HERA end of data taking 2nd anniversary symposium - July 7th, 2009 - DESY

from solving the spin "crisis" to 3-D pictures of the nucleon

selected highlights from the hermes collaboration

June 30th, 2007 (around midnight)

G. Schnell - DESY Zeuthen

June 30th, 2007 (around midnight)

The HERMES experiment

27.5 GeV e^+/e^- beam of HERA

transversely/longitudinally polarized as well as unpolarized internal gas targets (H, D, He, N, ..., Xe)

The (original) quest: proton spin

our understanding of the proton changed dramatically with the finding of EMC that the proton spin hardly comes from spin of quarks

Production

Deep-Inelastic Scattering

use well-known probe to study hadronic structure:

inclusive DIS: detect scattered lepton

Deep-Inelastic Scattering

use well-known probe to study hadronic structure:

inclusive DIS: detect scattered lepton semi-inclusive DIS: detect scattered lepton and some fragments

Deep-Inelastic Scattering

use well-known probe to study hadronic structure:

exploit strong correlation between flavor structure of leading hadron and struck quark

Parton-Model Interpretation of Structure

Parton-Model Interpretation of Structure

Parton-Model Interpretation of Structure

Why measure F_2 at HERMES?

G. Schnell - DESY Zeuthen

10

World data on σ^{d}/σ^{p}

G. Schnell - DESY Zeuthen

13

Polarized Structure Function g1

G. Schnell - DESY Zeuthen

16

Results on A2 and xg2

G. Schnell - DESY Zeuthen

Two-Photon Exchange

- interference between oneand two-photon exchange amplitudes leads to SSAs in inclusive DIS off transversely polarized targets
- interference sensitive to beam charge due to odd number of e.m. couplings to beam
- proportional to S(kxk') either measure left-right asymmetries or sine modulation
- two-photon exchange best candidate to explain discrepancy in form-factor measurements

G. Schnell - DESY Zeuthen

Semi-Inclusive DIS
Quark Structure of the Nucleon (integrated over transverse momentum)

←)→

 $g_1^q = \bigcirc$

 $h_1^q = \left(\begin{array}{c} T \\ \hline \end{array} \right) - \left(\begin{array}{c} T \\ \hline \end{array} \right)$

Unpolarized quarks and nucleons

 $f_1^q = \bigcirc$

Longitudinally polarized quarks and nucleons

Transversely polarized quarks and nucleons

 $f_1^q(x)$: spin averaged (well known) ⇒ Vector Charge $\langle PS|\bar{\Psi}\gamma^{\mu}\Psi|PS\rangle =$ $\int dx (f_1^q(x) - f_1^{\overline{q}}(x))$

 $g_1^q(x)$: helicity difference (known) \Rightarrow Axial Charge $\langle PS|\bar{\Psi}\gamma^{\mu}\gamma_{5}\Psi|PS\rangle$ = $\int dx (g_1^q(x) + g_1^{\bar{q}}(x))$

 $h_1^q(x)$: transversity (hardly known!) ⇒ Tensor Charge $\langle PS|\bar{\Psi}\sigma^{\mu\nu}\gamma_5\Psi|PS\rangle$ = $\int dx (h_1^q(x) - h_1^{\bar{q}}(x))$

Quark Structure of the Nucleon (integrated over transverse momentum)

 $g_1^q = \bigcirc$

 $h_1^q =$

Unpolarized quarks and nucleons

 $f_{1}^{q} =$

Longitudinally polarized quarks and nucleons

 $f_1^q(x)$: spin averaged (well known) ⇒ Vector Charge $\langle PS|\bar{\Psi}\gamma^{\mu}\Psi|PS\rangle =$ $\int dx (f_1^q(x) - f_1^{\overline{q}}(x))$

G. Schnell - DESY Zeuthen

 $g_1^q(x)$: helicity difference (known) \Rightarrow Axial Charge $\langle PS|\bar{\Psi}\gamma^{\mu}\gamma_{5}\Psi|PS\rangle$ = $\int dx (g_1^q(x) + g_1^{\overline{q}}(x))$

21

Transversely polarized quarks and nucleons

 $h_1^q(x)$: transv/

(hardly kp \Rightarrow Ten₉ *large* $\langle PS|\bar{\Psi}$ $\int dx (h_1^q(x) - h_1^{\bar{q}}(x))$

- use isoscalar probe and target to extract strange-quark distributions
- only need inclusive asymmetries and K⁺+K⁻ asymmetries, i.e., $A_{\parallel,d}(x,Q^2)$ and $A_{\parallel,d}^{K^++K^-}(x,z,Q^2)$, as well as K⁺+K⁻ multiplicities on deuteron

$$S(x)\int \mathcal{D}_{S}^{K}(z) \, \mathrm{d}z \simeq Q(x) \left[5 \frac{\mathrm{d}^{2} N^{K}(x)}{\mathrm{d}^{2} N^{\mathrm{DIS}}(x)} - \int \mathcal{D}_{Q}^{K}(z) \, \mathrm{d}z \right]$$

$$A_{\parallel,d}(x) \frac{d^2 N^{\text{DIS}}(x)}{dx \, dQ^2} = \mathcal{K}_{LL}(x, Q^2) \left[5\Delta Q(x) + 2\Delta S(x) \right]$$
$$A_{\parallel,d}^{K^{\pm}}(x) \frac{d^2 N^K(x)}{dx \, dQ^2}$$
$$= \mathcal{K}_{LL}(x, Q^2) \left[\Delta Q(x) \int \mathcal{D}_Q^K(z) \, dz + \Delta S(x) \int \mathcal{D}_S^K(z) \, dz \right]$$

A. Airapetian et al., PLB 666, 446 (2008) G. Schnell - DESY Zeuthen

- use isoscalar probe and target to extract strange-quark distributions
- only need inclusive asymmetries and K⁺+K⁻ asymmetries, i.e., $A_{\parallel,d}(x,Q^2)$ and $A_{\parallel,d}^{K^++K^-}(x,z,Q^2)$, as well as K⁺+K⁻ multiplicities on deuteron

A. Airapetian et al., PLB 666, 446 (2008)

G. Schnell - DESY Zeuthen

- use isoscalar probe and target to extract strange-quark distributions
- only need inclusive asymmetries and K⁺+K⁻ asymmetries, i.e., $A_{\parallel,d}(x,Q^2)$ and $A_{\parallel,d}^{K^++K^-}(x,z,Q^2)$, as well as K⁺+K⁻ multiplicities on deuteron

Strange-quark distribution softer than (maybe) expected

A. Airapetian et al., PLB 666, 446 (2008) G. Schnell - DESY Zeuthen

- use isoscalar probe and target to extract strange-quark distributions
- only need inclusive asymmetries and K⁺+K⁻ asymmetries, i.e., $A_{\parallel,d}(x,Q^2)$ and $A_{\parallel,d}^{K^++K^-}(x,z,Q^2)$, as well as K⁺+K⁻ multiplicities on deuteron

Strange-quark distribution softer than (maybe) expected

A. Airapetian et al., PLB 666, 446 (2008) G. Schnell - DESY Zeuthen

- use isoscalar probe and target to extract strange-quark distributions
- only need inclusive asymmetries and K⁺+K⁻ asymmetries, i.e., $A_{\parallel,d}(x,Q^2)$ and $A_{\parallel,d}^{K^++K^-}(x,z,Q^2)$, as well as K⁺+K⁻ multiplicities on deuteron

Strange-quark distribution softer than (maybe) expected

A. Airapetian et al., PLB 666, 446 (2008) G. Schnell - DESY Zeuthen

Strange-quark helicity distribution consistent with zero or slightly positive in contrast to inclusive DIS analyses

need to couple to chiral-odd fragmentation function:

need to couple to chiral-odd fragmentation function:
transverse spin transfer (polarized final-state hadron)

need to couple to chiral-odd fragmentation function:

- transverse spin transfer (polarized final-state hadron)
- 2-hadron fragmentation

need to couple to chiral-odd fragmentation function:

- transverse spin transfer (polarized final-state hadron)
- 2-hadron fragmentation
- Collins fragmentation

2-hadron fragmentation

2-hadron fragmentation

Only relative momentum of hadron pair relevant

⇒ integration over transverse momentum of hadron pair simplifies factorization and Q² evolution

2-hadron fragmentation

Only relative momentum of hadron pair relevant

⇒ integration over transverse momentum of hadron pair simplifies factorization and Q² evolution

bowever, cross section becomes quite complex (differential in 9 variables)

Model for two-pion fragmentation

 $A_{UT} \sim \sin(\phi_{R\perp} + \phi_S) \sin \theta h_1 H_1^{\triangleleft}$

Expansion of H_1^{\triangleleft} in Legendre moments:

 $H_{1}^{\triangleleft}(z, \cos\theta, M_{\pi\pi}^{2}) = H_{1}^{\triangleleft, sp}(z, M_{\pi\pi}^{2}) + \cos\theta H_{1}^{\triangleleft, pp}(z, M_{\pi\pi}^{2})$ describe interference between 2 pion pairs about $H_1^{\triangleleft,sp}$: coming from different production channels. Jaffe et al. [hep-ph/9709322]: $H_1^{\triangleleft,sp}(z, M_{\pi\pi}^2) = \sin\delta_0 \sin\delta_1 \sin(\delta_0 - \delta_1) H_1^{\triangleleft,sp'}(z)$ δ_0 (δ_1) \rightarrow S(P)-wave phase shifts $= \mathcal{P}(M_{\pi\pi}^2) H_1^{\triangleleft, sp'}(z)$ -0.2 -0.4 $\Rightarrow A_{UT}$ might depend strongly on $M_{\pi\pi}$ 0.5 0.6 0.7 0.8 0.9 m(GeV)

HERMES results (complete data)

A. Airapetian et al., JHEP 0806:017,2008

G. Schnell - DESY Zeuthen

HERMES results (complete data)

first evidence for T-odd 2-hadron fragmentation function in semi-inclusive DIS!

A.Airapetian et al., JHEP 0806:017,2008

G. Schnell - DESY Zeuthen

HERMES results (complete data)

first evidence for T-odd 2-hadron fragmentation function in semi-inclusive DIS!

invariant-mass dependence rules out Jaffe model
A.Airapetian et al., JHEP 0806:017,2008

Collins fragmentation function

Collins fragmentation function

Provides a correlation between spin of quark and transverse momentum of produced hadron

Collins fragmentation function

Provides a correlation between spin of quark and transverse momentum of produced hadron

example of transverse-momentum-dependent ("unintegrated") parton distribution/fragmentation functions IMDs and their probabilistic interpretation Unintegrated PDFs

G. Schnell - DESY Zeuthen

1-hadron production ($ep \rightarrow ehX$) $d\sigma = d\sigma_{UU}^0 + \cos 2\phi \, d\sigma_{UU}^1 + \frac{1}{O} \cos \phi \, d\sigma_{UU}^2 + \lambda_e \frac{1}{O} \sin \phi \, d\sigma_{LU}^3$ $+S_L \left\{ \sin 2\phi \, d\sigma_{UL}^4 + \frac{1}{O} \sin \phi \, d\sigma_{UL}^5 + \lambda_e \left| d\sigma_{LL}^6 + \frac{1}{O} \cos \phi \, d\sigma_{LL}^7 \right| \right\}$ $+S_T \left\{ \sin(\phi - \phi_S) \, d\sigma_{UT}^8 + \sin(\phi + \phi_S) \, d\sigma_{UT}^9 + \sin(3\phi - \phi_S) \, d\sigma_{UT}^{10} \right\}$ 7 U $+\frac{1}{O}\left(\sin(2\phi-\phi_S)\,d\sigma_{UT}^{11}+\sin\phi_S\,d\sigma_{UT}^{12}\right)$ **Beam Target** $+\lambda_e \left| \cos(\phi - \phi_S) \, d\sigma_{LT}^{13} + \frac{1}{O} \left(\cos \phi_S \, d\sigma_{LT}^{14} + \cos(2\phi - \phi_S) \, d\sigma_{LT}^{15} \right) \right|$ **Polarization** Mulders and Tangermann, Nucl. Phys. B 461 (1996) 197 Boer and Mulders, Phys. Rev. D 57 (1998) 5780 Bacchetta et al., Phys. Lett. B 595 (2004) 309 Bacchetta et al., JHEP 0702 (2007) 093 "Trento Conventions", Phys. Rev. D 70 (2004) 117504

G. Schnell - DESY Zeuthen

29

G. Schnell - DESY Zeuthen

1-hadron production ($ep \rightarrow ehX$) $d\sigma = d\sigma_{UU}^0 + \cos 2\phi \, d\sigma_{UU}^1 + \frac{1}{O} \cos \phi \, d\sigma_{UU}^2 + \lambda_e \frac{1}{O} \sin \phi \, d\sigma_{LU}^3$ $+S_L \left\{ \sin 2\phi \, d\sigma_{UL}^4 + \frac{1}{O} \sin \phi \, d\sigma_{UL}^5 + \lambda_e \left| d\sigma_{LL}^6 + \frac{1}{O} \cos \phi \, d\sigma_{LL}^7 \right| \right\}$ $+S_T \left\{ \sin(\phi - \phi_S) \, d\sigma_{UT}^8 + \sin(\phi + \phi_S) \, d\sigma_{UT}^9 + \sin(3\phi - \phi_S) \, d\sigma_{UT}^{10} \right\}$ 7 U $+\frac{1}{O}\left(\sin(2\phi-\phi_S)\,d\sigma_{UT}^{11}+\sin\phi_S\,d\sigma_{UT}^{12}\right)$ **Beam Target** $+\lambda_e \left| \cos(\phi - \phi_S) \, d\sigma_{LT}^{13} + \frac{1}{O} \left(\cos \phi_S \, d\sigma_{LT}^{14} + \cos(2\phi - \phi_S) \, d\sigma_{LT}^{15} \right) \right|$ **Polarization** Mulders and Tangermann, Nucl. Phys. B 461 (1996) 197 Boer and Mulders, Phys. Rev. D 57 (1998) 5780 Bacchetta et al., Phys. Lett. B 595 (2004) 309 Bacchetta et al., JHEP 0702 (2007) 093 "Trento Conventions", Phys. Rev. D 70 (2004) 117504

The HERMES Collins amplitudes $2\langle \sin(\phi + \phi_S) \rangle_{\text{UT}} = -\frac{\sum_q e_q^2 h_1^q(x, p_T^2) \otimes H_1^{\perp, q}(z, K_T^2)}{\sum_q e_q^q h_1^q(x, p_T^2) \otimes H_1^{\perp, q}(z, K_T^2)}$

 $\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1}^{q}(z)$

G. Schnell - DESY Zeuthen

The HERMES Collins amplitudes $2\langle \sin(\phi + \phi_S) \rangle_{\text{UT}} = -\frac{\sum_q e_q^2 h_1^q(x, p_T^2) \otimes H_1^{\perp, q}(z, K_T^2)}{\sum_q e_q^q h_1^q(x, p_T^2) \otimes H_1^{\perp, q}(z, K_T^2)}$

 $\overline{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1}^{q}(z)}$

G. Schnell - DESY Zeuthen

The HERMES Collins amplitudes $2\langle \sin(\phi + \phi_S) \rangle_{\text{UT}} = -\frac{\sum_q e_q^2 h_1^q(x, p_T^2) \otimes H_1^{\perp, q}(z, K_T^2)}{\sum_q e_q^q h_1^q(x, p_T^2) \otimes H_1^{\perp, q}(z, K_T^2)}$

 $\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1}^{q}(z)$

non-zero Collins effect observed!

South Collins FF and transversity sizeable

The HERMES Collins amplitudes $2\langle \sin(\phi + \phi_S) \rangle_{\text{UT}} = -\frac{\sum_q e_q^2 h_1^q(x, p_T^2) \otimes H_1^{\perp, q}(z, K_T^2)}{\sum_q e_q^2 f_1^q(x) D_1^q(z)}$

G. Schnell - DESY Zeuthen

First glimpse at transversity

Combined analysis of data from: HERMES COMPASS BELLE

First glimpse at transversity

Sivers amplitudes for pions

[A. Airapetian et al., arXiv:0906.3918]
Sivers amplitudes for pions

G. Schnell - DESY Zeuthen

"Chromodynamic Lensing"

 $u_X(x, \mathbf{b}_\perp)$

approach by M. Burkardt:

[hep-ph/0309269]

 $d_X(x, \mathbf{b}_\perp)$

spatial distortion of q-distribution

(obtained using anom. magn. moments & impact parameter dependent PDFs)

"Chromodynamic Lensing"

approach by M. Burkardt:

[hep-ph/0309269]

spatial distortion of q-distribution

(obtained using anom. magn. moments & impact parameter dependent PDFs)

+ attractive QCD potential (gluon exchange)

 \Rightarrow transverse asymmetries

$$\phi = \pi$$

 π^+

"Chromodynamic Lensing"

$$-\frac{f_{1T}^{\perp,u}(x,p_T^2) \otimes D_1^{u \to \pi^+}(z,K_T^2)}{f_1^u(x) \ D_1^{u \to \pi^+}(z)}$$

[A. Airapetian et al., arXiv:0906.3918]

G. Schnell - DESY Zeuthen

 π^+ dominated by u-quark scattering:

 $-\frac{f_{1T}^{\perp,u}(x,p_T^2) \otimes D_1^{u \to \pi^+}(z,K_T^2)}{f_1^u(x) \ D_1^{u \to \pi^+}(z)}$

u-quark Sivers DF < 0</p>

[A. Airapetian et al., arXiv:0906.3918]

G. Schnell - DESY Zeuthen

Sivers amplitudes for pions $2\langle \sin(\phi - \phi_S) \rangle_{\text{UT}} = -\frac{\sum_q e_q^2 f_{1\text{T}}^{\perp,q}(x, p_T^2) \otimes D_1^q(z, K_T^2)}{\sum_q e_q^2 f_1^q(x) D_1^q(z)}$

35

G. Schnell - DESY Zeuthen

 π^+ dominated by u-quark scattering:

u-quark Sivers DF < 0</p>

d-quark Sivers DF > 0
(cancelation for π⁻)

[A. Airapetian et al., arXiv:0906.3918]

HEDT - 2^{nd} a

Sivers amplitudes for kaons

[A. Airapetian et al., arXiv:0906.3918]

G. Schnell - DESY Zeuthen

Sivers amplitudes for kaons

[A. Airapetian et al., arXiv:0906.3918]

G. Schnell - DESY Zeuthen

Sivers amplitudes for kaons

[A. Airapetian et al., arXiv:0906.3918]

G. Schnell - DESY Zeuthen

Exclusive Reactions

Probing GPDs in Exclusive, **Generalized Parton Distributions** T,N е У У P.00, Q х **X+**ξ **χ-**ξ f(x) $f(x,b_{\perp})$ $H, E, \widetilde{H}, \widetilde{E}$ $\rho(b_{\perp})$ \mathbf{b}_{\perp} b Х p' Parton Distribution Form factors **GPDs** Functions Correlation between Quark longitudinal transverse position and Transverse distribution of momentum fraction unpolarized polarized longitudinal momentum quarks in space distribution in the fraction of quark in the coordinates nucleon nucleon no nucleon Н Η hel. flip Ĩ nucleon E $\int dx H^{q}(x,\xi,t) = F_{1}^{q}(t) \quad H^{q}(x,\xi=0,t=0) = q(x)$ $\int dx E^{q}(x,\xi,t) = F_{2}^{q}(t) \quad \widetilde{H}^{q}(x,\xi=0,t=0) = \Delta q(x)$ hel. flip (+ 4 more chiral-odd functions)

G. Schnell - DESY Zeuthen

Probing GPDs in Exclusive,

p^o SDMEs from HERMES

[A. Airapetian et al., arXiv:0901.0701]

target-polarization independent SDMEs

G. Schnell - DESY Zeuthen

p^o SDMEs from HERMES

[A. Airapetian et al., arXiv:0901.0701]

target-polarization independent SDMEs

p^o SDMEs from HERMES

G. Schnell - DESY Zeuthen

SDMEs

HEDT - 2nd anniversary - July 7th, 2009

SDME values

ransverse

G. Schnell - DESY Zeuthen

G. Schnell - DESY Zeuthen

G. Schnell - DESY Zeuthen

G. Schnell - DESY Zeuthen

DVCS/Bethe-Heitler interference

Azimuthal asymmetries in DVCS

Cross section:

 $\sigma(\phi, \phi_S, P_B, C_B, P_T) = \sigma_{UU}(\phi) \cdot \left[1 + P_B \mathcal{A}_{LU}^{DVCS}(\phi) + C_B P_B \mathcal{A}_{LU}^{\mathcal{I}}(\phi) + C_B \mathcal{A}_C(\phi) + P_T \mathcal{A}_{UT}^{DVCS}(\phi, \phi_S) + C_B P_T \mathcal{A}_{UT}^{\mathcal{I}}(\phi, \phi_S)\right]$

Azimuthal asymmetries:

- Beam-charge asymmetry $A_{C}(\Phi)$: $d\sigma(e^{+}, \phi) - d\sigma(e^{-}, \phi) \propto \operatorname{Re}[F_{1}\mathcal{H}] \cdot \cos \phi$
- **Beam-helicity asymmetry** $A_{LU}(\Phi)$: $d\sigma(e^{\rightarrow}, \phi) - d\sigma(e^{\leftarrow}, \phi) \propto \operatorname{Im}[F_1\mathcal{H}] \cdot \sin \phi$
- Transverse target-spin asymmetry $A_{UT}(\Phi)$:

 $d\sigma(\phi,\phi_S) - d\sigma(\phi,\phi_S + \pi) \propto \operatorname{Im}[F_2\mathcal{H} - F_1\mathcal{E}] \cdot \sin(\phi - \phi_S) \cos\phi \\ + \operatorname{Im}[F_2\mathcal{H} - F_1\xi\mathcal{E}] \cdot \cos(\phi - \phi_S) \sin\phi$

(F_1 , F_2 are the Dirac and Pauli form factors) (\mathcal{H},\mathcal{E} ... Compton form factors involving GPDs H, E, ...)

G. Schnell - DESY Zeuthen

HEDT - 2nd anniversary - July 7th, 2009

G. Schnell - DESY Zeuthen

Beam-spin asymmetry

GPD model: "VGG" Phys. Rev. D60 (1999) 094017 & Prog. Nucl. Phys. 47 (2001) 401

G. Schnell - DESY Zeuthen

46

HEDT - 2nd anniversary - July 7th, 2009

All data

Transverse target-spin asymmetry

A. Airapetian et al., JHEP 0806:066,2008

G. Schnell - DESY Zeuthen

Transverse target-spin asymmetry

A. Airapetian et al., JHEP 0806:066,2008

G. Schnell - DESY Zeuthen

Outlook

HERMES detector (2006/07)

G. Schnell - DESY Zeuthen

DVCS event selection

measured with RD

inferred from forward / spectrometer

- Missing ϕ : $\Delta \phi = \phi_{\text{meas}} \phi_{\text{calc}}$
- Missing *p*: $\Delta p = p_{\text{meas}} p_{\text{calc}}$

Missing Mass ($\approx M_P^2$): $M_X^2 = (p + p_{\gamma^*} - p_{\gamma})^2$

 $> \gamma$

 $e p \rightarrow p' e' \gamma$

G. Schnell - DESY Zeuthen

Exclusive VM event selection

G. Schnell - DESY Zeuthen

51

