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hermes The HERMES Spectrometer
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Particle ID detectors allow for
- lepton/hadron separation
- RICH: pion/kaon/proton 
discrimination 2GeV<p<15GeV

pure gas targets internal to 
HERA 27.6 GeV lepton ring
unpolarized (1H … Xe) 
long. polarized: 1H, 2H, 3He  
transversely polarized: 1H
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the fundamental tenet of universality of PDFs and FFs was revised [7 – 9]. New factoriza-

tion proofs for the process under consideration here were put forward [10, 11], updating past

work [12]. Some relations proposed in ref. [1] turned out to be invalid [13, 14], and three

new PDFs were discovered [15, 16]. In the meanwhile, several experimental measurements

of azimuthal asymmetries in semi-inclusive DIS were performed [17 – 26].

We consider it timely to present in a single, self-contained paper the results for one-

particle-inclusive deep inelastic scattering at small transverse momentum, in particular

including in the cross section all functions recently introduced. In section 2 we recall the

general form of the cross section for polarized semi-inclusive DIS and parameterize it in

terms of suitable structure functions. In section 3 we give the full parameterization of

quark-quark and quark-gluon-quark correlation functions up to twist three and review the

relations between these functions which are due to the QCD equations of motion. The

structure functions for semi-inclusive DIS at small transverse momentum and twist-three

accuracy are given in section 4, and section 5 contains our conclusions. The relation of the

structure functions in the present paper with the parameterization in ref. [27] is given in

appendix A, and results for one-jet production in DIS are listed in appendix B.

2. The cross section in terms of structure functions

We consider the process

ℓ(l) + N(P ) → ℓ(l′) + h(Ph) + X, (2.1)

where ℓ denotes the beam lepton, N the nucleon target, and h the produced hadron, and

where four-momenta are given in parentheses. Throughout this paper we work in the one-

photon exchange approximation and neglect the lepton mass. We denote by M and Mh

the respective masses of the nucleon and of the hadron h. As usual we define q = l− l′ and

Q2 = −q2 and introduce the variables
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where α is the fine structure constant and the structure functions on the r.h.s. depend

on x, Q2, z and P 2
h⊥. The angle ψ is the azimuthal angle of ℓ′ around the lepton beam

axis with respect to an arbitrary fixed direction, which in case of a transversely polarized

target we choose to be the direction of S. The corresponding relation between ψ and φS

is given in ref. [27]; in deep inelastic kinematics one has dψ ≈ dφS . The first and second

subscript of the above structure functions indicate the respective polarization of beam and

target, whereas the third subscript in FUU,T , FUU,L and F sin(φh−φS)
UT,T , F sin(φh−φS)

UT,L specifies

the polarization of the virtual photon. Note that longitudinal or transverse target polar-

ization refer to the photon direction here. The conversion to the experimentally relevant

longitudinal or transverse polarization w.r.t. the lepton beam direction is straightforward

and given in [27]. The ratio ε of longitudinal and transverse photon flux in (2.7) is given

by
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1 − y − 1
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[see, e.g., Bacchetta et al., 
JHEP 0702 (2007) 093]
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to the photon momentum. The tensors

gµν
⊥ = gµν −

qµP ν + Pµqν

P · q (1 + γ2)
+

γ2

1 + γ2

(

qµqν

Q2
−

PµP ν

M2

)

, (2.4)

ϵµν
⊥ = ϵµνρσ Pρ qσ

P · q
√

1 + γ2
(2.5)

– 2 –

J
H
E
P
0
2
(
2
0
0
7
)
0
9
3

+ S∥λe

[

√

1 − ε2 FLL +
√

2 ε(1 − ε) cos φh F cos φh

LL

]

+ |S⊥|

[

sin(φh − φS)
(

F sin(φh−φS)
UT,T + εF sin(φh−φS)

UT,L

)

+ ε sin(φh + φS)F sin(φh+φS)
UT + ε sin(3φh − φS)F sin(3φh−φS)

UT

+
√

2 ε(1 + ε) sin φS F sinφS

UT +
√

2 ε(1 + ε) sin(2φh − φS)F sin(2φh−φS)
UT

]

+ |S⊥|λe

[

√

1 − ε2 cos(φh − φS)F cos(φh−φS)
LT +

√

2 ε(1 − ε) cos φS F cos φS

LT

+
√

2 ε(1 − ε) cos(2φh − φS)F cos(2φh−φS)
LT

]}

, (2.7)

where α is the fine structure constant and the structure functions on the r.h.s. depend

on x, Q2, z and P 2
h⊥. The angle ψ is the azimuthal angle of ℓ′ around the lepton beam

axis with respect to an arbitrary fixed direction, which in case of a transversely polarized

target we choose to be the direction of S. The corresponding relation between ψ and φS

is given in ref. [27]; in deep inelastic kinematics one has dψ ≈ dφS . The first and second

subscript of the above structure functions indicate the respective polarization of beam and

target, whereas the third subscript in FUU,T , FUU,L and F sin(φh−φS)
UT,T , F sin(φh−φS)

UT,L specifies

the polarization of the virtual photon. Note that longitudinal or transverse target polar-

ization refer to the photon direction here. The conversion to the experimentally relevant

longitudinal or transverse polarization w.r.t. the lepton beam direction is straightforward

and given in [27]. The ratio ε of longitudinal and transverse photon flux in (2.7) is given

by

ε =
1 − y − 1

4 γ2y2

1 − y + 1
2 y2 + 1

4 γ2y2
, (2.8)

so that the depolarization factors can be written as

y2

2 (1 − ε)
=

1

1 + γ2

(

1 − y + 1
2 y2 + 1

4 γ2y2
)

≈
(

1 − y + 1
2 y2

)

, (2.9)

y2

2 (1 − ε)
ε =

1

1 + γ2

(

1 − y − 1
4 γ2y2

)

≈ (1 − y), (2.10)

y2

2 (1 − ε)

√

2 ε(1 + ε) =
1

1 + γ2
(2 − y)

√

1 − y − 1
4 γ2y2 ≈ (2 − y)

√

1 − y, (2.11)

y2

2 (1 − ε)

√

2 ε(1 − ε) =
1

√

1 + γ2
y

√

1 − y − 1
4 γ2y2 ≈ y

√

1 − y, (2.12)

y2

2 (1 − ε)

√

1 − ε2 =
1

√

1 + γ2
y

(

1 − 1
2 y

)

≈ y
(

1 − 1
2 y

)

. (2.13)

– 4 –

[see, e.g., Bacchetta et al., 
JHEP 0702 (2007) 093]
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even though having similar average kinematics, multiplicities 
in the two projections are different
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hM(Q2)iQ2 6= M(hQ2i)
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 hM(Q2)iQ2 6= M(hQ2i)

the average along the valley will 
be smaller than the average 
along the gradient

still the average kinematics can 
be the same

take-away message: integrate your cross sections over 
the kinematic ranges dictated by the experiment (and 
do not simply evaluate it at the average kinematics)
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integrating vs. using average kinematics

(by now old) 
DSS07 FF fit to 
z-Q2 projection

z-x “prediction” 
reasonable well 
when using 
integration over 
phase-space limits 
(red lines)

significant changes 
when using 
average 
kinematics

12
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transverse momentum 
dependence

13

multi-dimensional analysis allows going beyond collinear factorization
flavor information on transverse momenta via target variation and hadron ID
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helicity distribution
extensive data set on collinear extraction of helicity PDF 
published in PRD 71 (2005) 012003

here: (not so significant) transverse momentum dependence
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and (anti) protons

positive Collins SSA amplitude for positive kaons
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Figure 1: Depiction of the azimuthal angles φR⊥ of the dihadron and φS of the component ST of
the target-polarization transverse to both the virtual-photon and target-nucleon momenta q and P ,
respectively. Both angles are evaluated in the virtual-photon-nucleon center-of-momentum frame.
Explicitly, φR⊥ ≡ (q×k)·RT

|(q×k)·RT | arccos (q×k)·(q×RT )
|q×k||q×RT | and φS ≡ (q×k)·ST

|(q×k)·ST | arccos (q×k)·(q×ST )
|q×k||q×ST | . Here,

RT = R − (R · P̂h)P̂h, with R ≡ (Pπ+ − Pπ−)/2, Ph ≡ Pπ+ + Pπ− , and P̂h ≡ Ph/ | Ph |,
thus RT is the component of Pπ+ orthogonal to Ph, and φR⊥ is the azimuthal angle of RT about
the virtual-photon direction. The dotted lines indicate how vectors are projected onto planes. The
short dotted line is parallel to the direction of the virtual photon. Also included is a description of
the polar angle θ, which is evaluated in the center-of-momentum frame of the pion pair.

contributions to this amplitude at subleading twist (i.e., twist-3). Among the various con-

tributions to the fragmentation function H!

1,q are the interference H!,sp
1,q between the s- and

p-wave components of the π+π− pair and the interference H!,pp
1,q between two p-waves. In

some of the literature, such functions have therefore been called interference fragmentation

functions [15], even though in general interference between different amplitudes is required

by all naive-T-odd functions. In this paper the focus is on the sp-interference, since it has

received the most theoretical attention. In particular, in Ref. [15] H!,sp
1,q was predicted to

change sign at a very specific value of the invariant mass Mππ of the π+π− pair, close to

the mass of the ρ0 meson. However, other models [37, 38] predict a completely different

behavior.

The data presented here were recorded during the 2002-2005 running period of the

Hermes experiment, using the 27.6 GeV positron or electron beam and a transversely

polarized hydrogen gas target internal to the Hera storage ring at Desy. The open-

ended target cell was fed by an atomic-beam source [39] based on Stern-Gerlach separation

combined with transitions of hydrogen hyperfine states. The nuclear polarization of the

atoms was flipped at 1–3 min. time intervals, while both this polarization and the atomic

fraction inside the target cell were continuously measured [40]. The average value of the

transverse proton polarization |S⊥| was 0.74 ± 0.06.

Scattered leptons and coincident hadrons were detected by the Hermes spectrome-

ter [41]. Its acceptance spanned the scattering-angle range 40 < |θy| < 140 mrad and

relative momentum of the hadron pair.

– 3 –

Transversity through 
2-hadron fragmentation
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p-wave components of the π+π− pair and the interference H!,pp
1,q between two p-waves. In

some of the literature, such functions have therefore been called interference fragmentation

functions [15], even though in general interference between different amplitudes is required

by all naive-T-odd functions. In this paper the focus is on the sp-interference, since it has

received the most theoretical attention. In particular, in Ref. [15] H!,sp
1,q was predicted to

change sign at a very specific value of the invariant mass Mππ of the π+π− pair, close to

the mass of the ρ0 meson. However, other models [37, 38] predict a completely different

behavior.

The data presented here were recorded during the 2002-2005 running period of the

Hermes experiment, using the 27.6 GeV positron or electron beam and a transversely

polarized hydrogen gas target internal to the Hera storage ring at Desy. The open-

ended target cell was fed by an atomic-beam source [39] based on Stern-Gerlach separation

combined with transitions of hydrogen hyperfine states. The nuclear polarization of the

atoms was flipped at 1–3 min. time intervals, while both this polarization and the atomic

fraction inside the target cell were continuously measured [40]. The average value of the

transverse proton polarization |S⊥| was 0.74 ± 0.06.

Scattered leptons and coincident hadrons were detected by the Hermes spectrome-

ter [41]. Its acceptance spanned the scattering-angle range 40 < |θy| < 140 mrad and

relative momentum of the hadron pair.

– 3 –

Transversity through 
2-hadron fragmentation

not only strong invariant-mass dependence, experimental challenges 
also because of 

transverse-momentum dependence

theta dependence

9 vs. 6 (for single hadrons) dependences, too many to analyze 
simultaneously (at least with presently available data)
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Transversity through 
2-hadron fragmentation

systematics include

incomplete integration over transverse momentum (negligible)

contribution from higher partial waves in (unpolarized) denominator

integration over other variables, e.g., A(<kin.>) ≠ <A(kin.)>
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NEW: combined 2007/2010 data: comparison with model
predictions and HERMES

COMPASS 2007/2010 proton data
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HERMES, COMPASS: 
for comparison scaled 
HERMES data by 
depolarization factor and 
changed sign

2H results consistent with 
zero

COMPASS 2007: [C. Adolph et al., Phys. Lett. B713 (2012) 10]
[A. Airapetian et al., JHEP 06 (2008) 017]

COMPASS 2010: [C. Braun et al., Nuovo Cimento C 035 (2012) 02]

Transversity through 
2-hadron fragmentation
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data from e+e- by BELLE 

PRL 107 (2011) 012001

considering the errors on the parametrization and taking
the upper and lower limits for the combination of interest.
Our data points seem not in disagreement with the extrac-
tion. However, a word of caution is needed here: while the
error bars of our data points correspond to 1! deviation
from the central value, the uncertainty on the parametriza-
tion [32] corresponds to a deviation !"2 ! 17 from the
best fit (see Ref. [33] for more details). In any case, to draw
clearer conclusions more data are needed (e.g., from the
COMPASS Collaboration [18]).

In summary, we have presented a determination of the
transversity parton distribution in the framework of collinear
factorization by using data for pion-pair production in deep-
inelastic scattering off transversely polarized targets, com-
bined with data of eþe# annihilations into pion pairs. The
final trend of the extracted transversity seems not to be in
disagreement with the transversity extracted from the
Collins effect [32]. More data are needed to clarify the issue.
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Interference Fragmentation – 
thrust method 

!"#

! e+e-! (!+!-)jet1(!
"!#)jet2X 

! Find pion pairs in opposite 
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data from e+e- by BELLE 

PRL 107 (2011) 012001

considering the errors on the parametrization and taking
the upper and lower limits for the combination of interest.
Our data points seem not in disagreement with the extrac-
tion. However, a word of caution is needed here: while the
error bars of our data points correspond to 1! deviation
from the central value, the uncertainty on the parametriza-
tion [32] corresponds to a deviation !"2 ! 17 from the
best fit (see Ref. [33] for more details). In any case, to draw
clearer conclusions more data are needed (e.g., from the
COMPASS Collaboration [18]).

In summary, we have presented a determination of the
transversity parton distribution in the framework of collinear
factorization by using data for pion-pair production in deep-
inelastic scattering off transversely polarized targets, com-
bined with data of eþe# annihilations into pion pairs. The
final trend of the extracted transversity seems not to be in
disagreement with the transversity extracted from the
Collins effect [32]. More data are needed to clarify the issue.
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consistent with zero; but suppressed 
by two powers of Ph⊥ (compared to, e.g., transversity⊗Collins)
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The transversity distribution appears together with the Collins fragmentation function196

in the SSA moment7197
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where x
B

⌘ Q2/(2P · q), 8 y ⌘ (P · q)/(P · k), z ⌘ (P · P
h

)/(P · q), M
h

is the mass of the200

produced hadron, with q, P , k, k0 and P
h

representing the four-momenta of the exchanged201

virtual photon, initial-state target proton, incident and outgoing lepton, and produced202

hadron, respectively, and ĥ = P
h?/|Ph?|. The notation C specifies the convolution [7]203
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where e
q

are the quark electric charges in units of the elementary charge. Furthermore, the204

“photon polarization parameter” ✏ ⌘ 1�y� 1
4�

2
y

2

1�y+

1
4y

2
(�

2
+2)

is the ratio of longitudinal to transverse205

photon flux, where � ⌘ 2Mx
B

/Q with M the mass of the target nucleon.206

ToDo:

Decision item: do we list all publications about previous measurements.

In any case, discussion needs a careful update.

207

ToDo:

Decision item: how much in detail should we go about phenomenology,

e.g. fits, etc. - again, an update of discussion is needed. Andreas is in

favor of keeping it short (skipping it) as a rather temporary snapshot.

Likely depends on how many comparisons we will show at the end.

208

Corresponding measurements of the 2 hsin (�+ �
S

)ih
U? moment in the Diehl–Sapeta209

representation (cf. Section 2.2) as a function of single kinematic variables have been pub-210

lished by the HERMES Collaboration for charged pions [10] and for pions and charged211

kaons [11], all from a transversely polarized hydrogen target. The COMPASS Collabo-212

ration published measurements for unidentified hadrons from a deuterium target [12, 13]213

and a hydrogen target [14, 15], and results for identified pions and kaons from hydrogen214

and deuterium targets [16, 17]. The first experimentally based values for the transversity215

7Here and in the corresponding expressions in this Section the kinematic dependences of both distribution

and fragmentations have been omitted for brevity.
8
ToDo: in the introduction we already used x, for the momentum fraction

– 8 –

In various models, such as bag or spectator models, pretzelosity appears as the di↵erence320

between helicity and transversity distributions, and hence can be interpreted to represent321

relativistic e↵ects on the nucleon structure. As the name pretzelosity suggests, nonzero322

values could indicate that the shape of a transversely polarized nucleon is nonspherical [52,323

53].324

Being chiral-odd, pretzelosity appears in semi-inclusive DIS convoluted with the Collins325

fragmentation function in the SSA amplitude326
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The only existing measurements of this asymmetry comes from the Je↵erson Lab Hall327

A Collaboration [54], using a transversely polarized 3He target, e↵ectively a target of328

transversely polarized neutrons. The resulting asymmetry amplitudes are consistent with329

zero, both for ⇡+ and ⇡�. The COMPASS Collaboration published measurements for330

unidentified hadrons of the longitudinal single-spin asymmetries 2 hsin (3�)ih
Uk, measured331

as usual with the target polarization parallel to the direction of the incident lepton beam.332

This observable is sensitive to 2 hsin (3�� �
S

)ih
UT

via the component of target polarization333

perpendicular to the direction of the virtual photon. The results of those measurements334

are consistent with zero [55].335

2.3.4 The worm-gear distributions336

In a transversely (longitudinally) polarized nucleon, the chiral-even (chiral-odd) TMD
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190 HERMES Collaboration / Physics Letters B 562 (2003) 182–192

Fig. 5. Comparison of the measured analysing powers A
sinφ
UL on the

deuteron for π+, π0, π− and K+ production with predictions from
theoretical calculations in the chiral quark soliton model (χQSM,
solid lines [22]), the quark–diquark model (QdQ, dashed lines [21])
and a perturbative QCD model (pQCD, dotted lines [21]). The
shown curves refer to “approach 2” of the models in Ref. [21].
The error bars give the statistical uncertainties of the measurements,
and the bands in the lower part of the panels show the systematic
uncertainties of the measurements.

Fig. 6. The sin2φ analysing powers A
sin 2φ
UL for π+, π0 and π−

(upper panel) and for K+ production (lower panel) on the deuteron.
The error bars give the statistical uncertainties of the measurements.
The systematic uncertainties for π+ and π− are represented by the
hatched band and those for π0 by the open band. The points for
π0 and π− are slightly shifted in x for better visibility. Included as
curves are predictions from a transversity-related calculation in the
chiral quark soliton model [22].

The data presented so far are evaluated in the semi-
inclusive kinematic range 0.2< z < 0.7. In Fig. 7, the
z-dependencies of the single spin asymmetries A

sinφ
UL

on the proton and on the deuteron are shown up to
z = 1. The results on the proton have been obtained
from experimental data taken with a longitudinally
polarised hydrogen target as described in Ref. [2],
neglecting the upper z < 0.7 cut, however. The mean
experimental resolution in z is $z = 0.02 (0.04) for
charged (neutral) pions in the semi-inclusive regime
and $z = 0.07 (0.06) for z→ 1. It has to be pointed
out that the experimental data shown as open symbols
in Fig. 7 have not been corrected for this variation in
$z. Also, the results for charged pions have not been

HERMES Collaboration / Physics Letters B 562 (2003) 182–192 187

Fig. 3. Target spin asymmetries AUL(φ) for electroproduction of
π+, π0, π− and K+ mesons. Fits of the form P0 + P1 sinφ (solid
line) and P0 + P1 sinφ + P2 sin 2φ (dashed line) are also displayed
in the figure. The error bars give the statistical uncertainties of the
measurements. The values of the coefficients P0 are all compatible
with zero and the coefficients P1 and P2 for the various hadrons and
their statistical uncertainties are listed in each panel.

hydrogen and deuterium gas targets. These measure-
ments were regularly done after a few hours of data
taking with polarised targets. The data were analysed
with the kinematic requirements described above and
the sinφ and sin2φ moments A

sinφ
UU and A

sin2φ
UU of

the unpolarised cross section are extracted. They were
calculated, respectively, as A

sinφ
UU = 1/N

∑N
i=1 sinφi

and A
sin2φ
UU = 1/N

∑N
i=1 sin 2φi , summed over all N

events taken with unpolarised target gas. The moments
A
sinφ
UU andA

sin2φ
UU were found to be consistent with zero

Table 1
Analysing powers A

sinφ
UL and A

sin 2φ
UL for the azimuthal target-spin

asymmetry for the electroproduction of pions and kaons on the
deuteron, integrated over the experimental acceptance in x, P⊥, z,
y andQ2. Also listed are earlier results obtained on the proton from
Refs. [2,3]. The first uncertainty is the statistical and the second is
the systematic uncertainty of the measurement

Meson Deuterium target Proton target [2,3]

A
sinφ
UL π+ 0.012± 0.002± 0.002 0.022± 0.005± 0.003

π0 0.021± 0.005± 0.003 0.019± 0.007± 0.003
π− 0.006± 0.003± 0.002 −0.002± 0.006± 0.004
K+ 0.013± 0.006± 0.003 –

A
sin 2φ
UL π+ 0.004± 0.002± 0.002 −0.002± 0.005± 0.003

π0 0.009± 0.005± 0.003 0.006± 0.007± 0.003
π− 0.001± 0.003± 0.002 −0.005± 0.006± 0.005
K+ −0.005± 0.006± 0.003 –

as expected [1] for pions (kaons) within a statistical
uncertainty of 0.002 (0.004).
The analysing powers A

sinφ
UL extracted from a fit to

the asymmetry AUL(φ) have been compared to those
obtained as moments:

(7)

AW
UL = 1

|PL|
1

L→
∑N→

i=1 W(φi )− 1
L←

∑N←
i=1 W(φi )

1
2 [N→/L→ + N←/L←]

,

using the weighting functions W(φ) = sinφ and
W(φ) = sin 2φ, respectively. This type of analysis
is more sensitive to the experimental acceptance [3].
Based on a Monte Carlo simulation, corrections of
about 15% had to be applied to account for a cross-
contamination between the sinφ and sin2φ moments.
After these corrections, the analysing powers extracted
as moments according to Eq. (7) and those extracted
using a fit to the cross section asymmetry AUL(φ)
agree within the systematic uncertainty assigned to
effects of the spectrometer acceptance (see Table 3).
In Fig. 4, the analysing powers A

sinφ
UL on the

deuteron are shown as a function of x , P⊥ and z to-
gether with earlier results obtained on the proton [2,3].
The mean values of Q2 for each x bin and the mean
values of P⊥ for each z bin are given in Table 2.
The various contributions to the systematic uncer-

tainty of the experimental results in Table 1, inte-
grated over x , P⊥ and z, are listed in Table 3. For
charged pions, the largest contributions originate from
the determination of the target polarisation and from
the upper limit for possible acceptance effects evalu-
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Fig. 3. Target spin asymmetries AUL(φ) for electroproduction of
π+, π0, π− and K+ mesons. Fits of the form P0 + P1 sinφ (solid
line) and P0 + P1 sinφ + P2 sin 2φ (dashed line) are also displayed
in the figure. The error bars give the statistical uncertainties of the
measurements. The values of the coefficients P0 are all compatible
with zero and the coefficients P1 and P2 for the various hadrons and
their statistical uncertainties are listed in each panel.

hydrogen and deuterium gas targets. These measure-
ments were regularly done after a few hours of data
taking with polarised targets. The data were analysed
with the kinematic requirements described above and
the sinφ and sin2φ moments A

sinφ
UU and A

sin2φ
UU of

the unpolarised cross section are extracted. They were
calculated, respectively, as A

sinφ
UU = 1/N

∑N
i=1 sinφi

and A
sin2φ
UU = 1/N

∑N
i=1 sin 2φi , summed over all N

events taken with unpolarised target gas. The moments
A
sinφ
UU andA

sin2φ
UU were found to be consistent with zero

Table 1
Analysing powers A

sinφ
UL and A

sin 2φ
UL for the azimuthal target-spin

asymmetry for the electroproduction of pions and kaons on the
deuteron, integrated over the experimental acceptance in x, P⊥, z,
y andQ2. Also listed are earlier results obtained on the proton from
Refs. [2,3]. The first uncertainty is the statistical and the second is
the systematic uncertainty of the measurement

Meson Deuterium target Proton target [2,3]

A
sinφ
UL π+ 0.012± 0.002± 0.002 0.022± 0.005± 0.003

π0 0.021± 0.005± 0.003 0.019± 0.007± 0.003
π− 0.006± 0.003± 0.002 −0.002± 0.006± 0.004
K+ 0.013± 0.006± 0.003 –

A
sin 2φ
UL π+ 0.004± 0.002± 0.002 −0.002± 0.005± 0.003

π0 0.009± 0.005± 0.003 0.006± 0.007± 0.003
π− 0.001± 0.003± 0.002 −0.005± 0.006± 0.005
K+ −0.005± 0.006± 0.003 –

as expected [1] for pions (kaons) within a statistical
uncertainty of 0.002 (0.004).
The analysing powers A

sinφ
UL extracted from a fit to

the asymmetry AUL(φ) have been compared to those
obtained as moments:

(7)

AW
UL = 1

|PL|
1

L→
∑N→

i=1 W(φi )− 1
L←

∑N←
i=1 W(φi )

1
2 [N→/L→ + N←/L←]

,

using the weighting functions W(φ) = sinφ and
W(φ) = sin 2φ, respectively. This type of analysis
is more sensitive to the experimental acceptance [3].
Based on a Monte Carlo simulation, corrections of
about 15% had to be applied to account for a cross-
contamination between the sinφ and sin2φ moments.
After these corrections, the analysing powers extracted
as moments according to Eq. (7) and those extracted
using a fit to the cross section asymmetry AUL(φ)
agree within the systematic uncertainty assigned to
effects of the spectrometer acceptance (see Table 3).
In Fig. 4, the analysing powers A

sinφ
UL on the

deuteron are shown as a function of x , P⊥ and z to-
gether with earlier results obtained on the proton [2,3].
The mean values of Q2 for each x bin and the mean
values of P⊥ for each z bin are given in Table 2.
The various contributions to the systematic uncer-

tainty of the experimental results in Table 1, inte-
grated over x , P⊥ and z, are listed in Table 3. For
charged pions, the largest contributions originate from
the determination of the target polarisation and from
the upper limit for possible acceptance effects evalu-

[PLB 562  (2003) 182-192]

[PLB 562  (2003) 182-192]
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the fundamental tenet of universality of PDFs and FFs was revised [7 – 9]. New factoriza-

tion proofs for the process under consideration here were put forward [10, 11], updating past

work [12]. Some relations proposed in ref. [1] turned out to be invalid [13, 14], and three

new PDFs were discovered [15, 16]. In the meanwhile, several experimental measurements

of azimuthal asymmetries in semi-inclusive DIS were performed [17 – 26].

We consider it timely to present in a single, self-contained paper the results for one-

particle-inclusive deep inelastic scattering at small transverse momentum, in particular

including in the cross section all functions recently introduced. In section 2 we recall the

general form of the cross section for polarized semi-inclusive DIS and parameterize it in

terms of suitable structure functions. In section 3 we give the full parameterization of

quark-quark and quark-gluon-quark correlation functions up to twist three and review the

relations between these functions which are due to the QCD equations of motion. The

structure functions for semi-inclusive DIS at small transverse momentum and twist-three

accuracy are given in section 4, and section 5 contains our conclusions. The relation of the

structure functions in the present paper with the parameterization in ref. [27] is given in

appendix A, and results for one-jet production in DIS are listed in appendix B.

2. The cross section in terms of structure functions

We consider the process

ℓ(l) + N(P ) → ℓ(l′) + h(Ph) + X, (2.1)

where ℓ denotes the beam lepton, N the nucleon target, and h the produced hadron, and

where four-momenta are given in parentheses. Throughout this paper we work in the one-

photon exchange approximation and neglect the lepton mass. We denote by M and Mh

the respective masses of the nucleon and of the hadron h. As usual we define q = l− l′ and

Q2 = −q2 and introduce the variables

x =
Q2

2P · q
, y =

P · q
P · l

, z =
P ·Ph

P · q
, γ =

2Mx

Q
. (2.2)

Throughout this section we work in the target rest frame. Following the Trento conven-

tions [28] we define the azimuthal angle φh of the outgoing hadron by

cosφh = −
lµPhν gµν

⊥
√

l2⊥ P 2
h⊥

, sin φh = −
lµPhν ϵµν

⊥
√

l2⊥ P 2
h⊥

, (2.3)

where lµ⊥ = gµν
⊥ lν and Pµ

h⊥ = gµν
⊥ Phν are the transverse components of l and Ph with respect

to the photon momentum. The tensors

gµν
⊥ = gµν −

qµP ν + Pµqν

P · q (1 + γ2)
+

γ2

1 + γ2

(

qµqν

Q2
−

PµP ν

M2

)

, (2.4)

ϵµν
⊥ = ϵµνρσ Pρ qσ

P · q
√

1 + γ2
(2.5)

– 2 –

J
H
E
P
0
2
(
2
0
0
7
)
0
9
3

+ S∥λe

[

√

1 − ε2 FLL +
√

2 ε(1 − ε) cos φh F cos φh

LL

]

+ |S⊥|

[

sin(φh − φS)
(

F sin(φh−φS)
UT,T + εF sin(φh−φS)

UT,L

)

+ ε sin(φh + φS)F sin(φh+φS)
UT + ε sin(3φh − φS)F sin(3φh−φS)

UT

+
√

2 ε(1 + ε) sin φS F sinφS

UT +
√

2 ε(1 + ε) sin(2φh − φS)F sin(2φh−φS)
UT

]

+ |S⊥|λe

[

√

1 − ε2 cos(φh − φS)F cos(φh−φS)
LT +

√

2 ε(1 − ε) cos φS F cos φS

LT

+
√

2 ε(1 − ε) cos(2φh − φS)F cos(2φh−φS)
LT

]}

, (2.7)

where α is the fine structure constant and the structure functions on the r.h.s. depend

on x, Q2, z and P 2
h⊥. The angle ψ is the azimuthal angle of ℓ′ around the lepton beam

axis with respect to an arbitrary fixed direction, which in case of a transversely polarized

target we choose to be the direction of S. The corresponding relation between ψ and φS

is given in ref. [27]; in deep inelastic kinematics one has dψ ≈ dφS . The first and second

subscript of the above structure functions indicate the respective polarization of beam and

target, whereas the third subscript in FUU,T , FUU,L and F sin(φh−φS)
UT,T , F sin(φh−φS)

UT,L specifies

the polarization of the virtual photon. Note that longitudinal or transverse target polar-

ization refer to the photon direction here. The conversion to the experimentally relevant

longitudinal or transverse polarization w.r.t. the lepton beam direction is straightforward

and given in [27]. The ratio ε of longitudinal and transverse photon flux in (2.7) is given

by

ε =
1 − y − 1

4 γ2y2

1 − y + 1
2 y2 + 1

4 γ2y2
, (2.8)

so that the depolarization factors can be written as

y2

2 (1 − ε)
=

1

1 + γ2

(

1 − y + 1
2 y2 + 1

4 γ2y2
)

≈
(

1 − y + 1
2 y2

)

, (2.9)

y2

2 (1 − ε)
ε =

1

1 + γ2

(

1 − y − 1
4 γ2y2

)

≈ (1 − y), (2.10)

y2

2 (1 − ε)

√

2 ε(1 + ε) =
1

1 + γ2
(2 − y)

√

1 − y − 1
4 γ2y2 ≈ (2 − y)

√

1 − y, (2.11)

y2

2 (1 − ε)

√

2 ε(1 − ε) =
1

√

1 + γ2
y

√

1 − y − 1
4 γ2y2 ≈ y

√

1 − y, (2.12)

y2

2 (1 − ε)

√

1 − ε2 =
1

√

1 + γ2
y

(

1 − 1
2 y

)

≈ y
(

1 − 1
2 y

)

. (2.13)

– 4 –

[see, e.g., Bacchetta et al., 
JHEP 0702 (2007) 093]
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the fundamental tenet of universality of PDFs and FFs was revised [7 – 9]. New factoriza-

tion proofs for the process under consideration here were put forward [10, 11], updating past

work [12]. Some relations proposed in ref. [1] turned out to be invalid [13, 14], and three

new PDFs were discovered [15, 16]. In the meanwhile, several experimental measurements

of azimuthal asymmetries in semi-inclusive DIS were performed [17 – 26].

We consider it timely to present in a single, self-contained paper the results for one-

particle-inclusive deep inelastic scattering at small transverse momentum, in particular

including in the cross section all functions recently introduced. In section 2 we recall the

general form of the cross section for polarized semi-inclusive DIS and parameterize it in

terms of suitable structure functions. In section 3 we give the full parameterization of

quark-quark and quark-gluon-quark correlation functions up to twist three and review the

relations between these functions which are due to the QCD equations of motion. The

structure functions for semi-inclusive DIS at small transverse momentum and twist-three

accuracy are given in section 4, and section 5 contains our conclusions. The relation of the

structure functions in the present paper with the parameterization in ref. [27] is given in

appendix A, and results for one-jet production in DIS are listed in appendix B.

2. The cross section in terms of structure functions

We consider the process

ℓ(l) + N(P ) → ℓ(l′) + h(Ph) + X, (2.1)

where ℓ denotes the beam lepton, N the nucleon target, and h the produced hadron, and

where four-momenta are given in parentheses. Throughout this paper we work in the one-

photon exchange approximation and neglect the lepton mass. We denote by M and Mh

the respective masses of the nucleon and of the hadron h. As usual we define q = l− l′ and

Q2 = −q2 and introduce the variables

x =
Q2

2P · q
, y =

P · q
P · l

, z =
P ·Ph

P · q
, γ =

2Mx

Q
. (2.2)

Throughout this section we work in the target rest frame. Following the Trento conven-

tions [28] we define the azimuthal angle φh of the outgoing hadron by

cosφh = −
lµPhν gµν

⊥
√

l2⊥ P 2
h⊥

, sin φh = −
lµPhν ϵµν

⊥
√

l2⊥ P 2
h⊥

, (2.3)

where lµ⊥ = gµν
⊥ lν and Pµ

h⊥ = gµν
⊥ Phν are the transverse components of l and Ph with respect

to the photon momentum. The tensors

gµν
⊥ = gµν −

qµP ν + Pµqν

P · q (1 + γ2)
+

γ2

1 + γ2

(

qµqν

Q2
−

PµP ν

M2

)

, (2.4)
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where α is the fine structure constant and the structure functions on the r.h.s. depend

on x, Q2, z and P 2
h⊥. The angle ψ is the azimuthal angle of ℓ′ around the lepton beam

axis with respect to an arbitrary fixed direction, which in case of a transversely polarized

target we choose to be the direction of S. The corresponding relation between ψ and φS

is given in ref. [27]; in deep inelastic kinematics one has dψ ≈ dφS . The first and second

subscript of the above structure functions indicate the respective polarization of beam and

target, whereas the third subscript in FUU,T , FUU,L and F sin(φh−φS)
UT,T , F sin(φh−φS)

UT,L specifies

the polarization of the virtual photon. Note that longitudinal or transverse target polar-

ization refer to the photon direction here. The conversion to the experimentally relevant

longitudinal or transverse polarization w.r.t. the lepton beam direction is straightforward

and given in [27]. The ratio ε of longitudinal and transverse photon flux in (2.7) is given

by

ε =
1 − y − 1

4 γ2y2

1 − y + 1
2 y2 + 1

4 γ2y2
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so that the depolarization factors can be written as
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[see, e.g., Bacchetta et al., 
JHEP 0702 (2007) 093]
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Figure 6.7: Difference between two φS’s which evaluated with and without
the detector smearing effects. Note this result is independent of the QED
radiative effect.

Figure 6.8: Schematic illustration of event migration.
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6.3 Unfolded results 121

Figure 6.2: Left: the event migration between the kinematical bins of y, z and Ph⊥
variables (indicated respectively by squares of decreasing size) in one of the x bin. Right:
the event migration between the 12  h bins in the same kinematical bin.

The relative di erences between unfolded and 4π mean values is used as systematic
uncertainty due to possible model dependence in the unfolding procedure.

6.3 Unfolded results

The unfolded results extracted with the 5-dimensional analysis for the di erent data
taking periods are presented in figures from 6.5 to 6.8 for hydrogen data, and in
figures from 6.9 to 6.12 for deuterium data.

After the unfolding procedure, the ⟨cos φh⟩ moments are sizable and negative for
positive hadrons, almost compatible with zero for the negatively charged hadrons.
The ⟨cos 2φh⟩ moments for positive hadrons are found to be slightly negative as
in the raw ratios, although the signal seems to be reduced here. The ⟨cos 2φh⟩
moments for negative hadrons remain slightly positive.

In most of the cases the discrepancies between the years seem to be reduced by
the unfolding. However there exist still di erences, i. e. in ⟨cos 2φh⟩. The signals
become almost compatible along the di erent data taking periods, suggesting the
hypothesis of results stable in time. The remaining discrepancies between the di er-
ent data taking samples can be attributed to variations in detector setup during the
years, like, for instance, di erent beam position or detector misalignment, as dis-
cussed in last chapter. The year dependence left over in the data after the correcting
procedure will be therefore treated as systematic uncertainty.

- migration correlates yields in different bins
- can’t be corrected properly in bin-by-bin approach
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experimental yield in ith bin depends on all Born bins j …

… and on BG entering kinematic range from outside region 

smearing matrix Sij embeds information on migration

determined from Monte Carlo - independent of physics model in limit of 
infinitesimally small bins and/or flat acceptance/cross-section in every 
bin 

in real life: dependence on BG and physics model due to finite bin sizes 

inversion of relation gives Born cross section from measured yields

Yexp(�i) �
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Sij
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higher order QED effects

the dependence of a moment on a single

variable is obtained by projection of the dif-

ferential result onto that variable
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signs of Boer-Mulders

cos2! modulations are not zero!
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signs of Boer-Mulders

cos2! modulations are not zero!

opposite sign for charged pions with larger magnitude for π- 
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signs of Boer-Mulders

cos2! modulations are not zero!

opposite sign for charged pions with larger magnitude for π- 

intriguing behavior for kaons

[Airapetian et al., PRD 87 (2013) 012010]
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signs of Boer-Mulders

cos2! modulations are not zero!

opposite sign for charged pions with larger magnitude for π- 

intriguing behavior for kaons

available in multidimensional binning, e.g., before projecting: 
http://www-hermes.desy.de/cosnphi/

[Airapetian et al., PRD 87 (2013) 012010]
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Cahn effect?
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
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
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
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no dependence on hadron charge was expected for Cahn effect

➡ flavor dependence of transverse momentum

➡ sign of Boer-Mulders in cosφ modulation 

➡ additional “genuine” twist-3 contributions?

[Airapetian et al., PRD 87 (2013) 012010]
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chiral even

first direct evidence 
for worm-gear g1T on

3He target at JLab

H target at HERMES
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3

polarized 5.9 GeV electron beam with an average cur-
rent of 12µA. Polarized electrons were excited from a
superlattice GaAs photocathode by a circularly polar-
ized laser [31] at the injector of the CEBAF accelerator.
The laser polarization, and therefore the electron beam
helicity, was flipped at 30 Hz using a Pockels cell. The
average beam polarization was (76.8± 3.5)%, which was
measured periodically by Møller polarimetry. Through
an active feedback system [32], the beam charge asym-
metry between the two helicity states was controlled to
less than 150 ppm over a typical 20 minute period be-
tween target spin-flips and less than 10 ppm for the entire
experiment. In addition to the fast helicity flip, roughly
half of the data were accumulated with a half-wave plate
inserted in the path of the laser at the source, providing
a passive helicity reversal for an independent cross-check
of the systematic uncertainty.

The ground state 3He wavefunction is dominated by
the S-state, in which the two proton spins cancel and the
nuclear spin resides entirely on the single neutron [33].
Therefore, a polarized 3He target is the optimal effective
polarized neutron target. The target used in this mea-
surement is polarized by spin-exchange optical pumping
of a Rb-K mixture [34]. A significant improvement in tar-
get polarization compared to previous experiments was
achieved using spectrally narrowed pumping lasers [35],
which improved the absorption efficiency. The 3He gas of
~10 atm pressure was contained in a 40-cm-long glass ves-
sel, which provided an effective electron-polarized neu-
tron luminosity of 1036 cm−2s−1. The beam charge was
divided equally among two target spin orientations trans-
verse to the beamline, parallel and perpendicular to the
central l⃗-⃗l′ scattering plane. Within each orientation, the
spin direction of the 3He was flipped every 20 minutes
through adiabatic fast passage [36]. The average in-beam
polarization was (55.4± 2.8)% and was measured during
each spin flip using nuclear magnetic resonance, which
in turn was calibrated regularly using electron paramag-
netic resonance [37].

The scattered electron was detected in the BigBite
spectrometer, which consists of a single dipole magnet
for momentum analysis, three multi-wire drift cham-
bers for tracking, a scintillator plane for time-of-flight
measurement and a lead-glass calorimeter divided into
pre-shower/shower sections for electron identification
(ID) and triggering. Its angular acceptance was about
64 msr for a momentum range from 0.6 GeV to 2.5 GeV.
The left High Resolution Spectrometer (HRS) [38] was
used to detect hadrons in coincidence with the Big-
Bite Spectrometer. Its detector package included two
drift chambers for tracking, two scintillator planes for
timing and triggering, a gas Cerenkov detector and a
lead-glass calorimeter for electron ID. In addition, an
aerogel Čerenkov detector and a ring imaging Čerenkov
detector were used for hadron ID. The HRS central mo-
mentum was fixed at 2.35 GeV with a momentum accep-
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Figure 1. 3He A
cos(φh−φS)
LT azimuthal asymmetry plotted

against x for positive (top left) and negative (top right)
charged pions. The ALL correction (see text) that was ap-
plied and its uncertainty are shown in the bottom panels.

tance of ±4.5% and an angular acceptance of ∼6 msr.
The SIDIS event sample was selected with particle

identification and kinematic cuts, including the four mo-
mentum transfer squared Q2 > 1 GeV2, the virtual pho-
ton-nucleon invariant mass W > 2.3 GeV, and the mass
of undetected final-state particles W ′ > 1.6 GeV. The
kinematic coverage was in the valence quark region for
values of the Bjorken scaling variable in 0.16 < x < 0.35
at a scale of 1.4 < Q2 < 2.7GeV2. The range of measured
hadron transverse momentum Ph⊥ was 0.24-0.44 GeV.
The fraction z of the energy transfer carried by the ob-
served hadron was confined by the HRS momentum ac-
ceptance to a small range about z ∼ 0.5-0.6. Events
were divided into four x-bins with equivalent statistics.
At high x, the azimuthal acceptance in φh−φS was close
to 2π, while at lower x, roughly half of the 2π range
was covered, including the regions of maximal and mini-
mal sensitivity to Acos(φh−φS)

LT at cos (φh − φS) ∼ ±1 and
zero, respectively. The central kinematics were presented
in Ref. [30].

The beam-helicity DSA was formed from the mea-
sured yields as in Eq. (1). The azimuthal asymme-
try in each x-bin was extracted directly using an az-
imuthally unbinned maximum likelihood estimator with
corrections for the accumulated beam charge, the data
acquisition livetime, and the beam and target polariza-
tions. The result was confirmed by an independent bin-
ning-and-fitting procedure [30]. The sign of the asymme-
try was cross-checked with that of the known asymmetry
of 3H⃗e(e⃗, e′) elastic and quasi-elastic scattering on lon-
gitudinally and transversely polarized targets [39]. The
small amount of unpolarized N2 used in the target cell to
reduce depolarization diluted the measured 3He asymme-
try, which was corrected for the nitrogen dilution defined
as

fN2
≡

NN2
σN2

N3Heσ3He +NN2
σN2

, (2)

[PRL 108 (2012) 052001]
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Sivers amplitudes for pions

34
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☛ d-quark Sivers DF > 0 
   (cancelation for π-)

Sivers amplitudes for pions
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☛ larger amplitudes for 
positive kaons vs. pions

[Airapetian et al., PLB 693 (2010) 11]
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similar amplitudes for positive 
pions and protons ☛ u-quark 
dominance (and not a FF effect)?
 

[Airapetian et al., PLB 693 (2010) 11]
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3d analysis: 4x4x4 bins in (x,z, 
Ph⊥) 

much reduced systematics

disentangle correlations

isolate phase-space region with 
strong signal strength
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3d analysis: 4x4x4 bins in (x,z, 
Ph⊥) 

much reduced systematics

disentangle correlations

isolate phase-space region with 
strong signal strength

allows more detailed comparison 
with calculations (e.g., 
“unofficial”  results from Torino 
10.1103/PhysRevD.86.014028 fit 
- courtesy M. Boglione)
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TMD factorization scale

less stringent requirement fulfilled in basically all bins

more stringent requirement violated at low z & large Ph⊥ (especially @ low x)
39
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Subleading twist I - <sin(φ)>UL

in experiments: target polarized w.r.t. 
beam direction 
[Diehl&Sapeta EPJC41 (2005)]

small transverse component w.r.t. 
ritual-photon direction when 
longitudinally polarized

mixing of transverse and longitudinal 
target-spin asymmetries
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hermes Mixing of Azimuthal Moments
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S
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Experiment: Target Polariza-
tion w.r.t. Beam Direction (l)!
Theory: Polarization along virtual photon di-

rection (q)

⇒ mixing of “experimental” and “theory”

asymmetries via:

[Diehl and Sapeta, Eur. Phys. J. C41 (2005)]
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(cos θγ∗ ≃ 1 , sin θγ∗ up to 15% at HERMES energies)

Gunar Schnell, Universiteit Gent Jefferson Lab, January 11
th
, 2008 – p. 31/50
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Subleading twist I - <sin(φ)>UL

experimental AUL dominated by 
twist-3 contribution

correction for AUT 
contribution increases purely 
longitudinal asymmetry for 
positive pions

consistent with zero for π- 
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.

hermes

What About
Longitudinally Polarized Targets?
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Airapetian et al., Phys. Lett. B 622 (2005) 14

Gunar Schnell, Universiteit Gent Warszawa, March 20
th
, 2007 – p. 31/49
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significant non-zero signal 
observed for negatively charged 
mesons

vanishes in inclusive limit, e.g. 
after integration over Ph⊥ and z, 
and summation over all hadrons 

various terms related to 
transversity, worm-gear, Sivers 
etc.: 

Subleading twist II - <sin(φs)>UT

43
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significant non-zero signal 
observed for negatively charged 
mesons

vanishes in inclusive limit, e.g. 
after integration over Ph⊥ and z, 
and summation over all hadrons 

various terms related to 
transversity, worm-gear, Sivers 
etc.: 

Subleading twist II - <sin(φs)>UT
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Subleading twist II - <sin(φs)>UT

hint of Q2 dependence seen in 
signal for negative pions

44
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Subleading twist II - <sin(φs)>UT
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Subleading twist II - <sin(φs)>UT
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positive amplitudes at low Ph⊥ 
also for positive pions
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Subleading twist II - <sin(φs)>UT
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positive amplitudes at low Ph⊥ 
also for positive pions
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FIG. 7: Prediction on the transverse SSA A
sinφS

UT for π+ (up
panel), π− (middle panel) and π0 (down panel) in SIDIS at
HERMES. The dashed, dotted and dash-dotted curves rep-
resent the asymmetries from the fTD1, hTH

⊥
1 and h⊥

T H⊥
1

terms, respectively. The solid curves correspond to the total
contribution.

A. HERMES

To perform numerical calculation on the transverse
SSAs of charged and neutral pion production in SIDIS
at HERMES, which can be performed by using an unpo-
larized positron beam at the energy of 27.6GeV scattered
off a transversely polarized proton target, we adopt the
following kinematical cuts [11]:

0.023 < x < 0.4, 0.1 < y < 0.95, 0.2 < z < 0.7,

W 2 > 10GeV2, Q2 > 1GeV2,

0.05 < PT < 1.2GeV, 2GeV < Eh < 15GeV, (50)

where Eh is the energy of the detected pion in the target
rest frame.
In the left, central and right panels of Fig. 7, we show

our prediction on the transverse SSA AsinφS

UT at HER-
MES for π+, π− and π0 as functions of x, z, and PT .
To distinguish the origins of different contributions, we
use the dashed, dotted and dash-dotted curves to de-
note the contributions from the fTD1, hTH⊥

1 and h⊥
TH

⊥
1

term, respectively. The solid curves stand for the total
contribution. As we can see, the asymmetry Asin φS

UT is
positive, the size is around 1% to 2% at the kinematics
of HERMES, and the dominant contribution is from the
fTD1 term for all three pions. The contributions from
the hTH⊥

1 and h⊥
TH

⊥
1 terms are nearly negligible except

in the larger PT region for charged pions. This is due to
the kinematical factor pT ·kT /(2zMMh) associated with
the hTH⊥

1 and h⊥
TH

⊥
1 terms, and also the fact that the

size of H⊥
1 is less than the size of D1, despite the size of

FIG. 8: Similar to Fig. 7, but on the asymmetry A
sin(2φh−φS)
UT .

The dashed, dotted and dash-dotted curves show the asym-
metries from the f⊥

T D1, hTH
⊥
1 and h⊥

T H⊥
1 terms, respectively.

The solid curves correspond to the total contribution.

hT or h⊥
T is larger than that of the T-odd distribution

fT .
In Fig. 8, we plot the prediction on the SSA

Asin(2φh−φS)
UT vs x, z, and PT . In this case, generally,

it is the f⊥
T D1 term that gives the main contribution, es-

pecially for the x- and PT -dependent asymmetries. The
results show that nonzero asymmetry may be observed
at 0.2 < x < 0.4 or large PT region, where the size of
the asymmetry is the largest. Similar to the case of the
SSA AsinφS

UT , we also find that the contributions from the
hTH⊥

1 and h⊥
TH

⊥
1 to the π0 asymmetry are consistent

with zero. According to Eq. (48), i.e., Collins function
for π0, this result can be understood from the fact that
the favored and unfavored Collins functions are similar
in size but opposite in sign.
Here some comments are in order. In the PT -

dependent asymmetries in Figs. 7 and 8, we have plotted
the curves up to PT ∼ 1GeV, which is close to the typ-
ical hard scale Q in the low energy SIDIS experiments.
Since the TMD-type formalism is only valid in the re-
gion PT ≪ Q, we admit that using the TMD formalism
to predict the asymmetries at PT ∼ 1GeV may not be
a good choice. Nevertheless, we still show the results at
large PT in Figs. 7 and 8 for the possible comparison with
data in the future.

B. JLab 5.5GeV and 11GeV

To test the feasibility to measure the transverse SSAs

AsinφS

UT and Asin(2φh−φS)
UT at the kinematics available at

JLab, we also estimate them in the SIDIS with a 5.5GeV
electron beam, scattered off the transverse polarized pro-

indeed different roles of various 
contributions in different Ph⊥ regions
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FIG. 7: Prediction on the transverse SSA A
sinφS

UT for π+ (up
panel), π− (middle panel) and π0 (down panel) in SIDIS at
HERMES. The dashed, dotted and dash-dotted curves rep-
resent the asymmetries from the fTD1, hTH

⊥
1 and h⊥

T H⊥
1

terms, respectively. The solid curves correspond to the total
contribution.
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FIG. 8: Similar to Fig. 7, but on the asymmetry A
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UT .

The dashed, dotted and dash-dotted curves show the asym-
metries from the f⊥

T D1, hTH
⊥
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The solid curves correspond to the total contribution.
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1 to the π0 asymmetry are consistent

with zero. According to Eq. (48), i.e., Collins function
for π0, this result can be understood from the fact that
the favored and unfavored Collins functions are similar
in size but opposite in sign.
Here some comments are in order. In the PT -

dependent asymmetries in Figs. 7 and 8, we have plotted
the curves up to PT ∼ 1GeV, which is close to the typ-
ical hard scale Q in the low energy SIDIS experiments.
Since the TMD-type formalism is only valid in the re-
gion PT ≪ Q, we admit that using the TMD formalism
to predict the asymmetries at PT ∼ 1GeV may not be
a good choice. Nevertheless, we still show the results at
large PT in Figs. 7 and 8 for the possible comparison with
data in the future.
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Subleading twist IV - <cos(φ)>LL
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From SIDIS to inclusive hadron production 

𝑝் 

SIDIS: 𝒍𝒑↑ → 𝒍ᇱ𝒉𝑿 
 

- Hadron detected in coincidence with lepton 
- DIS regime (𝑄ଶ > 1  𝐺𝑒𝑉ଶ) 
- Hard scales: 𝑄ଶ,  𝑃௛ୄ (w.r.t. 𝛾∗) 
- Factorization valid for 𝑃௛ୄଶ ≪ 𝑄ଶ 

Inclusive hadrons: 𝒍𝒑↑ → 𝒉𝑿 
 

- Lepton is not detected  o no info on 𝑄ଶ 
- data dominated by 𝑄ଶ ≈ 0   
   (quasi-real photoproduction regime) 
- Hard scales: 𝑃் (w.r.t. incident lepton) 
- Factorization valid for large 𝑃்? 
- Main variables: 𝑥ி = 2 ௉ಽ

௦
 , 𝑃்  

- Selected events contain at least 1 charged 
  hadron track (𝜋 or K) regardless of   
  whether there was also a scattered lepton  
  in acceptance or not.  

34 L.L. Pappalardo – PSHP 2013 – LNF Frascati – Nov. 11-13 2013 
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scattered lepton undetected
➥ lepton kinematics unknown 

dominated by quasi-real 
photo-production (low Q2) 
➥ hadronic component of 
photon relevant?

cross section proportional to 
SN (k x ph) ~ sinѱ
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[Airapetian et al., Phys. Lett. B 728, 183-190 (2014)]
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Asymmetries of subprocesses 

at large PT significant 
contribution from DIS 
events (Q2>1)

asymmetries increase with 
larger z

large asymmetries also for #- 
in case of z>0.7
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• Measurement of AN in p p-scattering for different center of mass energies:

1976 2002 1991 2008

4.9 GeV 6.6 GeV 19.4 GeV 62.4 GeV

3

NR - NL

NR + NL
AN = 

• Only two models consistently describing the data:
* TMDs (Transverse Momentum Dependent) distributions
* high-twist correlations

• Interpretation not yet completely satisfactory

• All available models predict AN goes to zero at 
high pT  values.

• BUT: not yet DATA at such kinematic region

• all available data coming from p p scattering
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Generic p p data - xF and pT dependence
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the other inclusive SSA
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Generic p p data - xF and pT dependence

P� turns out to be negative

For pT above 1 GeV/c P� becomes flat

(measured up to pT � 4 GeV/c)
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the (B) term, indicating large ℓT dependence at 1 ≤ ℓT ≤ 3 GeV. Experimentally,
P pp

Λ grows up as ℓT increases up to ℓT ∼ 1 GeV and stays constant at 1 ≤ ℓT ≤ 3
GeV. So the P pp

Λ observed at R608 can not be wholly ascribed to the twist-3 effect
studied here which is designed to describe large ℓT polarization.
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Figure 1: P pp
Λ at

√
S = 62 GeV.
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√
S = 200 GeV.

We next discuss the polarization P ep
Λ in pe → Λ↑(ℓ)X where the final electron

is not observed. In our O(α0
s) calculation, the exchanged photon remains highly

virtual as far as the observed Λ has a large transverse momentum ℓT with respect
to the ep axis. Therefore experimentally one needs to integrates only over those
virtual photon events to compare with our formula.
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Figure 3: ℓT dependence of P pp
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Figure 4: P ep
Λ at

√
S = 20 GeV.

Using the twist-3 distribution and fragmentation functions used to describe
P pp

Λ , we show in Fig. 4 the obtained P ep
Λ corresponding to (A’)(chiral-odd) and

(B’)(chiral-even) contributions. Remarkable feature of Fig. 4 is that in both chiral-
even and chiral-odd contributions (i) the sign of P ep

Λ is opposite to the sign of P pp
Λ

and (ii) the magnitude of P ep
Λ is much larger than that of P pp

Λ , in particular, at
large xF , and it even overshoots one. (In our convention, xF > 0 corresponds
to the production of Λ in the forward hemisphere of the initial proton in the ep
case.) The origin of these features can be traced back to the color factor in the
dominant diagrams for the twist-3 polarized cross sections in ep and pp collisions.
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clearly positive for light target nuclei

consistent with zero for heavy targets

60

the other inclusive SSA
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larger in backward direction w.r.t. incoming lepton

consistent with xF dependence of twist-3 calculation 
(note: opposite sign conventions for xF !)
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p!
kmax is its maximum possible value, but this variable is not

available in an inclusive measurement. Nevertheless, as
shown in Fig. 3, a simulation of the reaction using the
PYTHIA Monte Carlo reveals a useful correlation between !
and xF. In particular, all events at ! ! 0:25 are produced in
the kinematic region xF > 0, and for ! < 0:25 there is a
mixture of events originating from the kinematic regions
with xF > 0 and xF < 0. An indication that the dominant
production mechanism changes at ! values around 0.25 can
be observed in the ratio of ! to "! yields displayed in Fig. 4.
The yields are not corrected for acceptance as PYTHIA
Monte Carlo studies indicate that the detection efficiencies
for ! and "! are the same. Above ! " 0:25, an approxi-
mately constant ratio of about 4 is seen. At lower values the
ratio increases significantly, likely indicating the influence
of the nucleon target remnant in ! formation.

The ! and "! polarizations are shown as functions of ! in
Fig. 5. The ! polarization is about 0.10 in the region ! <
0:25, and about 0.05 at higher ! . Combining all kinematic
points together, the average ! transverse polarization is

 P!
n # 0:078$ 0:006%stat& $ 0:012%syst&: (16)

For the "! measurement, no kinematic dependence is ob-
served within the statistical uncertainties. The net "! trans-
verse polarization is

 P "!
n # '0:025$ 0:015%stat& $ 0:018%syst&: (17)

It should be noted that for each point in ! the value of the
hyperon’s mean transverse momentum hpTi is different as
is shown in the lower panel of Fig. 5. Here pT is defined
with respect to the eN system rather than to the "(N
system as, again, the virtual-photon direction was not
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FIG. 3. Correlation between xF, evaluated in the "(N system,
and the light-cone fraction ! determined in the eN system, as
determined from a PYTHIA Monte Carlo simulation.
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FIG. 4. Ratio of ! to "! yields versus light-cone fraction !
observed in the data, after background subtraction.
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FIG. 5. Transverse polarizations P!
n and P "!
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pe&. The inner error bars represent the statistical uncertainties,
and the outer error bars represent the statistical and systematic
uncertainties added in quadrature.
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of the background under the ! invariant mass peak to the
polarization was estimated using a sideband subtraction
method. An independent polarization analysis was per-
formed in each kinematic bin of interest. For each bin in
! or pT (described below), the invariant mass spectrum was
fit with a Gaussian plus a third-order polynomial. The fit
was used to determine the number of signal and back-
ground events within a !3:3" window around the peak.
The polarization was calculated for the events within this
central window, as well as within four ‘‘sideband’’ win-
dows with widths of around 8 MeV, two in the low- and two
in the high-mass background regions, as indicated by the
shaded areas in Fig. 2. The polarizations extracted from the
sidebands were interpolated to obtain the background po-
larization at the peak mass. The fraction of background
events # " Nbgr=#N! $ Nbgr% within the peak was typi-
cally of order 15%. The transverse polarization within
the ! peak was corrected for this background contribution
in each kinematic bin as follows

 P!
n "

P!$bgr
n & #Pbgr

n

1& # : (15)

The interpolated background polarization Pbgr
n was

around 0:12! 0:01 #0:13! 0:02% for the ! ( "!) sample.
Because of the small background contamination, the net
correction to the ! and "! polarization was on average
below 0.01. The nonzero polarization of the sidebands
prompted extensive simulations of the background. The
conclusion reached after many studies was that the side-
band polarization arises from rare tracks which actually
originate from the target cell but remain in the ! candidate
sample due to misreconstruction, despite the strict vertex-
separation cuts described above. As an additional test, the
longitudinal vertex-separation requirement was varied be-
tween 0 and 25 cm. Over this range, the sideband polar-
ization varied from 0.13 to 0.09 while the signal-to-
background ratio varied from 4.5 to 11.8. Nonetheless,
the ! polarization after background subtraction remained
stable, varying by less than a quarter of the systematic error
(which was obtained via other studies, as described below).

In order to estimate the systematic uncertainty of the
measurement, similar analyses were carried out for recon-
structed h$h& hadron pairs, with leading positive hadrons
(!-like case) and with leading negative hadrons ( "!-like
case). No PID (apart from lepton rejection) was applied to
these hadrons, and so the sample was likely dominated by
$$$& pairs. Events within two mass windows above and
below the ! mass window (1:093<Mh$h& < 1:108 GeV,
and 1:124<Mh$h& < 1:139 GeV) were selected, where
Mh$h& was determined by assuming for the leading/non-
leading particles the proton/pion masses, respectively.
Instead of requiring a displaced decay vertex, their point
of closest approach was required to be inside the target cell.
False polarization values of 0:012! 0:002 and 0:018!

0:002 were found in the !-like and "!-like cases,
respectively.

As a second measure of the systematic uncertainty a
sample of K0

s ! $$$& events was used. The long-lived
K0
s provides a similar event topology to the ! with two

separated vertices. The false polarization of K0
s was found

to be 0:012! 0:004 in the !-like case (with a leading $$)
and 0:002! 0:004 in the "!-like case.

Possible detector misalignments could lead to imperfec-
tions in the up/down symmetry of the spectrometer. In
order to estimate the effect of such misalignments on the
measured polarizations, Monte Carlo simulations were
performed using a spectrometer description with the top
and bottom halves misaligned by!0:5 mrad. Four samples
were generated, with input polarizations of 0, 0.05, 0.1, and
0.2, respectively. In addition a background polarization of
0.15 was included to better simulate the experimental
situation. The polarizations extracted from these
Monte Carlo data samples were in agreement with the
input values within the statistical uncertainty of 0.005. A
second potential source of a top/bottom spectrometer
asymmetry is trigger inefficiency. This was also investi-
gated using Monte Carlo simulations. It was found that
even an unrealistically large difference of 30% in the top/
bottom efficiency resulted in the reconstructed polarization
being consistent with the generated one. Finally, as a
portion of the analyzed data (' 30%) was collected with
a longitudinally polarized target, the effect of ! spin
precession in the target holding field was studied.
Calculations indicated a precession of less than two de-
grees for this portion of the data, resulting in a negligible
impact on the reported polarization as compared with the
other sources of systematic uncertainty.

From the results of these studies the systematic uncer-
tainties on the ! and "! transverse polarizations were taken
to be 0.012 and 0.018, respectively.

The good statistical accuracy of the full inclusive data
set allows the dependence of the ! and "! polarization on
certain kinematic variables to be studied. As mentioned
earlier, information on the virtual-photon kinematics is not
known on an event-by-event basis; consequently, only
kinematic variables related to the eN system are available.
However, one may analyze the data using the kinematic
variable ! ( #E! $ pz!%=#Ee $ pe%, where E!; pz! are
the energy and z component of the ! momentum (where
the z axis is defined as the lepton beam direction), and
Ee; pe are the energy and momentum of the positron beam.
This variable is the fraction of the beam positron’s light-
cone momentum carried by the outgoing !. It is an ap-
proximate measure of whether the hyperons were produced
in the forward or backward region in the %)N center-of-
mass system. The natural variable to use to separate these
kinematic regimes would be the Feynman variable xF "
p!
k =p

!
kmax evaluated in the %)N system, where p!

k is the
!’s momentum along the virtual-photon direction, and

A. AIRAPETIAN et al. PHYSICAL REVIEW D 76, 092008 (2007)
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larger in backward direction w.r.t. incoming lepton

distinct pT dependences in forward and backward directions:
rising with pT in backward direction as in pp  
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conclusions before the summary

HERMES conceived almost 3 decades ago in order to solve 
the “spin crisis” 

measure precisely the quark-spin and somewhat the gluon 
spin contribution to the proton spin

no orbital angular momentum on the menu

no real transverse-spin physics

up to g2 and the Burkhardt-Cottingham S.R. …
… and that mainly to have a more precise g1 measurement
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! Signs of moments are
consistent for all ππ
dihadron species.

! Statistics are much more
limited for π±π0

dihadrons.
! Despite uncertainties, may

still help constrain global
fits.
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