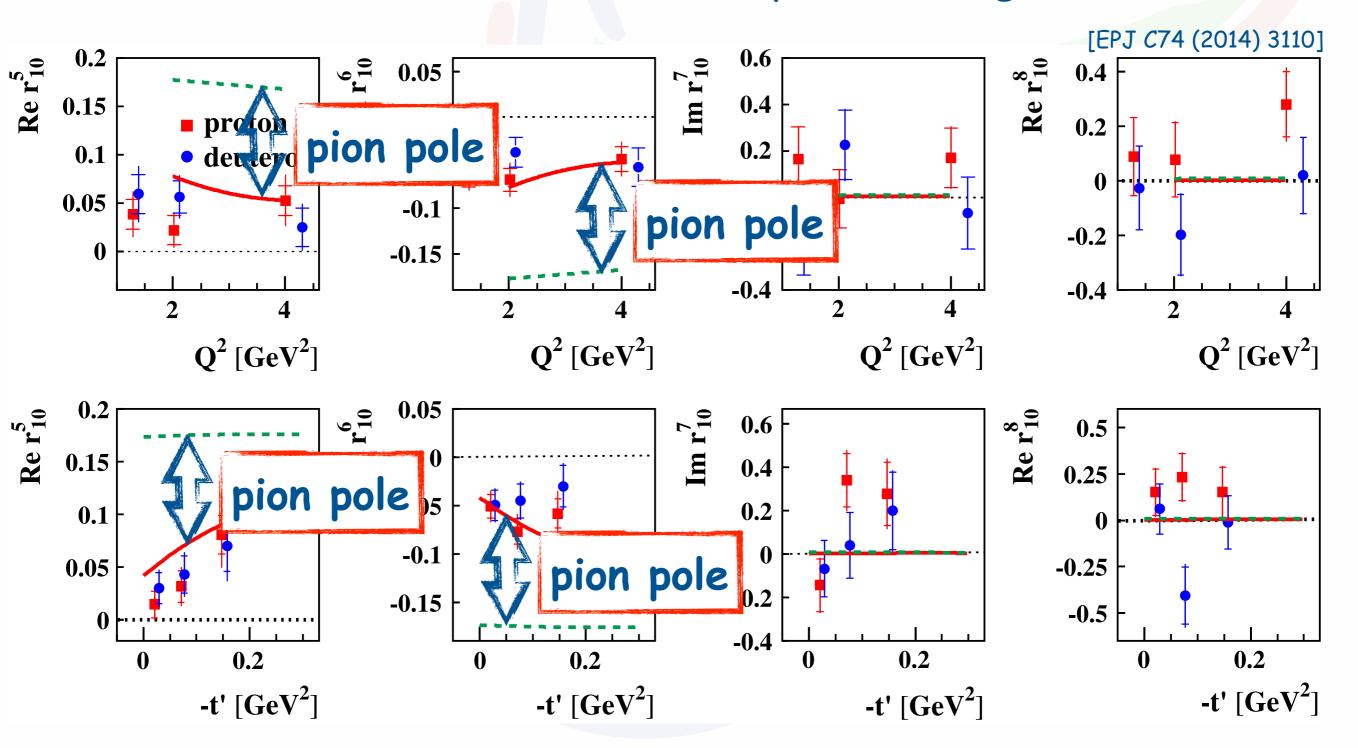
"class-A" - helicity-conserving transitions



"class-B" - interference of helicity-conserving transitions

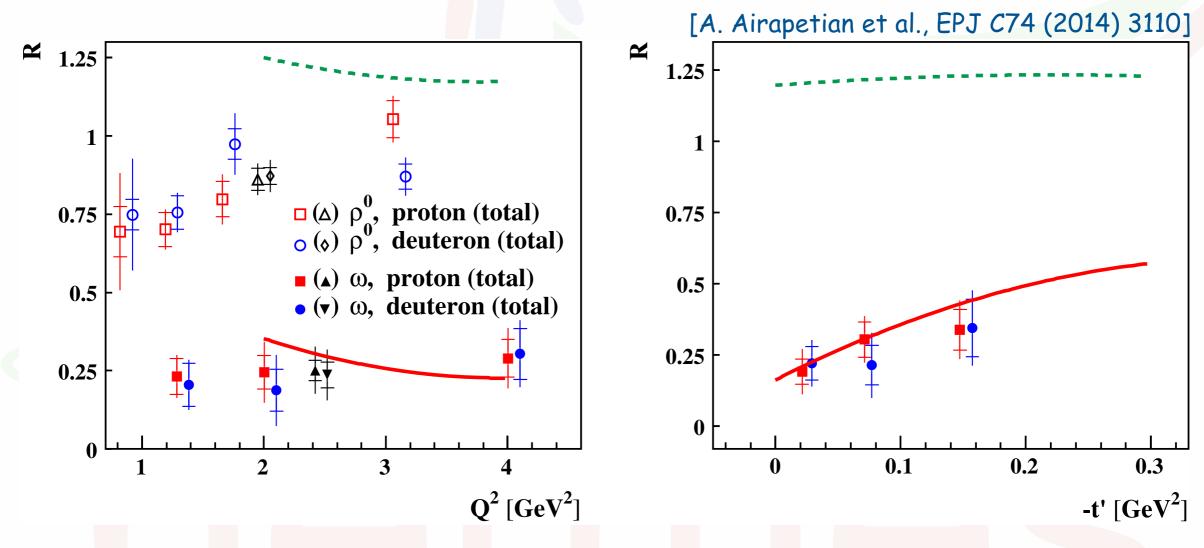


"class-B" - interference of helicity-conserving transitions

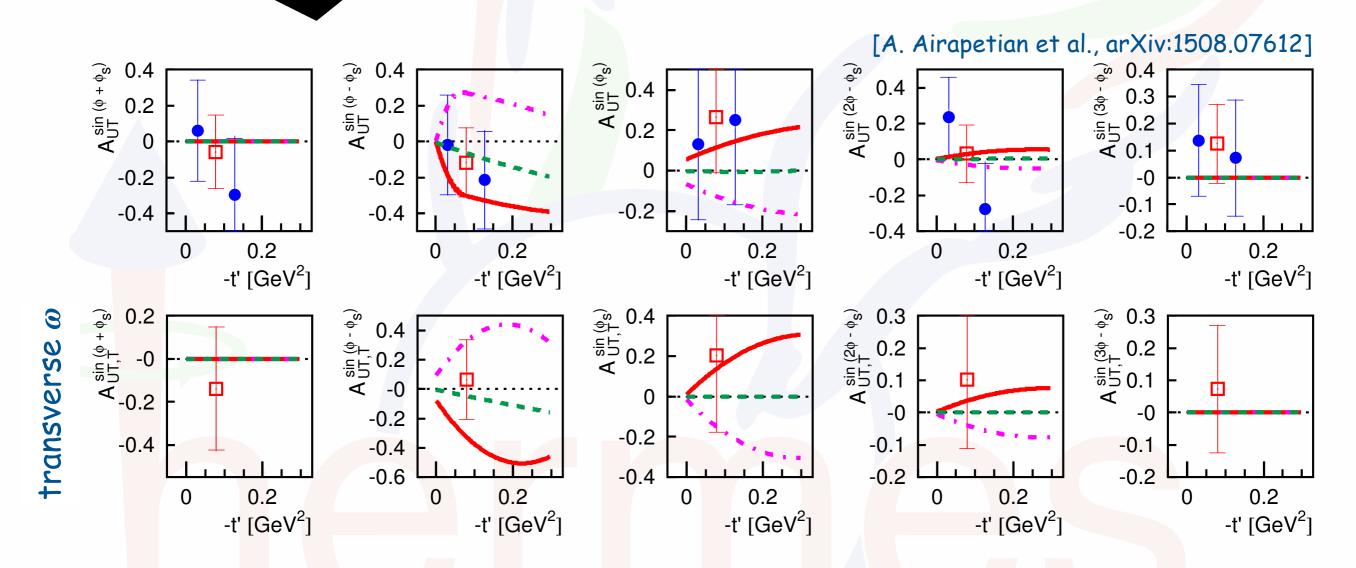


long.-to-transverse cross-section ratio

$$R = \frac{\mathrm{d}\sigma(\gamma_{\mathrm{L}}^* \to \omega)}{\mathrm{d}\sigma(\gamma_{\mathrm{T}}^* \to \omega)} \approx \frac{1}{\epsilon} \frac{r_{00}^{04}}{1 - r_{00}^{04}}$$

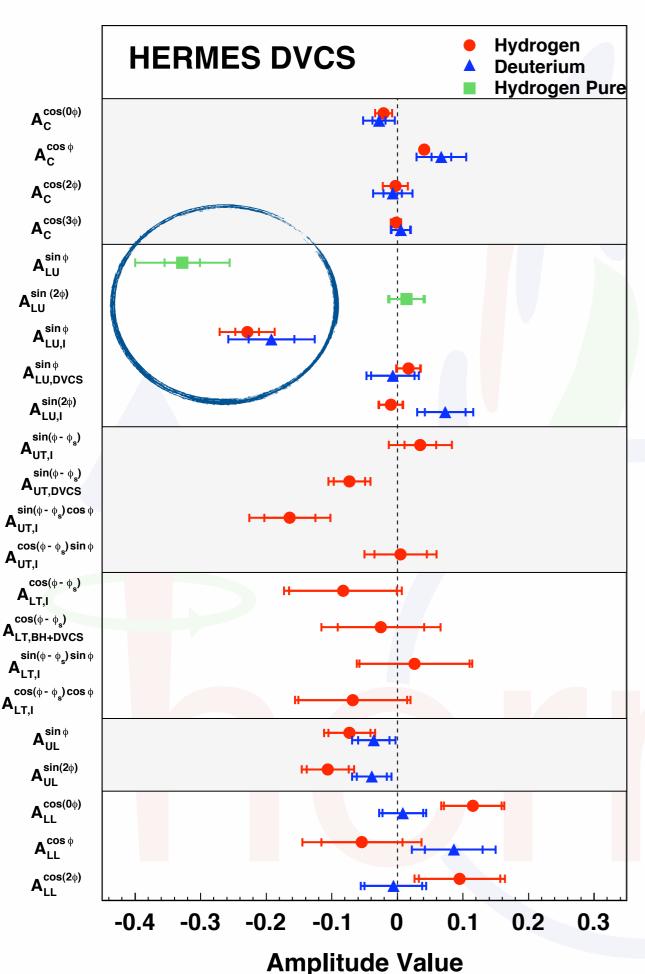


- significantly smaller for ω than for ρ
- important contribution from pion pole



slight preference for positive $\pi\omega$ transition FF (red/full line) vs. negative one (magenta/dash-dotted line)

Summary



DVCS@HERMES

HERMES analyzed a wealth of DVCSrelated asymmetries on nucleon and nuclear targets

data with recoil-proton detection allows clean interpretation

indication of larger amplitudes for pure sample

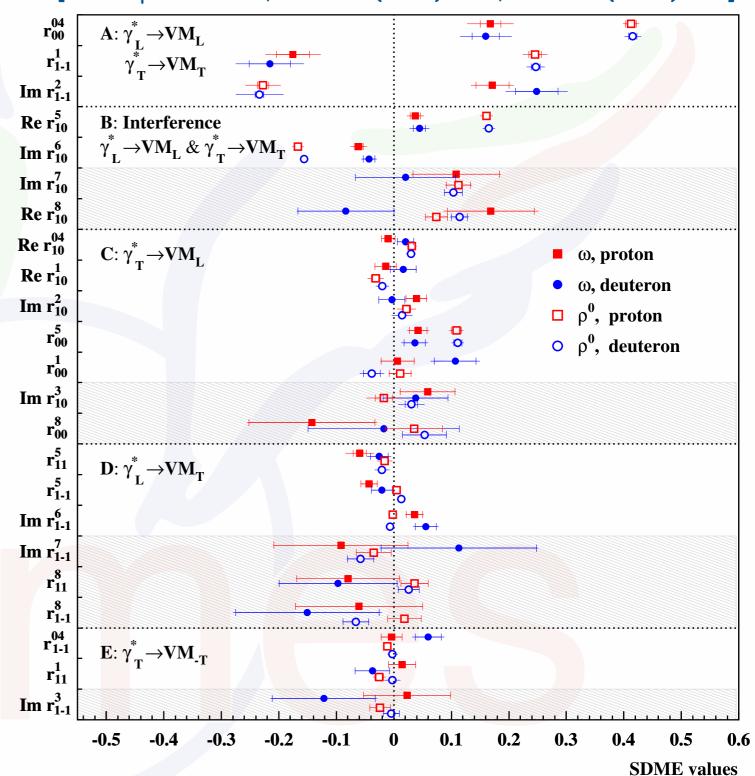
-> assoc. DVC5 in "traditional" analysis mainly dilution, supported by recent results from HERMES
[JHEP 01 (2014) 077]:

assoc. DVCS results consistent with zero but also with model prediction

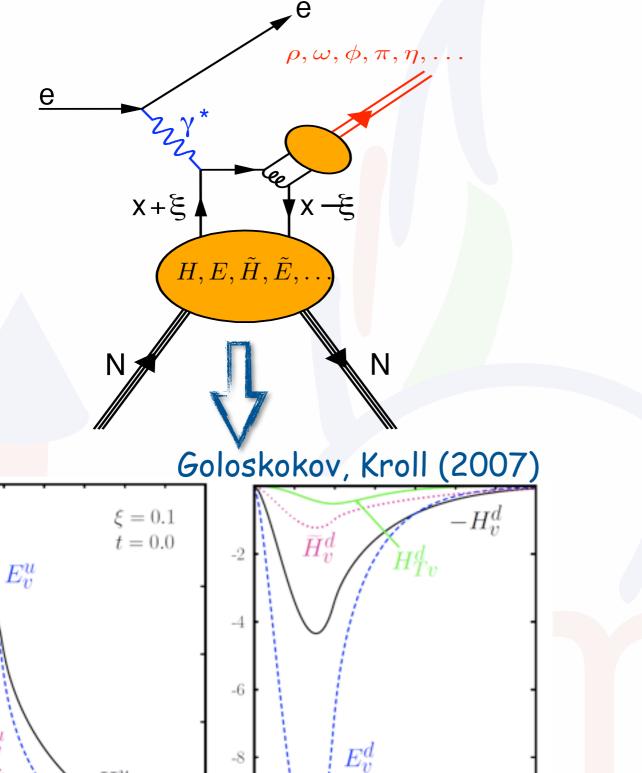
HEMP @ HERMES

- extensive data set on unpolarized and polarized SDMEs in vector-meson production
- (not shown:) cross section and A_{UT} for excl. π^{+}
- essential input in modelbuilding
- recent results on omega production require pion-pole contributions with a preference for positive $\pi\omega$ transition FF

[A. Airapetian et al., EPJ C74 (2014) 3110, EPJ C62 (2009) 659]



GPDs - a nice success story!



0.1 0.2 0.3 0.4

 H_v^u

-10

0.0

0.1

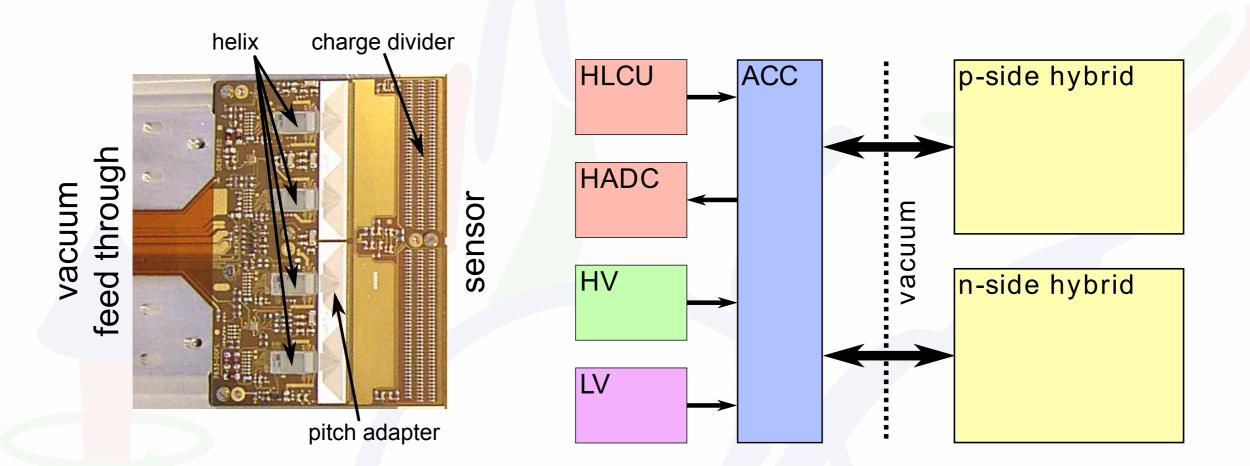
 $\xi = 0.1$ t = 0.0

0.2 - 0.3

GPDs - a nice success story! $ho, \omega, \phi, \pi, \eta, \ldots$ <u>e</u> **x**-ξ $X+\xi$ $X + \xi$ $(H, E, ilde{H}, ilde{E},$ $H, E, \tilde{H}, \tilde{E}, .$ [P. Kroll, H. Moutarde, F. Sabatie, EPJ C73 (2013) 2278] $A_{\mathrm{LII}}^{+,\sin\phi}$ Goloskokov, Kroll (2007) $\xi = 0.1$ t = 0.0-0.1 -0.2 -0.3 E_v^d -0.4 H_v^u $\xi = 0.1$ t = 0.0-10 -0.5 0 0.1 0.2 0.3 0.5 0.1 $[\mathrm{GeV}^2]$ xgunar.schnell@desy.de 39 PacSPIN 2015 - Taipei - Oct. 6th, 2015

backup

SSD (silicon strip detector)

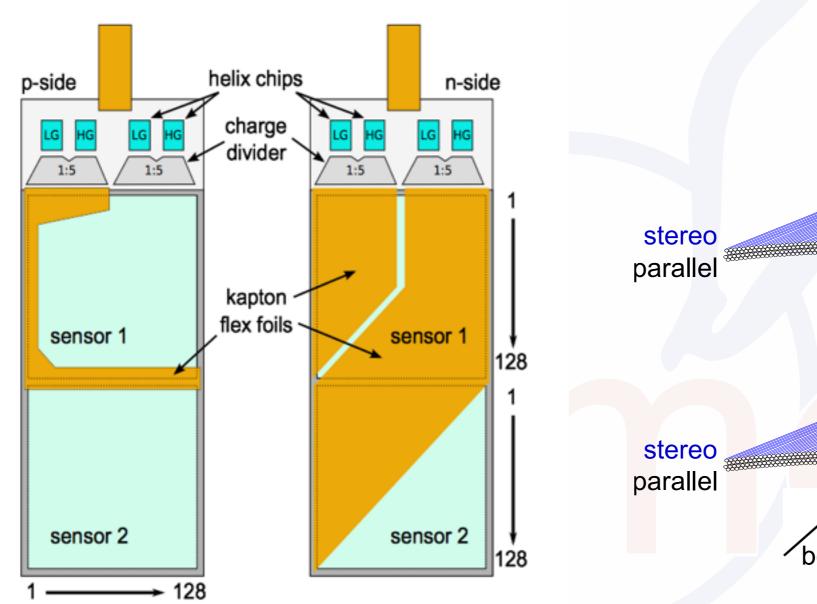


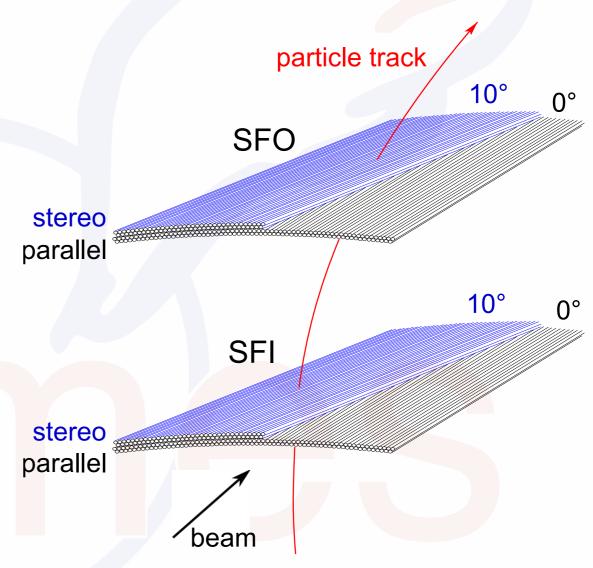
5.8 cm away from lepton beam, 1.5 cm gap sensor thickness 295 μm - 315 μm thickness of target cell 75 μm

The HERMES recoil detector

Sketch of front- and backside of a silicon strip detector module (SSD)

Schematic design of the scintillating fibre tracker (SFT)

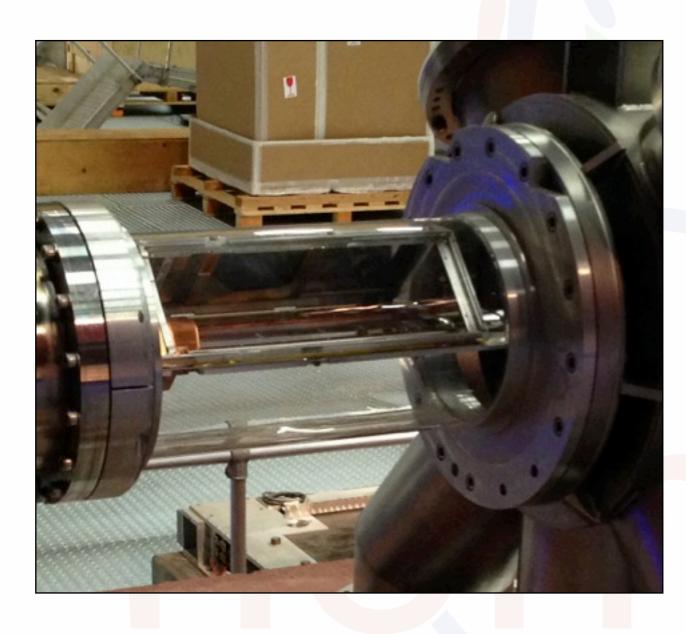


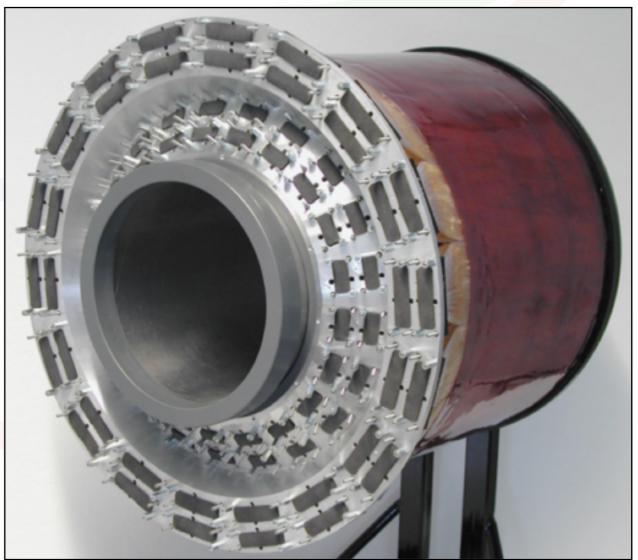


The HERMES recoil detector

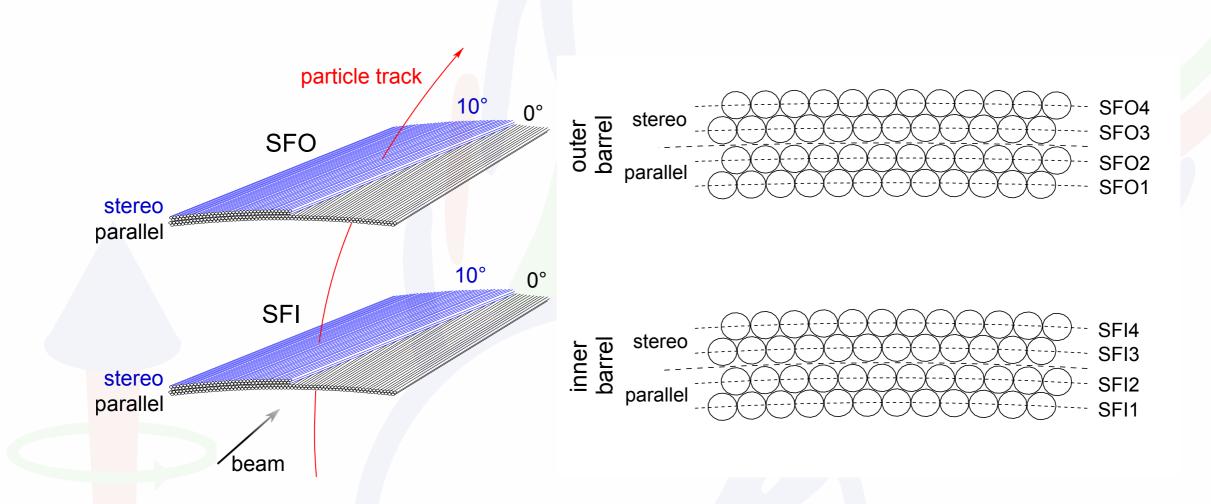
The silicon strip detector (SSD)

The scintillating fibre tracker (SFT)



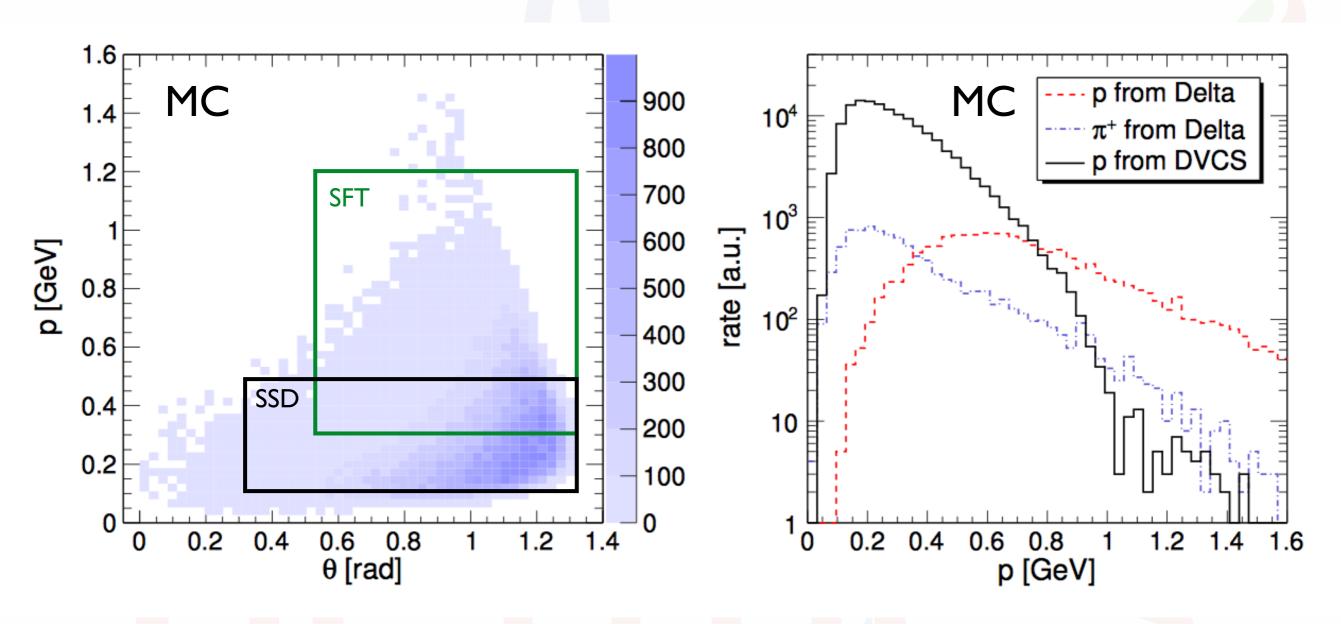


SFT (scintillating fibre tracker)



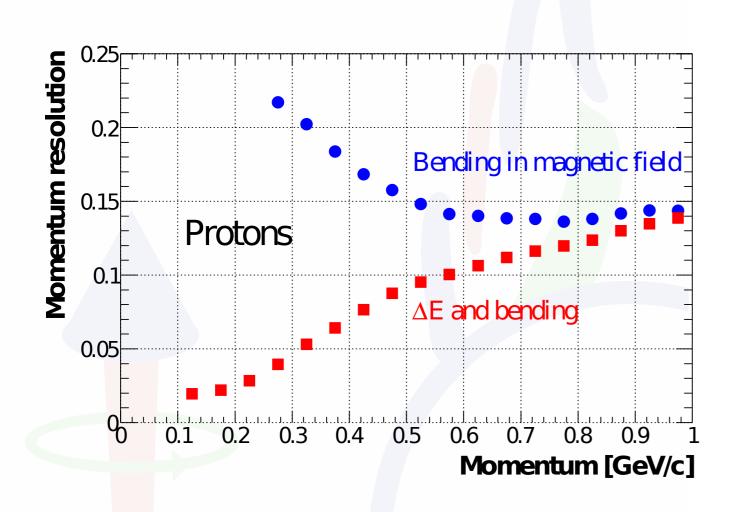
11.5 cm (18.5 cm) inner (outer) radius
1318+1320 (2198+2180) fibers with a diameter of 1 mm each
readout by 64-channel Hamamatsu H7546B MAPMTs

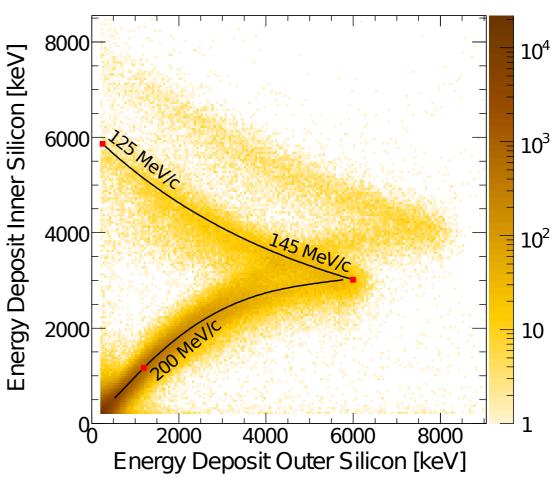
Kinematic coverage of the HERMES RD



Scintillating fibre tracker (SFT) and silicon strip detector (SSD) complement each other

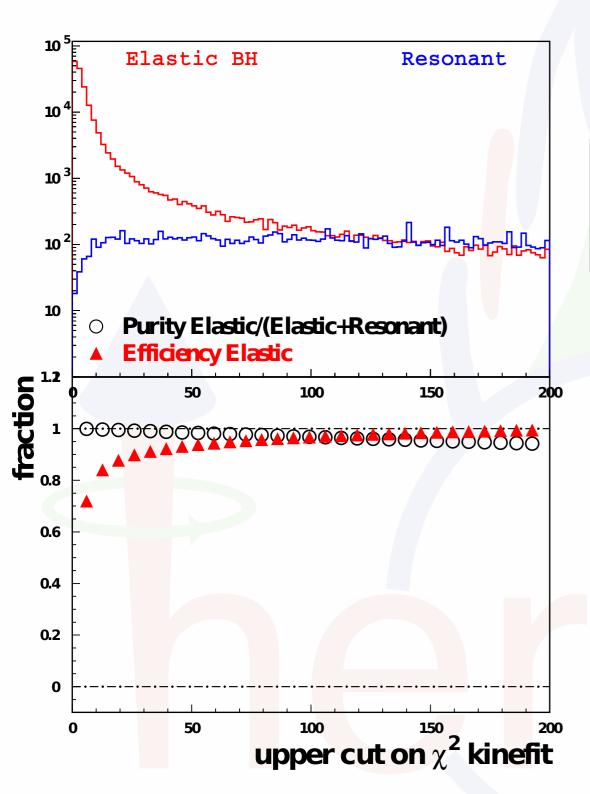
Recoil-detector tracking





taking energy loss into account improves momentum resolution for low p azimuthal-angle resolution: 4 mrad polar-angle resolution: 10 mrad (for p>0.5 GeV)

Kinematic event fitting

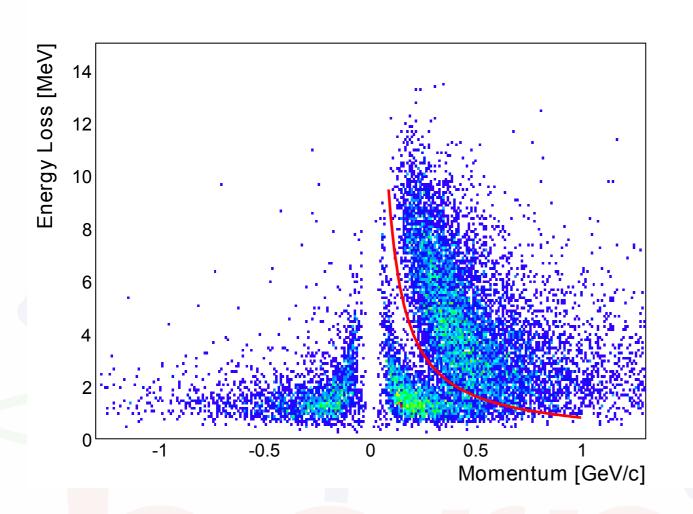


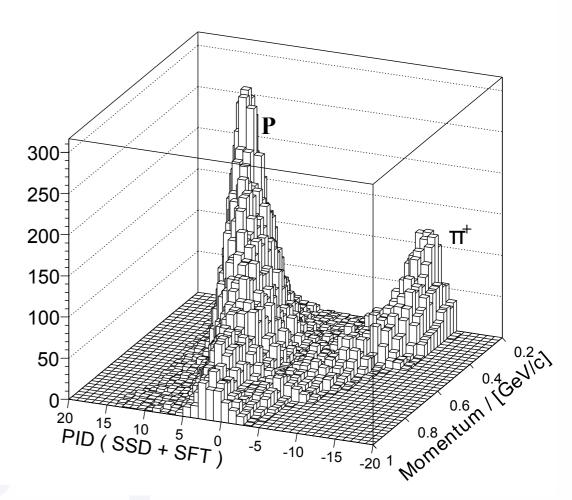
$$\chi^2_{pen} = \underbrace{\sum_{i=1}^9 \frac{(r_i^{fit} - r_i^{meas})^2}{\sigma_i^2}}_{} + \underbrace{T \cdot \sum_{j=1}^4 \underbrace{\begin{bmatrix} f_j(r_1^{fit}, \dots, r_9^{fit}) \end{bmatrix}^2}_{} + \underbrace{T \cdot \sum_{j=1}^4 \underbrace{\begin{bmatrix} f_j(r_1^{fit}, \dots, r_9^{fit}) \end{bmatrix}^2}_{} + \underbrace{T \cdot \sum_{j=1}^4 \underbrace{\begin{bmatrix} f_j(r_1^{fit}, \dots, r_9^{fit}) \end{bmatrix}^2}_{} + \underbrace{T \cdot \sum_{j=1}^4 \underbrace{\begin{bmatrix} f_j(r_1^{fit}, \dots, r_9^{fit}) \end{bmatrix}^2}_{} + \underbrace{T \cdot \sum_{j=1}^4 \underbrace{\begin{bmatrix} f_j(r_1^{fit}, \dots, r_9^{fit}) \end{bmatrix}^2}_{} + \underbrace{T \cdot \sum_{j=1}^4 \underbrace{\begin{bmatrix} f_j(r_1^{fit}, \dots, r_9^{fit}) \end{bmatrix}^2}_{} + \underbrace{T \cdot \sum_{j=1}^4 \underbrace{\begin{bmatrix} f_j(r_1^{fit}, \dots, r_9^{fit}) \end{bmatrix}^2}_{} + \underbrace{T \cdot \sum_{j=1}^4 \underbrace{\begin{bmatrix} f_j(r_1^{fit}, \dots, r_9^{fit}) \end{bmatrix}^2}_{} + \underbrace{T \cdot \sum_{j=1}^4 \underbrace{\begin{bmatrix} f_j(r_1^{fit}, \dots, r_9^{fit}) \end{bmatrix}^2}_{} + \underbrace{T \cdot \sum_{j=1}^4 \underbrace{\begin{bmatrix} f_j(r_1^{fit}, \dots, r_9^{fit}) \end{bmatrix}^2}_{} + \underbrace{T \cdot \sum_{j=1}^4 \underbrace{\begin{bmatrix} f_j(r_1^{fit}, \dots, r_9^{fit}) \end{bmatrix}^2}_{} + \underbrace{T \cdot \sum_{j=1}^4 \underbrace{\begin{bmatrix} f_j(r_1^{fit}, \dots, r_9^{fit}) \end{bmatrix}^2}_{} + \underbrace{T \cdot \sum_{j=1}^4 \underbrace{\begin{bmatrix} f_j(r_1^{fit}, \dots, r_9^{fit}) \end{bmatrix}^2}_{} + \underbrace{T \cdot \sum_{j=1}^4 \underbrace{\begin{bmatrix} f_j(r_1^{fit}, \dots, r_9^{fit}) \end{bmatrix}^2}_{} + \underbrace{T \cdot \sum_{j=1}^4 \underbrace{\begin{bmatrix} f_j(r_1^{fit}, \dots, r_9^{fit}) \end{bmatrix}^2}_{} + \underbrace{T \cdot \sum_{j=1}^4 \underbrace{\begin{bmatrix} f_j(r_1^{fit}, \dots, r_9^{fit}) \end{bmatrix}^2}_{} + \underbrace{T \cdot \sum_{j=1}^4 \underbrace{\begin{bmatrix} f_j(r_1^{fit}, \dots, r_9^{fit}) \end{bmatrix}^2}_{} + \underbrace{T \cdot \sum_{j=1}^4 \underbrace{\begin{bmatrix} f_j(r_1^{fit}, \dots, r_9^{fit}) \end{bmatrix}^2}_{} + \underbrace{T \cdot \sum_{j=1}^4 \underbrace{\begin{bmatrix} f_j(r_1^{fit}, \dots, r_9^{fit}) \end{bmatrix}^2}_{} + \underbrace{T \cdot \sum_{j=1}^4 \underbrace{\begin{bmatrix} f_j(r_1^{fit}, \dots, r_9^{fit}) \end{bmatrix}^2}_{} + \underbrace{T \cdot \sum_{j=1}^4 \underbrace{\begin{bmatrix} f_j(r_1^{fit}, \dots, r_9^{fit}) \end{bmatrix}^2}_{} + \underbrace{T \cdot \sum_{j=1}^4 \underbrace{\begin{bmatrix} f_j(r_1^{fit}, \dots, r_9^{fit}) \end{bmatrix}^2}_{} + \underbrace{T \cdot \sum_{j=1}^4 \underbrace{\begin{bmatrix} f_j(r_1^{fit}, \dots, r_9^{fit}) \end{bmatrix}^2}_{} + \underbrace{T \cdot \sum_{j=1}^4 \underbrace{\begin{bmatrix} f_j(r_1^{fit}, \dots, r_9^{fit}) \end{bmatrix}^2}_{} + \underbrace{T \cdot \sum_{j=1}^4 \underbrace{\begin{bmatrix} f_j(r_1^{fit}, \dots, r_9^{fit}) \end{bmatrix}^2}_{} + \underbrace{T \cdot \sum_{j=1}^4 \underbrace{\begin{bmatrix} f_j(r_1^{fit}, \dots, r_9^{fit}) \end{bmatrix}^2}_{} + \underbrace{T \cdot \sum_{j=1}^4 \underbrace{\begin{bmatrix} f_j(r_1^{fit}, \dots, r_9^{fit}) \end{bmatrix}^2}_{} + \underbrace{T \cdot \sum_{j=1}^4 \underbrace{\begin{bmatrix} f_j(r_1^{fit}, \dots, r_9^{fit}) \end{bmatrix}^2}_{} + \underbrace{T \cdot \sum_{j=1}^4 \underbrace{\begin{bmatrix} f_j(r_1^{fit}, \dots, r_9^{fit}) \end{bmatrix}^2}_{} + \underbrace{T \cdot \sum_{j=1}^4 \underbrace{\begin{bmatrix} f_j(r_1^{fit}, \dots, r_9^{fit}) \end{bmatrix}^2}_{} + \underbrace{T \cdot \sum_{j=1}^4 \underbrace{\begin{bmatrix} f_j(r_1^{fit}, \dots, r_9^{fit}) \end{bmatrix}^2}_{} + \underbrace{T \cdot \sum_{j=1}^4 \underbrace{\begin{bmatrix} f_j(r_1^{fit}, \dots, r_9^{fit}) \end{bmatrix}^2}_{} + \underbrace{T \cdot \sum_{j=1}^4 \underbrace{\begin{bmatrix} f_j(r_1^{fit}, \dots, r_9^{fit}) \end{bmatrix}^2}_{} + \underbrace{T \cdot \sum_{j=1}^4 \underbrace{\begin{bmatrix} f_j(r_1^{f$$

 χ^2 -value of interest penalty term constraints

- 4-momentum conservation as constraints
- lowest χ^2 -value in case of multiple recoil tracks per event
- minimum of 1 % fit probability required, which corresponds to χ^2 < 13.7

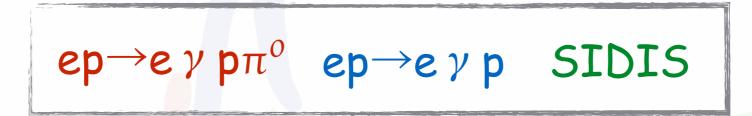
Recoil PID

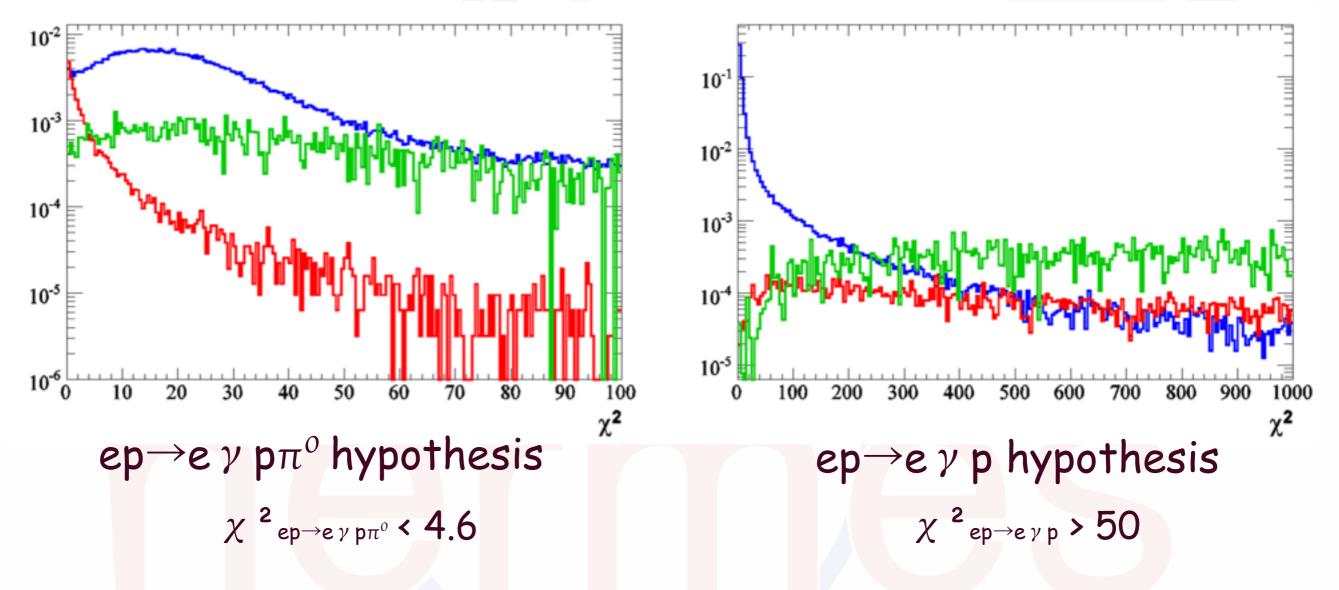




discrimination between protons and positively charged pions parent distributions were crucial and determined experimentally

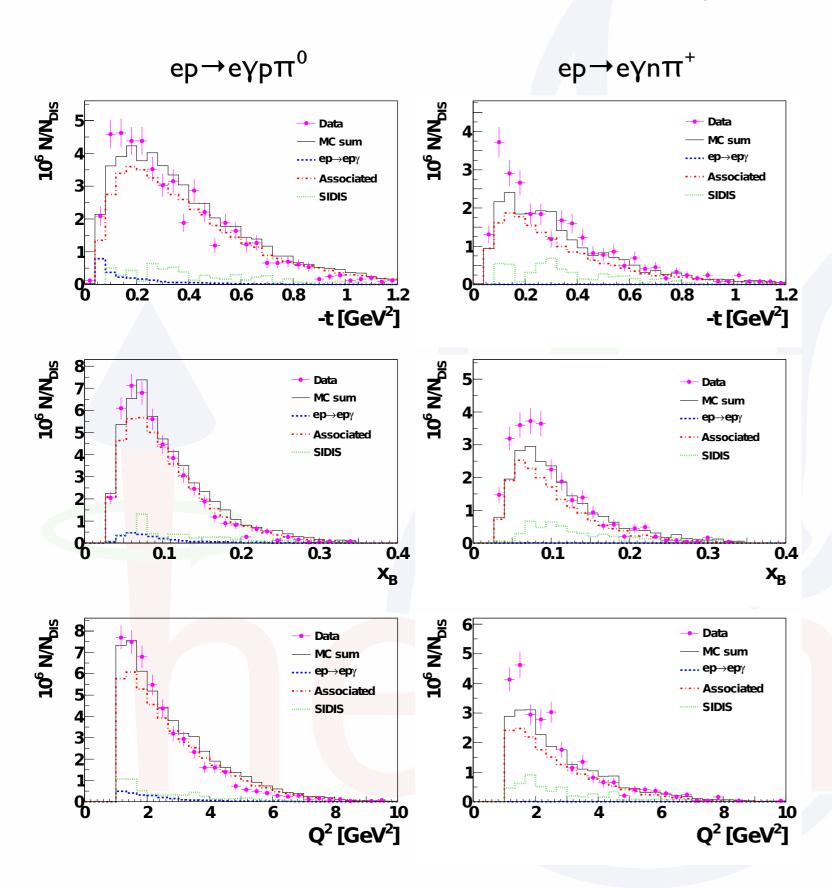
Kinematic fitting for ep \rightarrow e γ p π^{o}





Using powerful kinematic fitting of ep \to e γ p hypothesis is crucial for the ep \to e γ $N\pi$ analysis

Selection of associated events



Uncharged particle remains undetected

Kinematic fitting in case of ep \rightarrow e γ $N\pi$ hypothesis therefore not as strong

Additional selection criteria:

- Recoil PID information
- Lower-cut on ep→eγp
 hypothesis