Probing Nucleons and Nuclei in High Energy Collisions INT - October 8th, 2018

Measurements of transverse momentum distributions in semi-inclusive DIS

- from a mainly European perspective -

The COMPASS experiment @ CERN

HERMES Experiment (†2007) @ DESY

27.6 GeV polarized e⁺/e⁻ beam scattered off ...

- unpolarized (H, D, He,..., Xe)
- as well as transversely (H) and longitudinally (H, D, He) polarized (pure) gas targets

getting polarized nucleons

- common polarized targets
 - gas targets -> pure, but lower density
 - solid (e.g. NH₃) targets -> high density, but large dilution

getting polarized nucleons

- common polarized targets
 - gas targets -> pure, but lower density
 - solid (e.g. NH3) targets -> high density, but large dilution
- statistical precision: ~ $\frac{1}{fP_BP_T}\frac{1}{\sqrt{N}}$ (f... dilution factor)
 - solid targets $f \approx 0.2 \rightarrow$ directly scales uncertainties (as do $P_B \& P_T$)
 - dilution also kinematics dependent (partially unknown systematics)

Semi-inclusive DIS

Spin-momentum structure of the nucleon

$$\frac{1}{2}\operatorname{Tr}\left[\left(\gamma^{+} + \lambda\gamma^{+}\gamma_{5}\right)\Phi\right] = \frac{1}{2}\left[f_{1} + S^{i}\epsilon^{ij}k^{j}\frac{1}{m}f_{1T}^{\perp} + \lambda\Lambda g_{1} + \lambda S^{i}k^{i}\frac{1}{m}g_{1T}\right]$$

$$\frac{1}{2} \text{Tr} \left[(\gamma^{+} - s^{j} i \sigma^{+j} \gamma_{5}) \Phi \right] = \frac{1}{2} \left| f_{1} + S^{i} \epsilon^{ij} k^{j} \frac{1}{m} f_{1T}^{\perp} + s^{i} \epsilon^{ij} k^{j} \frac{1}{m} h_{1}^{\perp} + s^{i} S^{i} h_{1} \right|$$

$$+ s^{i} (2k^{i}k^{j} - \mathbf{k}^{2}\delta^{ij})S^{j} \frac{1}{2m^{2}} h_{1T}^{\perp} + \Lambda s^{i}k^{i} \frac{1}{m} h_{1L}^{\perp}$$

quark pol.

•	
Ω	4
On	
lec	
10	

	U	$oxed{L}$	${ m T}$
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
\Box	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

- each TMD describes a particular spinmomentum correlation
- functions in black survive integration over transverse momentum
- functions in green box are chirally odd
- functions in red are naive T-odd

Spin-momentum structure of the nucleon

$$\frac{1}{2}\operatorname{Tr}\left[\left(\gamma^{+} + \lambda\gamma^{+}\gamma_{5}\right)\Phi\right] = \frac{1}{2}\left[f_{1} + S^{i}\epsilon^{ij}k^{j}\frac{1}{m}f_{1T}^{\perp} + \lambda\Lambda g_{1} + \lambda S^{i}k^{i}\frac{1}{m}g_{1T}\right]$$

$$\frac{1}{2} \text{Tr} \left[(\gamma^{+} - s^{j} i \sigma^{+j} \gamma_{5}) \Phi \right] = \frac{1}{2} \left| f_{1} + S^{i} \epsilon^{ij} k^{j} \frac{1}{m} f_{1T}^{\perp} + s^{i} \epsilon^{ij} k^{j} \frac{1}{m} h_{1}^{\perp} + s^{i} S^{i} h_{1} \right|$$

helicity

quark pol.

	Γ	${ m L}$	${ m T}$
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
T	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

$+ s^{i} (2k^{i}k^{j} - \mathbf{k}^{2}\delta^{ij})S^{j} \frac{1}{2m^{2}} h_{1T}^{\perp} + \Lambda s^{i}k^{i} \frac{1}{m} h_{1L}^{\perp}$

Boer-Mulders scribes a particular spin-relation

 functions in black survive integration over transverse momentum

Sivers

nucleon pol

transversity

pretzelosity green box are chirally odd

functions in red are naive T-odd

worm-gear

quark pol.

_	_
	0
	þ
	IJ
	dron
_	<u> </u>
•	\vec{O}
	\overline{G}
_	7

	U	${ m L}$	${ m T}$
U	D_1		H_1^\perp
${ m L}$		G_1	H_{1L}^{\perp}
${ m T}$	D_{1T}^{\perp}	G_{1T}^{\perp}	$H_1 H_{1T}^{\perp}$

quark pol.

hadron pol.

	U	${ m L}$	${ m T}$
U	D_1		H_1^{\perp}
L		G_1	H_{1L}^{\perp}
T	D_{1T}^{\perp}	G_{1T}^{\perp}	$H_1 H_{1T}^{\perp}$

- relevant for unpolarized final state

R. Seidl, A. Vossen

R. Seidl, A. Vossen

quark pol.

relevant for unpolarized final state

polarized final-state hadrons

R. Seidl, A. Vossen

→ give rise to characteristic azimuthal dependences

*) semi-inclusive DIS with unpolarized final state

one-hadron production (ep-ehX)

$$d\sigma = d\sigma_{UU}^0 + \cos 2\phi \, d\sigma_{UU}^1 + \frac{1}{Q}\cos\phi \, d\sigma_{UU}^2 + \lambda_e \frac{1}{Q}\sin\phi \, d\sigma_{LU}^3$$

$$+S_L \left\{ \sin 2\phi \, d\sigma_{UL}^4 + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^5 + \lambda_e \left[d\sigma_{LL}^6 + \frac{1}{Q} \cos \phi \, d\sigma_{LL}^7 \right] \right\}$$

$$+S_T \left\{ \sin(\phi - \phi_S) d\sigma_{UT}^8 + \sin(\phi + \phi_S) d\sigma_{UT}^9 + \sin(3\phi - \phi_S) d\sigma_{UT}^{10} \right\}$$

$$+\frac{1}{Q}\left(\sin(2\phi-\phi_S)\ d\sigma_{UT}^{11} + \sin\phi_S\ d\sigma_{UT}^{12}\right)$$

$$+\lambda_{e} \left[\cos(\phi - \phi_{S}) \, d\sigma_{LT}^{13} + \frac{1}{Q} \left(\cos\phi_{S} \, d\sigma_{LT}^{14} + \cos(2\phi - \phi_{S}) \, d\sigma_{LT}^{15} \right) \right] \right\}$$

Mulders and Tangermann, Nucl. Phys. B 461 (1996) 197

Boer and Mulders, Phys. Rev. D 57 (1998) 5780

Bacchetta et al., Phys. Lett. B 595 (2004) 309

Bacchetta et al., JHEP 0702 (2007) 093

"Trento Conventions", Phys. Rev. D 70 (2004) 117504

INT-18-3, Seattle

one-hadron production (ep-ehX)

$$d\sigma = d\sigma_{UU}^0 + \cos 2\phi \, d\sigma_{UU}^1 + \frac{1}{Q}\cos\phi \, d\sigma_{UU}^2 + \lambda_e \frac{1}{Q}\sin\phi \, d\sigma_{LU}^3$$

$$+S_L \left\{ \frac{\sin 2\phi \, d\sigma_{UL}^4}{Q} + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^5 + \lambda_e \left[d\sigma_{LL}^6 + \frac{1}{Q} \cos \phi \, d\sigma_{LL}^7 \right] \right\}$$

$$+S_T \left\{ \sin(\phi - \phi_S) \ d\sigma_{UT}^8 + \sin(\phi + \phi_S) \ d\sigma_{UT}^9 + \sin(3\phi - \phi_S) \ d\sigma_{UT}^{10} + \sin(3\phi - \phi_S) \ d\sigma_{UT}^{10} + \cos(3\phi - \phi_S) \$$

$$+\frac{1}{Q}\left(\sin(2\phi-\phi_S)\ d\sigma_{UT}^{11} + \sin\phi_S\ d\sigma_{UT}^{12}\right)$$

$$+\lambda_{e} \left[\cos(\phi - \phi_{S}) \, d\sigma_{LT}^{13} + \frac{1}{Q} \left(\cos\phi_{S} \, d\sigma_{LT}^{14} + \cos(2\phi - \phi_{S}) \, d\sigma_{LT}^{15} \right) \right] \right\}$$

Mulders and Tangermann, Nucl. Phys. B 461 (1996) 197

Boer and Mulders, Phys. Rev. D 57 (1998) 5780

Bacchetta et al., Phys. Lett. B 595 (2004) 309

Bacchetta et al., JHEP 0702 (2007) 093

"Trento Conventions", Phys. Rev. D 70 (2004) 117504

INT-18-3, Seattle

one-hadron production (ep-ehX)

$$d\sigma = \boxed{d\sigma_{UU}^0 + \cos 2\phi \ d\sigma_{UU}^1 + \frac{1}{Q}\cos\phi \ d\sigma_{UU}^2 + \lambda_e \frac{1}{Q}\sin\phi \ d\sigma_{LU}^3}$$

$$+S_L \left\{ \frac{\sin 2\phi \, d\sigma_{UL}^4}{Q} + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^5 + \lambda_e \left[\frac{d\sigma_{LL}^6}{Q} + \frac{1}{Q} \cos \phi \, d\sigma_{LL}^7 \right] \right\}$$

$$+S_T \left\{ \sin(\phi - \phi_S) \ d\sigma_{UT}^8 + \sin(\phi + \phi_S) \ d\sigma_{UT}^9 + \sin(3\phi - \phi_S) \ d\sigma_{UT}^{10} + \sin(3\phi - \phi_S) \ d\sigma_{UT}^{10} + \cos(3\phi - \phi_S) \$$

$$+\frac{1}{Q}\left(\sin(2\phi - \phi_S)\ d\sigma_{UT}^{11} + \sin\phi_S\ d\sigma_{UT}^{12}\right)$$

$$+\lambda_{e} \left[\cos(\phi - \phi_{S}) \, d\sigma_{LT}^{13} + \frac{1}{Q} \left(\cos\phi_{S} \, d\sigma_{LT}^{14} + \cos(2\phi - \phi_{S}) \, d\sigma_{LT}^{15} \right) \right] \right\}$$

Mulders and Tangermann, Nucl. Phys. B 461 (1996) 197

Boer and Mulders, Phys. Rev. D 57 (1998) 5780

Bacchetta et al., Phys. Lett. B 595 (2004) 309

Bacchetta et al., JHEP 0702 (2007) 093

"Trento Conventions", Phys. Rev. D 70 (2004) 117504

INT-18-3, Seattle

... possible measurements

$$\frac{d^{5}\sigma}{dxdydzd\phi_{h}dP_{h\perp}^{2}} \propto \left(1 + \frac{\gamma^{2}}{2x}\right) \left\{F_{UU,T} + \epsilon F_{UU,L}\right\}
+ \sqrt{2\epsilon(1 - \epsilon)} F_{UU}^{\cos\phi_{h}} \cos\phi_{h} + \epsilon F_{UU}^{\cos2\phi_{h}} \cos2\phi_{h} \right\}$$

... possible measurements

normalize to inclusive DIS cross section

$$\frac{d^5\sigma}{dxdydzd\phi_hdP_{h\perp}^2} \propto \left(1 + \frac{\gamma^2}{2x}\right) \left\{F_{UU,T} + \epsilon F_{UU,L}\right\}$$

$$+\sqrt{2\epsilon(1-\epsilon)}F_{UU}^{\cos\phi_h}\cos\phi_h+\epsilon F_{UU}^{\cos2\phi_h}\cos2\phi_h$$

possible measurements

normalize to inclusive DIS cross section

 $\frac{d^2\sigma^{\rm incl.DIS}}{dxdy} \propto F_T + \epsilon F_L$

$$\rightarrow$$
 $\frac{d^4}{d^4}$

$$\frac{d^4 \mathcal{M}^h(x, y, z, P_{h\perp}^2)}{dx dy dz dP_{h\perp}^2} \propto \left(1 + \frac{\gamma^2}{2x}\right) \frac{F_{UU,T} + \epsilon F_{UU,L}}{F_T + \epsilon F_L}$$

$$\frac{d^5\sigma}{dxdydzd\phi_hdP_{h\perp}^2} \propto \left(1 + \frac{\gamma^2}{2x}\right) \left\{F_{UU,T} + \epsilon F_{UU,L}\right\}$$

$$+\sqrt{2\epsilon(1-\epsilon)}F_{UU}^{\cos\phi_h}\cos\phi_h+\epsilon F_{UU}^{\cos2\phi_h}\cos2\phi_h$$

possible measurements

normalize to inclusive DIS cross section

$$\frac{d^4 \mathcal{M}^h(x, y, z, P_{h\perp}^2)}{dx dy dz dP_{h\perp}^2} \propto \left(1 + \frac{\gamma^2}{2x}\right) \frac{F_{UU,T} + \epsilon F_{UU,L}}{F_T + \epsilon F_L}$$

$$\frac{d^2\sigma^{
m incl.DIS}}{dxdy}$$
 \propto $F_T + \epsilon F_L$

$$\approx \frac{\sum_{q} e_{q}^{2} f_{1}^{q}(x, p_{T}^{2}) \otimes D_{1}^{q \to h}(z, K_{T}^{2})}{\sum_{q} e_{q}^{2} f_{1}^{q}(x)}$$

$$\frac{d^5\sigma}{dxdydzd\phi_hdP_{h\perp}^2} \propto$$

$$\frac{d^5\sigma}{dxdydzd\phi_hdP_{h\perp}^2} \propto \left(1 + \frac{\gamma^2}{2x}\right) \left\{F_{UU,T} + \epsilon F_{UU,L}\right\}$$

$$+\sqrt{2\epsilon(1-\epsilon)}F_{UU}^{\cos\phi_h}\cos\phi_h+\epsilon F_{UU}^{\cos2\phi_h}\cos2\phi_h$$

possible measurements

normalize to inclusive DIS cross section

$$\frac{d^4 \mathcal{M}^h(x, y, z, P_{h\perp}^2)}{dx dy dz dP_{h\perp}^2} \propto \left(1 + \frac{\gamma^2}{2x}\right) \frac{F_{UU,T} + \epsilon F_{UU,L}}{F_T + \epsilon F_L}$$

$$\frac{d^2\sigma^{\rm incl.DIS}}{dxdy} \propto F_T + \epsilon F_L$$

$$\approx \frac{\sum_{q} e_{q}^{2} f_{1}^{q}(x, p_{T}^{2}) \otimes D_{1}^{q \to h}(z, K_{T}^{2})}{\sum_{q} e_{q}^{2} f_{1}^{q}(x)}$$

$$rac{d^5\sigma}{dxdydzd\phi_hdP_{h\perp}^2} \propto$$

$$\frac{d^5\sigma}{dxdydzd\phi_hdP_{h\perp}^2} \propto \left(1 + \frac{\gamma^2}{2x}\right) \left\{F_{UU,T} + \epsilon F_{UU,L}\right\}$$

$$+\sqrt{2\epsilon(1-\epsilon)}F_{UU}^{\cos\phi_h}\cos\phi_h+\epsilon F_{UU}^{\cos2\phi_h}\cos2\phi_h$$

moments:

normalize to azimuthindependent cross-section

... possible measurements

normalize to inclusive DIS cross section

$$rac{d^2 \sigma^{
m incl.DIS}}{dxdy} \propto F_T + \epsilon F_L$$

$$\rightarrow \frac{d^4 \mathcal{M}^h(x, y, z, P_{h\perp}^2)}{dx dy dz dP_{h\perp}^2} \propto \left(1 + \frac{\gamma^2}{2x}\right) \frac{F_{UU,T} + \epsilon F_{U,L}}{F_T + \epsilon F_L}$$

$$\approx \frac{\sum_{q} e_{q}^{2} f_{1}^{q}(x, p_{T}^{2}) \otimes D_{1}^{q \to h}(z, K_{T}^{2})}{\sum_{q} e_{q}^{2} f_{1}^{q}(x)}$$

$$\frac{d^5\sigma}{dxdydzd\phi_hdP_{h\perp}^2} \propto \left(1 + \frac{\gamma^2}{2x}\right) \left\{F_{UU,T} + \epsilon F_{UU,L}\right\}$$

$$+\sqrt{2\epsilon(1-\epsilon)}F_{UU}^{\cos\phi_h}\cos\phi_h + \epsilon F_{UU}^{\cos2\phi_h}\cos2\phi_h\}$$

$$+2\langle\cos2\phi\rangle_{UU} \equiv 2\frac{\int d\phi_h\cos2\phi\,d\sigma}{\int d\phi_hd\sigma} = \frac{\epsilon F_{UU}^{\cos2\phi}}{F_{UUT} + \epsilon F_{UUL}}$$

moments:

normalize to azimuthindependent cross-section

... possible measurements

normalize to inclusive DIS cross section

$$rac{d^2 \sigma^{
m incl.DIS}}{dxdy} \propto F_T + \epsilon F_L$$

$$\rightarrow \frac{d^4 \mathcal{M}^h(x, y, z, P_{h\perp}^2)}{dx dy dz dP_{h\perp}^2} \propto \left(1 + \frac{\gamma^2}{2x}\right) \frac{F_{UU,T} + \epsilon F_{U,L}}{F_T + \epsilon F_L}$$

$$\approx \frac{\sum_{q} e_q^2 f_1^q(x, p_T^2) \otimes D_1^{q \to h}(z, K_T^2)}{\sum_{q} e_q^2 f_1^q(x)}$$

$$\frac{d^5\sigma}{dxdydzd\phi_hdP_{h\perp}^2} \propto \left(1 + \frac{\gamma^2}{2x}\right) \left\{F_{UU,T} + \epsilon F_{UU,L}\right\}$$

moments:

normalize to azimuthindependent cross-section

$$\approx \epsilon \frac{\sum_{q} e_{q}^{2} h_{1}^{\perp,q}(x, p_{T}^{2}) \otimes_{BM} H_{1}^{\perp,q \to h}(z, K_{T}^{2})}{\sum_{q} e_{q}^{2} f_{1}^{q}(x, p_{T}^{2}) \otimes D_{1}^{q \to h}(z, K_{T}^{2})}$$

... azimuthal spin asymmetries

$$A_{UT}(\phi, \phi_S) = \frac{1}{\langle |S_{\perp}| \rangle} \frac{N_h^{\uparrow}(\phi, \phi_S) - N_h^{\downarrow}(\phi, \phi_S)}{N_h^{\uparrow}(\phi, \phi_S) + N_h^{\downarrow}(\phi, \phi_S)}$$

$$\sim \sin(\phi + \phi_S) \sum_q e_q^2 \mathcal{I} \left[\frac{k_T \hat{P}_{h\perp}}{M_h} h_1^q(x, p_T^2) H_1^{\perp, q}(z, k_T^2) \right]$$

+
$$\sin(\phi - \phi_S) \sum_{q} e_q^2 \mathcal{I} \left[\frac{p_T \hat{P}_{h\perp}}{M} f_{1T}^{\perp,q}(x, p_T^2) D_1^q(z, k_T^2) \right]$$

 $\mathcal{I}[\ldots]$: convolution integral over initial (p_T) and final (k_T) quark transverse momenta

... azimuthal spin asymmetries

$$A_{UT}(\phi, \phi_S) = \frac{1}{\langle |S_{\perp}| \rangle} \frac{N_h^{\uparrow}(\phi, \phi_S) - N_h^{\downarrow}(\phi, \phi_S)}{N_h^{\uparrow}(\phi, \phi_S) + N_h^{\downarrow}(\phi, \phi_S)}$$

$$\sim \sin(\phi + \phi_S) \sum_q e_q^2 \mathcal{I} \left[\frac{k_T \hat{P}_{h\perp}}{M_h} h_1^q(x, p_T^2) H_1^{\perp, q}(z, k_T^2) \right]$$

fit azimuthal modulations, e.g., using maximum-likelihood method

$$PDF(2\langle\sin(\phi\pm\phi_S)\rangle_{UT},\ldots,\phi,\phi_S) = \frac{1}{2}\{1 + P_T(2\langle\sin(\phi\pm\phi_S)\rangle_{UT}\sin(\phi\pm\phi_S) + \ldots)\}$$

"Qual der Wahl"

- SIDIS structure functions come with various kinematic prefactors
 - include in definition of asymmetries ("cross-section asym.") M.L. $pdf \propto [1 + \mathcal{A}^{\sin(\phi + \phi_s)}(x, y, z, P_{h\perp}) + \dots]$
 - factor out from asymmetries ("structure-fct. asym.")

M.L. pdf
$$\propto [1 + D(y)A^{\sin(\phi + \phi_s)}(x, y, z, P_{h\perp}) + \dots]$$

"Qual der Wahl"

- SIDIS structure functions come with various kinematic prefactors
 - include in definition of asymmetries ("cross-section asym.") M.L. $pdf \propto [1 + \mathcal{A}^{\sin(\phi + \phi_s)}(x, y, z, P_{h\perp}) + \dots]$
 - factor out from asymmetries ("structure-fct. asym.")

 M.L. pdf $\propto [1 + D(y)A^{\sin(\phi+\phi_s)}(x,y,z,P_{h\perp}) + \dots]$
- latter facilitates comparisons between experiments and simplifies kinematic dependences by removing known dependences
 - but what about twist suppression, also factor out?
 - and what about other kinematically suppressed contributions?

... other complications

- theory done w.r.t. virtual-photon direction
- experiments use targets polarized w.r.t. lepton-beam direction

Gunar Schnell 13 INT-18-3, Seattle

... other complications

- theory done w.r.t. virtual-photon direction
- experiments use targets polarized w.r.t. lepton-beam direction
- → mixing of longitudinal and transverse polarization effects
 [Diehl & Sapeta, EPJ C 41 (2005) 515], e.g.,

$$\begin{pmatrix}
\left\langle \sin \phi \right\rangle_{UL}^{\mathsf{I}} \\
\left\langle \sin(\phi - \phi_S) \right\rangle_{UT}^{\mathsf{I}} \\
\left\langle \sin(\phi + \phi_S) \right\rangle_{UT}^{\mathsf{I}}
\end{pmatrix} = \begin{pmatrix}
\cos \theta_{\gamma^*} & -\sin \theta_{\gamma^*} & -\sin \theta_{\gamma^*} \\
\frac{1}{2} \sin \theta_{\gamma^*} & \cos \theta_{\gamma^*} & 0 \\
\frac{1}{2} \sin \theta_{\gamma^*} & 0 & \cos \theta_{\gamma^*}
\end{pmatrix} \begin{pmatrix}
\left\langle \sin \phi \right\rangle_{UL}^{\mathsf{q}} \\
\left\langle \sin(\phi - \phi_S) \right\rangle_{UT}^{\mathsf{U}} \\
\left\langle \sin(\phi + \phi_S) \right\rangle_{UT}^{\mathsf{U}}
\end{pmatrix}$$

($\cos heta_{\gamma^*} \simeq 1$, $\sin heta_{\gamma^*}$ up to 15% at HERMES energies)

... other complications

- theory done w.r.t. virtual-photon direction
- experiments use targets polarized w.r.t. lepton-beam direction
- mixing of longitudinal and transverse polarization effects [Diehl & Sapeta, EPJ C 41 (2005) 515], e.g.,

$$\begin{pmatrix}
\left\langle \sin \phi \right\rangle_{UL}^{\mathsf{I}} \\
\left\langle \sin(\phi - \phi_S) \right\rangle_{UT}^{\mathsf{I}} \\
\left\langle \sin(\phi + \phi_S) \right\rangle_{UT}^{\mathsf{I}}
\end{pmatrix} = \begin{pmatrix}
\cos \theta_{\gamma^*} & -\sin \theta_{\gamma^*} & -\sin \theta_{\gamma^*} \\
\frac{1}{2} \sin \theta_{\gamma^*} & \cos \theta_{\gamma^*} & 0 \\
\frac{1}{2} \sin \theta_{\gamma^*} & 0 & \cos \theta_{\gamma^*}
\end{pmatrix} \begin{pmatrix}
\left\langle \sin \phi \right\rangle_{UL}^{\mathsf{q}} \\
\left\langle \sin(\phi - \phi_S) \right\rangle_{UT}^{\mathsf{U}} \\
\left\langle \sin(\phi + \phi_S) \right\rangle_{UT}^{\mathsf{U}}
\end{pmatrix}$$

need data on same target for both polarization orientations!

... results ...

multiplicities @ HERMES

- extensive data set on pure proton and deuteron targets for identified charged mesons
 - access to flavor dependence of fragmentation through different mesons and targets
- input to fragmentation function analyses
- extracted in a multi-dimensional unfolding procedure:
 - \bullet (x, z, $P_{h\perp}$)
 - \bullet (Q², z, P_h)

 even though having similar average kinematics, multiplicities in the two projections are different

 still the average kinematics can be the same

take-away messages: (when told so) integrate your cross section over the kinematic ranges dictated by the experiment (e.g., do not simply evaluate it at the average kinematics)

To experiments: fully differential analyses!

integrating vs. using average kinematics

(by now old)
 DSS07 FF fit to
 z-Q² projection

integrating vs. using average kinematics

(by now old)
 DSS07 FF fit to
 z-Q² projection

z-x "prediction"
reasonable well
when using
integration over
phase-space limits
(red lines)

integrating vs. using average kinematics

(by now old)
 DSS07 FF fit to
 z-Q² projection

z-x "prediction"
reasonable well
when using
integration over
phase-space limits
(red lines)

significant changes
 when using
 average
 kinematics

	U	$oxed{L}$	m T
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Γ	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

Ph1 dependence

- multi-dimensional analysis allows going beyond collinear factorization
- flavor information on transverse momenta via target variation and hadron ID
 e.g. [A. Signori et al., JHEP 11(2013)194]

	U	L	T
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

$P_{h\perp}$ -multiplicity landscape

	EMC [11]	HERMES [15]	JLAB [31]	COMPASS [16]	COMPASS (This paper)
Target	p/d	p/d	d	d	d
Beam energy (GeV)	100–280	27.6	5.479	160	160
Hadron type	h^\pm	$\pi^\pm,~\mathrm{K}^\pm$	π^\pm	h^\pm	h^\pm
Observable	$M^{h^++h^-}$	M^h	σ^h	M^h	M^h
$Q_{\min}^2 (\text{GeV}/c)^2$	2/3/4/5	1	2	1	1
$W_{\min}^2 \ (\text{GeV}/c^2)^2$	-	10	4	25	25
y range	[0.2, 0.8]	[0.1, 0.85]	[0.1, 0.9]	[0.1, 0.9]	[0.1, 0.9]
x range	[0.01,1]	[0.023, 0.6]	[0.2,0.6]	[0.004, 0.12]	[0.003, 0.4]
$P_{\rm hT}^2$ range $({\rm GeV}/c)^2$	[0.081, 15.8]	[0.0047, 0.9]	[0.004, 0.196]	[0.02, 0.72]	[0.02,3]

- [11] J. Ashman et al. (EMC), Z. Phys. C 52, 361 (1991).
- [15] A. Airapetian et al. (HERMES), Phys. Rev. D87, 074029 (2013).
- [16] C. Adolph et al. (COMPASS), Eur. Phys. J. C73, 2531 (2013); 75, 94(E) (2015).
- [31] R. Asaturyan et al., Phys. Rev. C 85, 015202 (2012).
- ["This paper"] M. Aghasyan et al. (COMPASS), Phys. Rev. D 97, 032006 (2018).

... as well as more limited measurements by H1 and Zeus

	U	L	T
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

$P_{h\perp}$ -multiplicity landscape

	EMC [11]	HERMES [15]	JLAB [31]	COMPASS [16]	COMPASS (This paper)
Target	p/d	p/d	d	d	d
Beam energy (GeV)	100–280	27.6	5.479	160	160
Hadron type	h^\pm	$\pi^\pm,~\mathrm{K}^\pm$	π^\pm	h^\pm	h^\pm
Observable	$M^{h^++h^-}$	M^h	σ^h	M^h	M^h
$Q_{\rm min}^2~({\rm GeV}/c)^2$	2/3/4/5	1	2	1	1
$Q_{ m min}^2 \; ({ m GeV}/c)^2 \ W_{ m min}^2 \; ({ m GeV}/c^2)^2$	-	10	4	25	25
y range	[0.2, 0.8]	[0.1, 0.85]	[0.1, 0.9]	[0.1, 0.9]	[0.1, 0.9]
x range	[0.01,1]	[0.023, 0.6]	[0.2,0.6]	[0.004, 0.12]	[0.003, 0.4]
$P_{\rm hT}^2$ range $({\rm GeV}/c)^2$	[0.081, 15.8]	[0.0047, 0.9]	[0.004, 0.196]	[0.02, 0.72]	[0.02,3]

- [11] J. Ashman et al. (EMC), Z. Phys. C 52, 361 (1991).
- [15] A. Airapetian et al. (HERMES), Phys. Rev. D87, 074029 (2013).
- [16] C. Adolph et al. (COMPASS), Eur. Phys. J. C73, 2531 (2013); 75, 94(E) (2015).
- [31] R. Asaturyan et al., Phys. Rev. C 85, 015202 (2012).
- ["This paper"] M. Aghasyan et al. (COMPASS), Phys. Rev. D 97, 032006 (2018).

... as well as more limited measurements by H1 and Zeus

	U	L	Т
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Τ	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

- data on LiD target
- differential in x, z, Q^2 , $P_{h\perp}^2$
- one example (lowest z bin)
- high statistical precision allows detailed studies

Ph1 dependence

	U	${ m L}$	Т
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Τ	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

differences between h⁺ and h⁻ increase with z

$P_{h\perp}$ dependence

INT-18-3, Seattle

	U	L	Γ
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
T	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

COMPASS vs. JLab & HERMES

[COMPASS, PRD 97 (2018) 032006]

	U	L	Т
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

fitting the $P_{h\perp}$ dependence

$$\frac{\mathrm{d}^{2}M^{\mathrm{h}}(x,Q^{2};z)}{\mathrm{d}z\mathrm{d}P_{\mathrm{hT}}^{2}} = \frac{N}{\langle P_{\mathrm{hT}}^{2} \rangle} \exp\left(-\frac{P_{\mathrm{hT}}^{2}}{\langle P_{\mathrm{hT}}^{2} \rangle}\right)$$

[COMPASS, PRD 97 (2018) 032006]

$$\langle P_{h\perp}^2(z) \rangle = z^2 \langle p_T^2 \rangle + \langle K_T^2 \rangle$$
 does not work!

	U	L	Т
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Γ	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

Helicity density

CLAS data hints at width μ_2 of g_1 that is less than the width μ_0 of f_1

$$f_1^q(x, k_T) = f_1(x) \frac{1}{\pi \mu_0^2} \exp\left(-\frac{k_T^2}{\mu_0^2}\right)$$
$$g_1^q(x, k_T) = g_1(x) \frac{1}{\pi \mu_2^2} \exp\left(-\frac{k_T^2}{\mu_2^2}\right)$$

... also suggested by lattice QCD

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

CLAS data hints at width μ_2 of g_1 that is less than the width μ_0 of f_1

$$f_1^q(x, k_T) = f_1(x) \frac{1}{\pi \mu_0^2} \exp\left(-\frac{k_T^2}{\mu_0^2}\right)$$
$$g_1^q(x, k_T) = g_1(x) \frac{1}{\pi \mu_2^2} \exp\left(-\frac{k_T^2}{\mu_2^2}\right)$$

... also suggested by lattice QCD

Helicity density

no significant $P_{h\perp}$ dependences seen on D at HERMES and COMPASS

	U	L	Т
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

Helicity density

CLAS data hints at width μ_2 of g_1 that is less than the width μ_0 of f_1

$$f_1^q(x, k_T) = f_1(x) \frac{1}{\pi \mu_0^2} \exp\left(-\frac{k_T^2}{\mu_0^2}\right)$$
$$g_1^q(x, k_T) = g_1(x) \frac{1}{\pi \mu_2^2} \exp\left(-\frac{k_T^2}{\mu_2^2}\right)$$

perhaps a hint on protons at COMPASS? (but opposite trend than at CLAS)

... also suggested by lattice QCD

no significant $P_{h\perp}$ dependences seen on D at HERMES and COMPASS

The quest for transversity

	U	L	${ m T}$
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

Transversity (Collins fragmentation)

- significant in size and opposite in sign for charged pions
- disfavored Collins FF large and opposite in sign to favored one

leads to various cancellations in SSA observables

2005: First evidence from HERMES SIDIS on proton

Non-zero transversity
Non-zero Collins function

	U	${ m L}$	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Τ	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

- since those early days, a wealth of new results:
 - COMPASS
 [PLB 692 (2010) 240,
 PLB 717 (2012) 376, PLB 744 (2015) 250]
 - HERMES
 [PLB 693 (2010) 11]
 - Jefferson Lab [PRL 107 (2011) 072003]

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

- since those early days, a wealth of new results:
 - COMPASS
 [PLB 692 (2010) 240,
 PLB 717 (2012) 376, PLB 744 (2015) 250]
 - HERMES
 [PLB 693 (2010) 11]
 - Jefferson Lab [PRL 107 (2011) 072003]

- excellent agreement of various proton data, also with neutron results
- no indication of strong evolution effects

	U	L	T
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

- since those early days, a wealth of new results:
 - COMPASS
 [PLB 692 (2010) 240,
 PLB 717 (2012) 376, PLB 744 (2015) 250]
 - HERMES
 [PLB 693 (2010) 11]
 - Jefferson Lab
 [PRL 107 (2011) 072003]

	U	L	Т
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

- since those early days, a wealth of new results:
 - COMPASS
 [PLB 692 (2010) 240,
 PLB 717 (2012) 376, PLB 744 (2015) 250]
 - HERMES
 [PLB 693 (2010) 11]
 - Jefferson Lab
 [PRL 107 (2011) 072003]

cancelation of (unfavored) u and d fragmentation (opposite signs of up and down transversity)?

29

INT-18-3, Seattle

	U	${ m L}$	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Τ	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

- since those early days, a wealth of new results:
 - COMPASS
 [PLB 692 (2010) 240,
 PLB 717 (2012) 376, PLB 744 (2015) 250]
 - HERMES
 [PLB 693 (2010) 11]
 - Jefferson Lab
 [PRL 107 (2011) 072003, PRC90 (2014).055201]

but relatively large K⁻ asymmetry on ³He?

the "Collins trap"

$$H_{1,\mathrm{fav}}^{\perp} \simeq -H_{1,\mathrm{dis}}^{\perp}$$

thus

$$\langle \sin(\phi + \phi_S) \rangle_{UT}^{\pi^+} \sim (4h_1^u - h_1^d) H_{1,\text{fav}}^{\perp}$$

$$\langle \sin(\phi + \phi_S) \rangle_{UT}^{\pi^-} \sim - \left(4h_1^u - h_1^d\right) H_{1,\text{fav}}^{\perp}$$

"impossible" to disentangle u/d transversity -> current limits driven mainly by Soffer bound?

the "Collins trap"

$$H_{1,\text{fav}}^{\perp} \simeq -H_{1,\text{dis}}^{\perp}$$

thus

$$\langle \sin(\phi + \phi_S) \rangle_{UT}^{\pi^+} \sim (4h_1^u - h_1^d) H_{1,\text{fav}}^{\perp}$$

$$\langle \sin(\phi + \phi_S) \rangle_{UT}^{\pi^-} \sim - \left(4h_1^u - h_1^d\right) H_{1,\text{fav}}^{\perp}$$

"impossible" to disentangle u/d transversity -> current limits driven mainly by Soffer bound?

clearly need precise data from "neutron" target(s), e.g., COMPASS d, and later JLab12 & EIC

(valid for all chiral-odd TMDs)

d-transversity running at COMPASS

- currently much more p than d data available
- add another year of d running after CERN LS2 (2021)
 - large impact on d-transversity
 - reduced correlations between u and d transversity
 (note, correlations important in tensor-charge calculation)

Transversity's friends

	U	L	Т
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
T	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

Pretzelosity

- chiral-odd > needs Collins FF (or similar)
- ¹H, ²H & ³He data consistently small
- cancelations? pretzelosity=zero? or just the additional suppression by two powers of $P_{h\perp}$

	U	L	Т
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

Worm-Gear I

[CLAS, PRL 105 (2010) 262002]

- again: chiral-odd
- evidence from CLAS?
- consistent with zero at COMPASS and HERMES

Worm-Gear II

36

³He target at JLab

first evidences:

H target at COMPASS & HERMES

INT-18-3, Seattle

	U	${ m L}$	T
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

Sivers amplitudes for pions

$$2\langle \sin(\phi - \phi_S) \rangle_{\text{UT}} = -\frac{\sum_q e_q^2 f_{1T}^{\perp, q}(x, p_T^2) \otimes_{\mathcal{W}} D_1^q(z, k_T^2)}{\sum_q e_q^2 f_1^q(x, p_T^2) \otimes D_1^q(z, k_T^2)}$$

	U	L	T
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

Sivers amplitudes for pions

$$2\langle \sin(\phi - \phi_S) \rangle_{\text{UT}} = -\frac{\sum_q e_q^2 f_{1T}^{\perp, q}(x, p_T^2) \otimes_{\mathcal{W}} D_1^q(z, k_T^2)}{\sum_q e_q^2 f_1^q(x, p_T^2) \otimes D_1^q(z, k_T^2)}$$

π^{+} dominated by u-quark scattering:

$$\simeq - \frac{f_{1T}^{\perp,u}(x,p_T^2) \otimes_{\mathcal{W}} D_1^{u \to \pi^+}(z,k_T^2)}{f_1^u(x,p_T^2) \otimes D_1^{u \to \pi^+}(z,k_T^2)}$$

u-quark Sivers DF < 0

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

Sivers amplitudes for pions

$$2\langle \sin(\phi - \phi_S) \rangle_{\text{UT}} = -\frac{\sum_q e_q^2 f_{1T}^{\perp, q}(x, p_T^2) \otimes_{\mathcal{W}} D_1^q(z, k_T^2)}{\sum_q e_q^2 f_1^q(x, p_T^2) \otimes D_1^q(z, k_T^2)}$$

 π^{\dagger} dominated by u-quark scattering:

$$\simeq - \frac{f_{1T}^{\perp,u}(x,p_T^2) \otimes_{\mathcal{W}} D_1^{u \to \pi^+}(z,k_T^2)}{f_1^u(x,p_T^2) \otimes D_1^{u \to \pi^+}(z,k_T^2)}$$

u-quark Sivers DF < 0

d-quark Sivers DF > 0 (cancelation for π^-)

	U	L	Т
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

[A. Bacchetta et al.]

 cancelation for D target supports opposite signs of up and down Sivers

Sivers amplitudes

	U	${ m L}$	${ m T}$
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

Sivers amplitudes

[A. Bacchetta et al.]

cancelation for D target
 supports opposite signs of
 up and down Sivers

newer results from JLab on using 3He target and from COMPASS for proton target (also multi-d)

	U	${ m L}$	m T
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

Sivers amplitudes

- cancelation for D target
 supports opposite signs of
 up and down Sivers
- newer results from JLab using ³He target and from COMPASS for proton target (also multi-d)
- hint of Q² dependence from COMPASS vs. HERMES

	U	L	${ m T}$
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
T	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

Sivers amplitudes pions vs. kaons

somewhat unexpected if dominated by scattering off u-quarks:

$$\simeq - \ \frac{\mathbf{f_{1T}^{\perp,u}(\mathbf{x}, \mathbf{p_T^2}) \otimes_{\mathcal{W}} \mathbf{D_1^{u \rightarrow \pi^+/K^+}(\mathbf{z}, \mathbf{k_T^2})}}{\mathbf{f_1^u(\mathbf{x}, \mathbf{p_T^2}) \otimes \mathbf{D_1^{u \rightarrow \pi^+/K^+}(\mathbf{z}, \mathbf{k_T^2})}}$$

	U	L	${ m T}$
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, \frac{h_{1T}^{\perp}}{}$

Sivers amplitudes pions vs. kaons

somewhat unexpected if dominated by scattering off u-quarks:

$$\simeq - \ \frac{\mathbf{f_{1T}^{\perp,u}(\mathbf{x}, \mathbf{p_T^2}) \otimes_{\mathcal{W}} \mathbf{D_1^{u \rightarrow \pi^+/K^+}(\mathbf{z}, \mathbf{k_T^2})}}{\mathbf{f_1^u(\mathbf{x}, \mathbf{p_T^2}) \otimes \mathbf{D_1^{u \rightarrow \pi^+/K^+}(\mathbf{z}, \mathbf{k_T^2})}}$$

larger amplitudes seen also by COMPASS

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

Sivers amplitudes pions vs. kaons

somewhat unexpected if dominated by scattering off u-quarks:

$$\simeq - \ \frac{\mathbf{f_{1T}^{\perp,u}}(\mathbf{x},\mathbf{p_T^2}) \otimes_{\mathcal{W}} \mathbf{D_1^{u \to \pi^+/K^+}}(\mathbf{z},\mathbf{k_T^2})}{\mathbf{f_1^u}(\mathbf{x},\mathbf{p_T^2}) \otimes \mathbf{D_1^{u \to \pi^+/K^+}}(\mathbf{z},\mathbf{k_T^2}))}$$

target (but zero for K⁺?!)

interlude: dealing with multi-d dependences

- TMD cross sections differential in at least 5 variables
 - some easily parametrized (e.g., azimuthal dependences)
 - others mostly unknown

- TMD cross sections differential in at least 5 variables
 - some easily parametrized (e.g., azimuthal dependences)
 - others mostly unknown
- one-dimensional binning provide only glimpse of true physics
 - even different kinematic bins can't disentangle underlying physics dependences
 - e.g., binning in x involves [incomplete] integration(s) over $P_{h\perp}$

- TMD cross sections differential in at least 5 variables
 - some easily parametrized (e.g., azimuthal dependences)
 - others mostly unknown
- one-dimensional binning provide only glimpse of true physics
 - even different kinematic bins can't disentangle underlying physics dependences
 - e.g., binning in x involves [incomplete] integration(s) over $P_{h\perp}$
- further complication: physics (cross sections) folded with acceptance
 - NO experiment has flat acceptance in full multi-d kinematic space

$$\frac{N^{+}(x) - N^{-}(x)}{N^{+}(x) - N^{-}(x)} = \frac{\int d\omega \, \epsilon(x, \omega) \, \Delta\sigma(x, \omega)}{\int d\omega \, \epsilon(x, \omega) \, \sigma(x, \omega)}$$

ullet measured cross sections / asymmetries often contain "remnants" of experimental acceptance ϵ

$$\frac{N^{+}(x) - N^{-}(x)}{N^{+}(x) - N^{-}(x)} = \frac{\int d\omega \, \epsilon(x, \omega) \, \Delta\sigma(x, \omega)}{\int d\omega \, \epsilon(x, \omega) \, \sigma(x, \omega)} \neq \frac{\int d\omega \, \Delta\sigma(x, \omega)}{\int d\omega \, \sigma(x, \omega)}$$

ullet measured cross sections / asymmetries often contain "remnants" of experimental acceptance ϵ

$$\frac{N^{+}(x) - N^{-}(x)}{N^{+}(x) - N^{-}(x)} = \frac{\int d\omega \, \epsilon(x, \omega) \, \Delta\sigma(x, \omega)}{\int d\omega \, \epsilon(x, \omega) \, \sigma(x, \omega)} \neq A(x, \langle \omega \rangle)$$

- \bullet measured cross sections / asymmetries often contain "remnants" of experimental acceptance ε
- difficult to evaluate precisely in absence of good physics model
 - general challenge to statistically precise data sets
 - avoid 1d binning/presentation of data
 - theorist: watch out for precise definition (if given!) of experimental results reported ... and try not to treat data points of different projections as independent

43

 clear left-right asymmetries for pions and positive kaons

lepton going into the plane

[Airapetian et al., Phys. Lett. B 728, 183-190 (2014)] -0.1 8.8% scale uncertainty 00000000000 $\langle P_T \rangle$ [GeV] 8.0 0.6 0.2 0.2 0.4 0.4 -0.1 8.8% scale uncertainty **№** 0.3 0.2 0.1 1.5 0.5 2 0.5 P₊ [GeV]

INT-18-3, Seattle

• clear left-right asymmetries for pions and positive kaons

increasing with x_F (as in pp)

[Airapetian et al., Phys. Lett. B 728, 183-190 (2014)] $0 \quad K^{+} \quad K^{-} \quad K$

 clear left-right asymmetries for pions and positive kaons

increasing with x_F (as in pp)

 $e \longrightarrow p$ π^{+}

• initially increasing with P_T with a fall-off at larger P_T

Gunar Schnell

43

 clear left-right asymmetries for pions and positive kaons

• increasing with x_F (as in pp)

- initially increasing with P_T with a fall-off at larger P_T
- x_F and P_T correlated
 - → look at 2D dependences

[Airapetian et al., Phys. Lett. B 728, 183-190 (2014)] -0.1 8.8% scale uncertainty 0000000000 8.0 0.6 0.2 0.4 0.2 0.4 -0.1 8.8% scale uncertainty × 0.3 0.1 0.5 1.5 0.5 2 P₊ [GeV]

INT-18-3, Seattle

44

INT-18-3, Seattle

 X_{F}

Gunar Schnell

back to SIDIS

• 3d analysis: 4x4x4 bins in $(x,z, P_{h\perp})$

- 3d analysis: 4x4x4 bins in $(x,z, P_{h\perp})$
- reduced systematics
- disentangle correlations
- isolate phase-space region with large signal strength

- 3d analysis: 4x4x4 bins in $(x,z, P_{h\perp})$
- reduced systematics
- disentangle correlations
- isolate phase-space region with large signal strength
- allows more detailed comparison with calculations

	U	L	Т
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

	U	${ m L}$	m T
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Τ	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

[Adolph et al., Phys. Lett. B 770, 138-145 (2017)]

	U	${ m L}$	T
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

[Adolph et al., Phys. Lett. B 770, 138-145 (2017)]

2d analysis to match Q²
 range probed in Drell-Yan

Gunar Schnell

	U	${ m L}$	Γ
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
T	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

[Adolph et al., Phys. Lett. B 770, 138-145 (2017)]

- 2d analysis to match Q²
 range probed in Drell-Yan
- allows also more detailed evolution studies

Sivers amplitudes - Drell-Yan

49

Sivers amplitudes - Drell-Yan

- (slight) preference for sign change
- some model curves move around when properly adjusted to exp.'s kinematics
- more data currently taken

	U	${ m L}$	T
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Τ	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

Sivers amplitudes - weighted

- \bullet $P_{h\perp}$ weighting, in principle, resolves convolutions [A. Kotzinian and P. Mulders, PLB 406 (1997) 373)]
- requires excellent control of detector efficiencies
- often no full integral (low- and high- $P_{h\perp}$ missing)

modulations in spin-independent SIDIS cross section

$$\frac{\mathrm{d}^5 \sigma}{\mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z \, \mathrm{d}\phi_h \, \mathrm{d}P_{h\perp}^2} = \frac{\alpha^2}{xyQ^2} \left(1 + \frac{\gamma^2}{2x} \right) \left\{ A(y) F_{\mathrm{UU},\mathrm{T}} + B(y) F_{\mathrm{UU},\mathrm{L}} + C(y) \cos \phi_h F_{\mathrm{UU}}^{\cos \phi_h} + B(y) \cos 2\phi_h F_{\mathrm{UU}}^{\cos 2\phi_h} \right\}$$

$$\begin{array}{c} \text{leading twist} \\ F_{UU}^{\cos 2\phi_h} \propto C \\ \hline - \frac{2(\hat{P}_{h\perp} \cdot \vec{k}_T)(\hat{P}_{h\perp} \cdot \vec{p}_T) - \vec{k}_T \cdot \vec{p}_T}{MM_h} \\ \hline \text{next to leading twist} \\ \hline F_{UU}^{\cos \phi_h} \propto \frac{2M}{C} \\ \hline - \frac{\hat{P}_{h\perp} \cdot \vec{p}_T}{M_h} x \ h_1^\perp H_1^\perp \\ \hline \end{array} \\ \text{Interaction dependent} \\ \hline \text{terms neglected} \\ \text{(Implicit sum over quark flavours)} \\ \end{array}$$

[Airapetian et al., PRD 87 (2013) 012010]

not zero!

[Airapetian et al., PRD 87 (2013) 012010]

- not zero!
- opposite sign for charged pions with larger magnitude for π^- -> same-sign BM-function for valence quarks?

- not zero!
- opposite sign for charged pions with larger magnitude for π^- -> same-sign BM-function for valence quarks?
- intriguing behavior for kaons

- not zero!
- opposite sign for charged pions with larger magnitude for π^- -> same-sign BM-function for valence quarks?
- intriguing behavior for kaons
- available in multidimensional binning both from HERMES and from COMPASS

53

 $_{0.64}$ p_T^h (GeV/c) $_{1.00}$ 0.50 0.30 0.85 $A_{\cos2\phi_n}^{UU}$ 0.3 $A_{\cos 2\phi_h}^{UU}$ 0.55 $A_{\cos 2\phi_{\scriptscriptstyle h}}^{\scriptscriptstyle UU}$ 0.2 $A_{\cos2\phi_{_{h}}}^{UU}$ $A_{\cos2\phi_{\scriptscriptstyle h}}^{\scriptscriptstyle UU}$ $A_{\cos2\phi_n}^{UU}$ 0.25 -0.1 10^{-2} 10^{-2} 10^{-1} 10^{-1} 10^{-2} 10^{-1} 10^{-2} 10^{-1} χ

INT-18-3, Seattle

 χ

53

unlike HERMES same sign for h⁺ and h⁻, though still different from each other

in 2016/17 extensive strain data set collected on strain liquid-H target (DVCS program)

signs of Boer-Mulders

- in 2016/17 extensive strain data set collected on strain liquid-H target (DVCS program)
- will allow precision studies of multiplicities and Auu & Alu modulations

non-vanishing twist-3

$$\left\langle \sin \phi \right\rangle_{UL}^{\mathsf{q}} = \left\langle \sin \phi \right\rangle_{UL}^{\mathsf{I}} + \sin \theta_{\gamma^*} \left(\left\langle \sin(\phi + \phi_S) \right\rangle_{UT}^{\mathsf{I}} + \left\langle \sin(\phi - \phi_S) \right\rangle_{UT}^{\mathsf{I}} \right)$$

- \bullet experimental A_{UL} dominated by twist-3 contribution
 - correction for A_{UT}
 contribution increases purely longitudinal asymmetry for positive pions
 - consistent with zero for π^-

Gunar Schnell 56 INT-18-3, Seattle

$$\left\langle \sin \phi \right\rangle_{UL}^{\mathsf{q}} = \left\langle \sin \phi \right\rangle_{UL}^{\mathsf{I}} + \sin \theta_{\gamma^*} \left(\left\langle \sin(\phi + \phi_S) \right\rangle_{UT}^{\mathsf{I}} + \left\langle \sin(\phi - \phi_S) \right\rangle_{UT}^{\mathsf{I}} \right)$$

- \bullet experimental A_{UL} dominated by twist-3 contribution
- in contrast to WW-type approximation [1807.10606]

INT-18-3, Seattle

$$\frac{M_h}{Mz}h_1^{\perp}E \oplus xg^{\perp}D_1 \oplus \frac{M_h}{Mz}f_1G^{\perp} \oplus xeH_1^{\perp}$$

- opposite behavior at HERMES/CLAS of negative pions in z projection due to different x-range probed
- CLAS more sensitive to e(x)Collins term due to higher x probed?

Gunar Schnell 58 INT-18-3, Seattle

subleading twist II - <sin(\$)>LU

$$\frac{M_h}{Mz}h_1^\perp E \oplus xg^\perp D_1 \oplus \frac{M_h}{Mz}f_1G^\perp \oplus xeH_1^\perp$$

 consistent behavior for charged pions / hadrons at HERMES / COMPASS for isoscalar targets

- significant non-zero signal observed for negatively charged mesons
- vanishes in inclusive limit, e.g. after integration over $P_{h\perp}$ and z, and summation over all hadrons
- various terms related to transversity, worm-gear, Sivers etc.:

$$\left(\mathbf{x}\mathbf{f}_{\mathbf{T}}^{\perp}\mathbf{D_{1}}-rac{\mathbf{M_{h}}}{\mathbf{M}}\mathbf{h_{1}}rac{ ilde{\mathbf{H}}}{\mathbf{z}}
ight)$$

$$-~\mathcal{W}(\mathbf{p_T}, \mathbf{k_T}, \mathbf{P_{h\perp}}) \left[\left(\mathbf{xh_T} \mathbf{H_1^{\perp}} + \frac{\mathbf{M_h}}{\mathbf{M}} \mathbf{g_{1T}} \frac{\mathbf{\tilde{G}^{\perp}}}{\mathbf{z}} \right) \right. \\ \left. - \left(\mathbf{xh_T^{\perp}} \mathbf{H_1^{\perp}} - \frac{\mathbf{M_h}}{\mathbf{M}} \mathbf{f_{1T}^{\perp}} \frac{\mathbf{\tilde{D}^{\perp}}}{\mathbf{z}} \right) \right.$$

0.4

X

10

Gunar Schnell

0.6

Z

0.5

 $P_{h\perp}$ [GeV]₆₂

conclusions

- 1st round of SIDIS measurements coming to an end
- various indications of flavor-& spin-dependent transverse momentum
- transversity is non-zero and quite sizable
 - d-quark transversity difficult to access with only proton targets
- Sivers and chiral-even worm-gear function also clearly non-zero
- various sizable twist-3 effects
- highlights still to come
 - HERMES transverse-target, A_{LU} & A_{LL} asymmetries
 - COMPASS transverse d; high-statistics data set on unpol. pure H; multi-d asymmetries
- precision measurements needed to fully map TMD landscape (fully differential!)
- need also program with polarized D and ³He

backup

	U	$oxed{L}$	T
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

Transversity (2-hadron fragmentation)

 $A_{UT} \sim \sin(\phi_{R\perp} + \phi_S) \sin\theta h_1 H_1^{\triangleleft}$

Jaffe et al. [hep-ph/9709322]:

$$H_1^{\triangleleft,sp}(z,M_{\pi\pi}^2) = \frac{\sin\delta_0\sin\delta_1\sin(\delta_0-\delta_1)H_1^{\triangleleft,sp'}(z)}{\delta_0\left(\delta_1\right) \to \mathsf{S}(\mathsf{P})\text{-wave phase shifts}}$$

$$= \mathcal{P}(M_{\pi\pi}^2)H_1^{\triangleleft,sp'}(z)$$

 $\Rightarrow A_{UT}$ might depend strongly on $M_{\pi\pi}$

	U	L	T
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Τ	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

Transversity (2-hadron fragmentation)

[A. Airapetian et al., JHEP 06 (2008) 017] COMPASS 2007: [C. Adolph et al., Phys. Lett. B713 (2012) 10] COMPASS 2010: [C. Braun et al., Nuovo Cimento C 035 (2012) 02]

	U	L	T
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

Transversity (2-hadron fragmentation)

HERMES, COMPASS:
 for comparison scaled
 HERMES data by
 depolarization factor and
 changed sign

[A. Airapetian et al., JHEP 06 (2008) 017] COMPASS 2007: [C. Adolph et al., Phys. Lett. B713 (2012) 10] COMPASS 2010: [C. Braun et al., Nuovo Cimento C 035 (2012) 02]

	U	L	${ m T}$
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Γ	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

Transversity (2-hadron fragmentation)

- HERMES, COMPASS:
 for comparison scaled
 HERMES data by
 depolarization factor and
 changed sign
- ²H results consistent with zero

[A. Airapetian et al., JHEP 06 (2008) 017] COMPASS 2007: [C. Adolph et al., Phys. Lett. B713 (2012) 10] COMPASS 2010: [C. Braun et al., Nuovo Cimento C 035 (2012) 02]

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

0.20 < z. < 0.27

Gunar Schnell

Transversity (2-hadron fragmentation)

HERMES, COMPASS: for comparison scaled HERMES data by depolarization factor and changed sign

²H results consistent with zero

[A. Airapetian et al., JHEP 06 (2008) 017] COMPASS 2007: [C. Adolph et al., Phys. Lett. B713 (2012) 10] COMPASS 2010: [C. Braun et al., Nuovo Cimento C 035 (2012) 02] COMPASS 2007/2010 proton data

data from e⁺e⁻ by BELLE

	U	${ m L}$	$oxed{T}$
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Τ	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

(2-hadron fragmentation)

Transversity

- HERMES, COMPASS:
 for comparison scaled
 HERMES data by
 depolarization factor and
 changed sign
- ²H results consistent with zero

[A. Airapetian et al., JHEP 06 (2008) 017] COMPASS 2007: [C. Adolph et al., Phys. Lett. B713 (2012) 10] COMPASS 2010: [C. Braun et al., Nuovo Cimento C 035 (2012) 02] COMPASS 2007/2010 proton data 0.1 0.1 $0.032 & M_{inv}^{\pi\pi} < 1.5 \text{ GeV/}c^2$ $0.032 & M_{inv}^{$

-0.05

-0.1

data from e⁺e⁻ by BELLE allow first (collinear) extraction of transversity (compared to Anselmino et al.)

X

 10^{-1}

updated analysis available (incl. COMPASS)

INT-18-3, Seattle

 $M_{inv}^{\pi^+\pi^-}$ (GeV/ c^2)

	U	${ m L}$	m T
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

 suggested common origin of Collins and di-hadron FF in PLB 736 (2014) 124

	U	${ m L}$	${ m T}$
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
T	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

 suggested common origin of Collins and di-hadron FF in PLB 736 (2014) 124

"Collins angle" of $oldsymbol{R}_N = \hat{oldsymbol{p}}_{T,h^+} - \hat{oldsymbol{p}}_{T,h^-}$

	U	${ m L}$	${ m T}$
U	f_1		h_1^{\perp}
L		g_{1L}	h_{1L}^{\perp}
T	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

 suggested common origin of Collins and di-hadron FF in PLB 736 (2014) 124

"Collins angle" of $oldsymbol{R}_N = \hat{oldsymbol{p}}_{T,h^+} - \hat{oldsymbol{p}}_{T,h^-}$

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

in the limit of collinear P_h (w.r.t. virtual photon), e.g., in collinear factorization, -0.10 $\phi_{2h,S}$ reduces just to ϕ_{RS}

no big surprise that those two asymmetries are very similar?

"Collins angle" of $oldsymbol{R}_N = \hat{oldsymbol{p}}_{T,h^+} - \hat{oldsymbol{p}}_{T,h^-}$

FF TMD flavor dependence

• fit to HERMES multiplicity data:

$$m_N^h(x,z,\boldsymbol{P}_{hT}^2;Q^2) = \frac{\pi}{\sum_q e_q^2 \, f_1^q(x;Q^2)} \, \sum_q e_q^2 \, f_1^q(x;Q^2) \, D_1^{q \to h}(z;Q^2) \, \frac{e^{-\boldsymbol{P}_{hT}^2/\langle \boldsymbol{P}_{hT,q}^2 \rangle}}{\pi \, \langle \boldsymbol{P}_{hT,q}^2 \rangle}$$

$$f_1^q(x,\boldsymbol{k}_\perp^2;Q^2) = f_1^q(x;Q^2) \; \frac{e^{-\boldsymbol{k}_\perp^2/\langle \boldsymbol{k}_{\perp,q}^2\rangle}}{\pi \langle \boldsymbol{k}_{\perp,q}^2\rangle}$$

$$D_1^{q o h}(z, oldsymbol{P}_{\perp}^2; Q^2) = D_1^{q o h}(z; Q^2) \; rac{e^{-oldsymbol{P}_{\perp}^2/\langle oldsymbol{P}_{\perp,q o h}^2
angle}}{\pi \langle oldsymbol{P}_{\perp,q o h}^2
angle}$$

$$\langle m{P}_{hT,q}^2
angle = z^2 \langle m{k}_{\perp,q}^2
angle + \langle m{P}_{\perp,q o h}^2
angle$$

[A. Signori, A. Bacchetta, M. Radici and GS, JHEP 11(2013)194]

FF TMD flavor dependence

• fit to HERMES multiplicity data:

[A. Signori, A. Bacchetta, M. Radici and GS, JHEP 11(2013)194]

point of no flavor dep.

 $q\rightarrow\pi$ favored width < unfavored

1.4

1.3

FF TMD flavor dependence

• fit to SIDIS, DY & Z boson production: JHEP 06 (2017) 081

- fit to e⁺e⁻ data: PLB 772 (2017) 78-86
- new data: COMPASS arXiv:1709.07374