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Motivation

Monte Carlo Simulations are a indispensable tool in 
modern nuclear and particle physics experiments

various “physics generators” exists for the various    
fields (e.g., PYTHIA, LEPTO, AROMA etc.)

used for predictions, for the understanding of the 
experiment, and also for the “correction” of data 
(e.g., acceptance effects, background processes etc.)

no generator was available for transverse-momentum 
dependence of distribution and fragmentation functions
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Initial goals for gmc_trans

physics generator for SIDIS pion production

include transverse-momentum dependence, in 
particular simulate Collins and Sivers effects

be fast

allow comparison of input model and reconstructed 
amplitudes

to be used with standard HERMES Monte Carlo 

be extendable (e.g., open for new models)
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Basic workings

use cross section that can (almost) be calculated 
analytically 

start from 1-hadron SIDIS expressions of Mulders & 
Tangerman (Nucl.Phys.B461:197-237,1996)

use Gaussian Ansatz for all transverse-momentum 
dependencies of DFs and FFs

unpolarized DFs (as well as helicity distribution) and 
FFs from fits/parametrizations (e.g., Kretzer FFs etc.)

“polarized” DFs and FFs either related to unpolarized 
ones (e.g., saturation of Soffer bound for transversity)
or some parametrizations used
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SIDIS Cross Section incl. TMDs

7

.

SIDIS Cross Section Including
Transverse Momentum

dσUT ≡ dσCollins
UT · sin(φ + φS) + dσSivers

UT · sin(φ − φS)

dσCollins
UT (x, y, z, φS, Ph⊥) ≡

2α2

sxy2
B(y)

∑

q

e2
q I

[(

kT · P̂h⊥

Mh

)

· hq
1H⊥q

1

]

dσSivers
UT (x, y, z, φS, Ph⊥) ≡

2α2

sxy2
A(y)

∑

q

e2
q I

[(

pT · P̂h⊥

MN

)

· f⊥q
1T Dq

1

]

dσUU(x, y, z, φS, Ph⊥) ≡
2α2

sxy2
A(y)

∑

q

e2
q I

[

fq
1Dq

1

]

where

I
[

W f D
]

≡
∫

d2pT d2kT δ(2)

(

pT −
Ph⊥

z
− kT

)

[

W f(x, pT )D(z, kT )
]
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Gaussian Ansatz
want to deconvolve convolution integral over transverse 
momenta

easy Ansatz: Gaussian dependencies of DFs and FFs on 
intrinsic (quark) transverse momentum:

8
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one obtains another Gaussian (renaming pT
′ to pT again):

exp

[

−
P 2

h⊥/z2

〈k2
T 〉 + (1 − C)〈p2

T 〉

]
∫

d2pT

P̂h⊥

MN



pT +
Ph⊥

/z

〈k2
T 〉

(

1
(1−C)〈p2

T 〉
+ 1

〈k2
T 〉

)



 exp

[

−
(

1

(1 − C)〈p2
T 〉

+
1

〈k2
T 〉

)

pT
2

]

. (50)

The first term of the sum under the integral does not survive integration as it is odd in pT (which can be readily
checked by going e.g. to Cartesian coordinates) and the second term, not depending on pT , can again be taken out
the integral leaving the simple Gaussian (including now also the prefactors):

f⊥
1T (x)D1(z)

π2(1 − C)〈p2
T 〉z2〈k2

T 〉
exp

[

−
P 2

h⊥/z2

〈k2
T 〉 + (1 − C)〈p2

T 〉

]

|Ph⊥
|/(zMN〈k2

T 〉)
(

1
(1−C)〈p2

T 〉
+ 1

〈k2
T 〉

)

∫

d2pT exp

[

−
(

1

(1 − C)〈p2
T 〉

+
1

〈k2
T 〉

)

pT
2

]

= f⊥
1T (x)D1(z)

1

π2(1 − C)〈p2
T 〉z2〈k2

T 〉
exp

[

−
P 2

h⊥/z2

〈k2
T 〉 + (1 − C)〈p2

T 〉

]

|Ph⊥
|/zMN

〈k2
T 〉

(

1
(1−C)〈p2

T 〉
+ 1

〈k2
T 〉

)

π
1

(1−C)〈p2
T 〉

+ 1
〈k2

T 〉

= f⊥
1T (x) · D1(z) ·

|Ph⊥
|

MNπz3
·

(1 − C)〈p2
T 〉

[〈k2
T 〉 + (1 − C)〈p2

T 〉]
2 · exp

[

−
P 2

h⊥/z2

〈k2
T 〉 + (1 − C)〈p2

T 〉

]

(51)

The convolution integral for the Collins term can be treated similarly. However, because of the appearance of kT

in the convolution integral and because of the fact that kT comes with the opposite sign compared to pT in the
δ-function of the convolution integral, the final de-convoluted expression for the Collins cross section has the opposite
sign of the Sivers term (and interchanged kT ↔ pT ), i.e.

I[h1(x, pT
2)H⊥

1 (z, z2kT
2)

kT · P̂h⊥

Mh
] = −h1(x) · H⊥

1 (z) ·
|Ph⊥

|
Mhπz3

·
(1 − C)〈k2

T 〉
[〈p2

T 〉 + (1 − C)〈k2
T 〉]

2 · exp

[

−
P 2

h⊥/z2

〈p2
T 〉 + (1 − C)〈k2

T 〉

]

.

(52)
For completeness we will also give the result for the unpolarized term in the cross section using the “normal”

Gaussian ansatz:

I[f1(x, pT
2)D1(z, z2kT

2)] = f1(x) · D1(z) ·
R2

πz2
· e−R2 P2

h⊥
z2 , (53)

where the notation of [6] for the mean values of transverse momenta squared was adopted, i.e. 1
R2 = 〈P 2

h⊥〉/z2 =
〈p2

T 〉 + 〈k2
T 〉.

B. Implementation of the Skewed Gaussian ansatz into GMC TRANS

After solving the convolution integrals for the skewed Gaussian ansatz for both the Sivers and the Collins function
it is now possible to define the overall cross section under which the azimuthal angles will be generated. Origi-
nally [6](Eq. (6)) the 6-fold cross section looked like:

d6σ

dxdQ2dzdP 2
h⊥dφhdφs

=
∑

q

e2
q

4π

α2

(MExy)2
R2

z2
e−R2P 2

h⊥/z2

(XUU + |ST |XSIV sin(φh − φs) + |ST |XCOL sin(φh + φs)) ,

(54)
where11

XUU =

(

1 − y +
y2

2

)

f1(x)D1(z), (55)

XCOL =
R2Ph⊥

R2
hMhz

(1 − y)h1(x)H⊥
1 (z), (56)

XSIV = −
R2Ph⊥

R2
HMNz

(

1 − y +
y2

2

)

f⊥
1T (x)D1(z), (57)

11 Here, a missing minus sign in front of the Sivers expression has already been corrected.

with

18

Let us also define following set of constants:

〈k2
T 〉C ≡ (1 − C)〈k2

T 〉, (B18)

〈p2
T 〉S ≡ (1 − C)〈p2

T 〉, (B19)

1

R2
≡ 〈k2

T 〉 + 〈p2
T 〉 =

〈P 2
h⊥〉
z2

, (B20)

1

R2
C

≡ 〈k2
T 〉C + 〈p2

T 〉, (B21)

1

R2
S

≡ 〈k2
T 〉 + 〈p2

T 〉S . (B22)

Then one gets even more compact versions:

XUU =
R2

z2
e−R2P 2

h⊥/z2

(

1 − y +
y2

2

)

f1(x) · D1(z), (B23)

XCOL =
|Ph⊥

|
Mhz3

R4
C〈k2

T 〉C e−R2
CP 2

h⊥/z2

(1 − y) · h1(x) · H⊥
1 (z), (B24)

XSIV = −
|Ph⊥

|
MNz3

R4
S〈p2

T 〉S e−R2
SP 2

h⊥/z2

(

1 − y +
y2

2

)

f⊥
1T (x) · D1(z), (B25)

XCOL =
4|Ph⊥

|
√

πz3
R4

C

√

〈k2
T 〉C e−R2

CP 2
h⊥/z2

(1 − y) · h1(x) · H⊥(1/2)
1 (z), (B26)

XSIV = −
4|Ph⊥

|
√

πz3
R4

S

√

〈p2
T 〉S e−R2

SP 2
h⊥/z2

(

1 − y +
y2

2

)

f⊥(1/2)
1T (x) · D1(z), (B27)

XCOL =
2Mh|Ph⊥

|
z3

R4
C e−R2

CP 2
h⊥/z2

(1 − y) · h1(x) · H⊥(1)
1 (z), (B28)

XSIV = −
2MN |Ph⊥

|
z3

R4
S e−R2

SP 2
h⊥/z2

(

1 − y +
y2

2

)

f⊥(1)
1T (x) · D1(z), (B29)

2 〈sin(φ + φs)〉UT =

√
π

2Mh
RC〈k2

T 〉C ·
B(y) 1

xy2

∑

q e2
qh

q
1(x)H⊥,q

1 (z)

A(y) 1
xy2

∑

q e2
qf

q
1 (x)Dq

1(z)
, (B30)

2 〈sin(φ − φs)〉UT = −
√

π

2MN
RS〈p2

T 〉S ·
A(y) 1

xy2

∑

q e2
qf

⊥,q
1T (x)Dq

1(z)

A(y) 1
xy2

∑

q e2
qf

q
1 (x)Dq

1(z)
, (B31)

2 〈sin(φ + φs)〉UT = 2RC

√

〈k2
T 〉C ·

B(y) 1
xy2

∑

q e2
qh

q
1(x)H⊥(1/2),q

1 (z)

A(y) 1
xy2

∑

q e2
qf

q
1 (x)Dq

1(z)
, (B32)

2 〈sin(φ − φs)〉UT = −2RS

√

〈p2
T 〉S ·

A(y) 1
xy2

∑

q e2
qf

⊥(1/2),q
1T (x)Dq

1(z)

A(y) 1
xy2

∑

q e2
qf

q
1 (x)Dq

1(z)
, (B33)

2 〈sin(φ + φs)〉UT = RCMh
√

π ·
B(y) 1

xy2

∑

q e2
qh

q
1(x)H⊥(1),q

1 (z)

A(y) 1
xy2

∑

q e2
qf

q
1 (x)Dq

1(z)
, (B34)

2 〈sin(φ − φs)〉UT = −RSMN
√

π ·
A(y) 1

xy2

∑

q e2
qf

⊥(1),q
1T (x)Dq

1(z)

A(y) 1
xy2

∑

q e2
qf

q
1 (x)Dq

1(z)
, (B35)

Caution: different notations for intrinsic transverse    
                momentum exist!.

Positivity Limits & Failure of
Gaussian Ansatz

|pT |
2MN

f⊥
1T (x, pT

2) ≡ f⊥(1/2)
1T (x, pT

2) ≤
1

2
f1(x, pT

2)

|kT |
2Mh

H⊥
1 (z, z2kT

2) ≡ H⊥(1/2)
1 (z, z2kT

2) ≤
1

2
D1(z, z2kT

2)

with Gaussian Ansatz for pT /kT -dependence:

f1(x, pT
2) = f1(x)

1

π〈p2
T 〉

e
−

p2
T

〈p2
T 〉

f⊥
1T (x, pT

2) = f⊥
1T (x)

1

π〈p2
T 〉

e
−

p2
T

〈p2
T 〉

positivity limit becomes

|pT |f⊥
1T (x) ≤ MNf1(x)
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(similar:                     )
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one obtains another Gaussian (renaming pT
′ to pT again):

exp

[

−
P 2

h⊥/z2

〈k2
T 〉 + (1 − C)〈p2

T 〉

]
∫

d2pT

P̂h⊥

MN



pT +
Ph⊥

/z

〈k2
T 〉

(

1
(1−C)〈p2

T 〉
+ 1

〈k2
T 〉

)



 exp

[

−
(

1

(1 − C)〈p2
T 〉

+
1

〈k2
T 〉

)

pT
2

]

. (50)

The first term of the sum under the integral does not survive integration as it is odd in pT (which can be readily
checked by going e.g. to Cartesian coordinates) and the second term, not depending on pT , can again be taken out
the integral leaving the simple Gaussian (including now also the prefactors):

f⊥
1T (x)D1(z)

π2(1 − C)〈p2
T 〉z2〈k2

T 〉
exp

[

−
P 2

h⊥/z2

〈k2
T 〉 + (1 − C)〈p2

T 〉

]

|Ph⊥
|/(zMN〈k2

T 〉)
(

1
(1−C)〈p2

T 〉
+ 1

〈k2
T 〉

)

∫

d2pT exp

[

−
(

1

(1 − C)〈p2
T 〉

+
1

〈k2
T 〉

)

pT
2

]

= f⊥
1T (x)D1(z)

1

π2(1 − C)〈p2
T 〉z2〈k2

T 〉
exp

[

−
P 2

h⊥/z2

〈k2
T 〉 + (1 − C)〈p2

T 〉

]

|Ph⊥
|/zMN

〈k2
T 〉

(

1
(1−C)〈p2

T 〉
+ 1

〈k2
T 〉

)

π
1

(1−C)〈p2
T 〉

+ 1
〈k2

T 〉

= f⊥
1T (x) · D1(z) ·

|Ph⊥
|

MNπz3
·

(1 − C)〈p2
T 〉

[〈k2
T 〉 + (1 − C)〈p2

T 〉]
2 · exp

[

−
P 2

h⊥/z2

〈k2
T 〉 + (1 − C)〈p2

T 〉

]

(51)

The convolution integral for the Collins term can be treated similarly. However, because of the appearance of kT

in the convolution integral and because of the fact that kT comes with the opposite sign compared to pT in the
δ-function of the convolution integral, the final de-convoluted expression for the Collins cross section has the opposite
sign of the Sivers term (and interchanged kT ↔ pT ), i.e.

I[h1(x, pT
2)H⊥

1 (z, z2kT
2)

kT · P̂h⊥

Mh
] = −h1(x) · H⊥

1 (z) ·
|Ph⊥

|
Mhπz3

·
(1 − C)〈k2

T 〉
[〈p2

T 〉 + (1 − C)〈k2
T 〉]

2 · exp

[

−
P 2

h⊥/z2

〈p2
T 〉 + (1 − C)〈k2

T 〉

]

.

(52)
For completeness we will also give the result for the unpolarized term in the cross section using the “normal”

Gaussian ansatz:

I[f1(x, pT
2)D1(z, z2kT

2)] = f1(x) · D1(z) ·
R2

πz2
· e−R2 P2

h⊥
z2 , (53)

where the notation of [6] for the mean values of transverse momenta squared was adopted, i.e. 1
R2 = 〈P 2

h⊥〉/z2 =
〈p2

T 〉 + 〈k2
T 〉.

B. Implementation of the Skewed Gaussian ansatz into GMC TRANS

After solving the convolution integrals for the skewed Gaussian ansatz for both the Sivers and the Collins function
it is now possible to define the overall cross section under which the azimuthal angles will be generated. Origi-
nally [6](Eq. (6)) the 6-fold cross section looked like:

d6σ

dxdQ2dzdP 2
h⊥dφhdφs

=
∑

q

e2
q

4π

α2

(MExy)2
R2

z2
e−R2P 2

h⊥/z2

(XUU + |ST |XSIV sin(φh − φs) + |ST |XCOL sin(φh + φs)) ,

(54)
where11

XUU =

(

1 − y +
y2

2

)

f1(x)D1(z), (55)

XCOL =
R2Ph⊥

R2
hMhz

(1 − y)h1(x)H⊥
1 (z), (56)

XSIV = −
R2Ph⊥

R2
HMNz

(

1 − y +
y2

2

)

f⊥
1T (x)D1(z), (57)

11 Here, a missing minus sign in front of the Sivers expression has already been corrected.
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Positivity Constraints
DFs (FFs) have to fulfill various positivity constraints
(resulting cross section must not be negative!)

based on probability considerations can derive 
positivity limits for leading-twist functions:
Bacchetta et al., Phys.Rev.Lett.85:712-715, 2000

➡ transversity: e.g., Soffer bound

➡ Sivers and Collins functions: e.g., loose bounds:

9

.

Positivity Limits & Failure of
Gaussian Ansatz

|pT |
2MN

f⊥
1T (x, pT

2) ≡ f⊥(1/2)
1T (x, pT

2) ≤
1

2
f1(x, pT

2)

|kT |
2Mh

H⊥
1 (z, z2kT

2) ≡ H⊥(1/2)
1 (z, z2kT

2) ≤
1

2
D1(z, z2kT

2)

with Gaussian Ansatz for pT /kT -dependence:

f1(x, pT
2) = f1(x)

1

π〈p2
T 〉

e
−

p2
T

〈p2
T 〉

f⊥
1T (x, pT

2) = f⊥
1T (x)

1

π〈p2
T 〉

e
−

p2
T

〈p2
T 〉

positivity limit becomes

|pT |f⊥
1T (x) ≤ MNf1(x)
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Positivity and the Gaussian Ansatz

10

5

III. THE MC GENERATOR GMC TRANS

Although the purity formalism has already been exploited at Hermes for the quark flavor decomposition of the
helicity distributions, one might worry about a complication in the here presented case. One does not any longer
have simple count rate asymmetries but actually needs to look at their dependences on the azimuthal angles φ and
φS . Since Hermes is not a 4π-detector, acceptance effects might spoil the extraction of the sin(φ − φS) moments.
Moreover, in principle one needs to integrate over the whole range of transverse momentum in order to resolve the
convolution integrals (3) and (4). Experimentally this is not possible. For this reason, a Monte Carlo generator,
gmc trans [6], has been developed which can simulate azimuthal distributions due to pT (kT )-dependent distribution
(fragmentation) functions. One task will be to verify that the extracted functions, i.e. the Sivers function, agrees
with the input, or - in other words - that there is no bias from the experimental apparatus.

The first version of this generator had problems with fulfilling the positivity limits for polarized8 distribution and
fragmentation functions. In order to be able to interpret them as probability densities they must - at least - be smaller
than their unpolarized counter parts f q

1 and D1. In the following a modification to the generator is introduced to
avoid the encountered problems when using a normal Gaussian ansatz.

A. Skewed Gaussian ansatz

1. Positivity limit for the Sivers and Collins function:

a. First Try: A Loose Bound: All the various distribution and fragmentation functions are not completely ar-
bitrary in size but have to fulfill positivity limits. Specifically, if one looks at a two-dimensional subspace of the
correlation matrix [7] only and thus only relates the Sivers function and the ordinary unpolarized PDF (and likewise
the Collins FF with the unpolarized FF), for the Sivers function and the Collins function one has

f⊥(1/2)
1T (x, pT

2) ≡
|pT |
2MN

f⊥
1T (x, pT

2) ≤
1

2
f1(x, pT

2) (28)

H⊥(1/2)
1 (z, z2kT

2) ≡
|kT |
2Mh

H⊥
1 (z, z2kT

2) ≤
1

2
D1(z, z2kT

2). (29)

After realizing that the normal Gaussian ansatz for the pT -dependence of the Sivers function fails the positivity
constraint Eq. (28), i.e.

f⊥(1/2)
1T (x, pT

2) ≤ 1/2f1(x, pT
2) = 1/2f1(x)

1

π〈p2
T 〉

e
−

p2
T

〈p2
T

〉 (30)

because of the extra factor of |pT | in the expression for f⊥(1/2)
1T , an ansatz was taken which just skews the Gaussian

pT distribution:

f⊥
1T (x, pT

2) = f⊥
1T (x)

1

(1 − C)π〈p2
T 〉

e
−

p2
T

(1−C)〈p2
T

〉 , (31)

where a skewedness parameter C has been introduced. One can easily verify that this choice fulfills Eq. (8). With
this new parameterization the positivity limit becomes

f⊥
1T (x)

|pT |
2MN

1

π(1 − C)〈p2
T 〉

e
−

p2
T

(1−C)〈p2
T

〉 ≤ 1/2 f1(x)
1

π〈p2
T 〉

e
−

p2
T

〈p2
T

〉 (32)

⇒
|pT |

1 − C
e
− C

1−C

p2
T

〈p2
T

〉 ≤ MN
f1(x)

f⊥
1T (x)

(33)

8 here polarized stands for functions which in general depend in one way or the other on the polarization of the target nucleon, the quarks
or the outgoing hadron

.
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Positivity and the Gaussian Ansatz
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5

III. THE MC GENERATOR GMC TRANS

Although the purity formalism has already been exploited at Hermes for the quark flavor decomposition of the
helicity distributions, one might worry about a complication in the here presented case. One does not any longer
have simple count rate asymmetries but actually needs to look at their dependences on the azimuthal angles φ and
φS . Since Hermes is not a 4π-detector, acceptance effects might spoil the extraction of the sin(φ − φS) moments.
Moreover, in principle one needs to integrate over the whole range of transverse momentum in order to resolve the
convolution integrals (3) and (4). Experimentally this is not possible. For this reason, a Monte Carlo generator,
gmc trans [6], has been developed which can simulate azimuthal distributions due to pT (kT )-dependent distribution
(fragmentation) functions. One task will be to verify that the extracted functions, i.e. the Sivers function, agrees
with the input, or - in other words - that there is no bias from the experimental apparatus.

The first version of this generator had problems with fulfilling the positivity limits for polarized8 distribution and
fragmentation functions. In order to be able to interpret them as probability densities they must - at least - be smaller
than their unpolarized counter parts f q

1 and D1. In the following a modification to the generator is introduced to
avoid the encountered problems when using a normal Gaussian ansatz.

A. Skewed Gaussian ansatz

1. Positivity limit for the Sivers and Collins function:

a. First Try: A Loose Bound: All the various distribution and fragmentation functions are not completely ar-
bitrary in size but have to fulfill positivity limits. Specifically, if one looks at a two-dimensional subspace of the
correlation matrix [7] only and thus only relates the Sivers function and the ordinary unpolarized PDF (and likewise
the Collins FF with the unpolarized FF), for the Sivers function and the Collins function one has

f⊥(1/2)
1T (x, pT

2) ≡
|pT |
2MN

f⊥
1T (x, pT

2) ≤
1

2
f1(x, pT

2) (28)

H⊥(1/2)
1 (z, z2kT

2) ≡
|kT |
2Mh

H⊥
1 (z, z2kT

2) ≤
1

2
D1(z, z2kT

2). (29)

After realizing that the normal Gaussian ansatz for the pT -dependence of the Sivers function fails the positivity
constraint Eq. (28), i.e.

f⊥(1/2)
1T (x, pT

2) ≤ 1/2f1(x, pT
2) = 1/2f1(x)

1

π〈p2
T 〉

e
−

p2
T

〈p2
T

〉 (30)

because of the extra factor of |pT | in the expression for f⊥(1/2)
1T , an ansatz was taken which just skews the Gaussian

pT distribution:

f⊥
1T (x, pT

2) = f⊥
1T (x)

1

(1 − C)π〈p2
T 〉

e
−

p2
T

(1−C)〈p2
T

〉 , (31)

where a skewedness parameter C has been introduced. One can easily verify that this choice fulfills Eq. (8). With
this new parameterization the positivity limit becomes

f⊥
1T (x)
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2MN
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π(1 − C)〈p2
T 〉

e
−

p2
T
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T
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1

π〈p2
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e
−

p2
T

〈p2
T
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⇒
|pT |
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e
− C

1−C

p2
T

〈p2
T

〉 ≤ MN
f1(x)

f⊥
1T (x)

(33)

8 here polarized stands for functions which in general depend in one way or the other on the polarization of the target nucleon, the quarks
or the outgoing hadron

.
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Skewed Gaussian Ansatz
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SIDIS Cross Section Including
Transverse Momentum

∑

q

e2
q

4π

α2

(MExyz)2
[XUU + |ST |XSIV sin(φh − φs) + |ST |XCOL sin(φh + φs)]

where the cross section expressions are (using the skewed Gaussian Ansatz):

XUU = R2e−R2P 2
h⊥/z2

(

1 − y +
y2

2

)

f1(x) · D1(z)

XCOL = −
|Ph⊥|
Mπz

(1 − C)〈k2
T 〉

[

〈p2
T 〉 + (1 − C)〈k2

T 〉
]2 exp

[

−
P 2

h⊥/z2

〈p2
T 〉 + (1 − C)〈k2

T 〉

]

× (1 − y) · h1(x) · H⊥
1 (z)

XSIV =
|Ph⊥|
Mpz

(1 − C′)〈p2
T 〉

[

〈k2
T 〉 + (1 − C′)〈p2

T 〉
]2 exp

[

−
P 2

h⊥/z2

〈k2
T 〉 + (1 − C′)〈p2

T 〉

]

×
(

1 − y +
y2

2

)

f⊥
1T (x) · D1(z)
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Single Spin Asymmetries
(using skewed Gaussian Ansatz)

can be calculated analytically ⇒ allows comparison
with extracted asymmetries

〈sin(φ − φs)〉UT =

√

(1 − C)〈p2
T 〉

√

(1 − C)〈p2
T 〉 + 〈k2

T 〉

A(y) 1
xy2

∑

e2
qf⊥(1/2)

1T (x)D1(z)

A(y) 1
xy2

∑

e2
qf1(x)D1(z)

〈sin(φ − φs)〉UT =
MN

√
π

2
√

(1 − C)〈p2
T 〉 + 〈k2

T 〉

A(y) 1
xy2

∑

e2
qf

⊥(1)
1T (x)D1(z)

A(y) 1
xy2

∑

e2
qf1(x)D1(z)

〈
|Ph⊥|
zMN

sin(φ − φs)〉UT =
2
√

(1 − C)〈p2
T 〉

MN
√

π

A(y) 1
xy2

∑

e2
qf⊥(1/2)

1T (x)D1(z)

A(y) 1
xy2

∑

e2
qf1(x)D1(z)

〈
|Ph⊥|
zMN

sin(φ − φs)〉UT =
A(y) 1

xy2

∑

e2
qf⊥(1)

1T (x)D1(z)

A(y) 1
xy2

∑

e2
qf1(x)D1(z)
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use cross section expressions to evaluate 
azimuthal moments:

model-dependence on transverse momenta  
“swallowed” by      - moment of Sivers fct.: f⊥(1)

1Tp2
T
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Sivers (azimuthal) moments
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use cross section expressions to evaluate 
azimuthal moments:

(similar for Collins moments)
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Monte Carlo event generation
need to generate events according to cross section:

throw flavor of struck quark according to integrated 
(unpolarized) cross section for each quark flavor

throw                  according to unpolarized cross 
section

throw pion’s transverse momentum         according to 
Gaussian Ansatz

generate azimuthal angles              according to 
polarized cross section

cross section should be positive automatically if 
positivity constraints on DFs and FFs are fulfilled,
but better check again 

17

(x,Q2, z)

P 2
h⊥

(φ,φS)



Gunar Schnell, Universiteit Gent ECT* Workshop, June 12, 2007

Some (more) details
event generation by accept-or-reject method:

first throw flat in                 , e.g., get value r1 

second random number r2 determines accept/reject 
status:
r2 above curve: reject
r2 below curve: accept

have to know maximum
of f(x), i.e., of the cross
section (checked at 
beginning)

can gain some speed by not throwing flat in, e.g.,      ,
but according to global behaviour
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Tuning the Gaussians in gmc_trans

constant Gaussian widths, i.e., 
no dependence on x or z:

tune to data integrated over 
whole kinematic range
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Tuning the Gaussians in gmc_trans
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Comparison Data-MC:     
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Figure 5.2.1: Comparison of the transverse momentum distributions between

the HERMES data on transversely polarised hydrogen and the po-

larised Monte Carlo generator gmc_trans in the HERMES accep-

tance. For the π0 distribution the dashed line shows the result from

an earlier Monte Carlo production neglecting smearing of the

photons (see text). Both histograms are normalised to unit area.

A solution for the Sivers and Collins functions is to modify Eq. (5.2.3) and (5.2.4) and to

use smaller widths for the transverse momentum distributions:

f⊥q
1T (x, p2

T ) = f⊥q
1T (x) ·

1

π(1 − Cs)〈p2
T 〉

e
− p2

T
(1−Cs)〈p2

T
〉 , (5.2.7)

H⊥
1 (z, z2k2

T ) = H⊥
1 (z) ·

1

πz2(1 − Cc)〈k2
T 〉

e
− k2

T
(1−Cc)〈k2

T
〉 , (5.2.8)

introducing the two parameters Cs and Cc (0 < Cs, Cc < 1). With this ansatz one avoids

unphysical cut–offs in the "pT and "kT distributions, which would further complicate the

analytical expression of cross sections.

Even though the Sivers function (5.2.7) fulfils the positivity limit (2.4.22), the sum of the

cross section components including the Sivers and transversity functions can still exceed

the unpolarised cross section. A more stringent requirement on the Sivers function takes

into account the contribution from other DFs, e.g., δqi
[

Bac04b
]

ii:

p2
T

M2

(

f⊥q
1T (x, p2

T )
)2

≤ q(x, p2
T )

[

q(x, p2
T ) − 2|δq(x, p2

T )|
]

. (5.2.9)

The main reason for the Gaussian ansatz is the possibility to calculate the unweighted

and Ph⊥–weighted asymmetry moments analytically for the kinematics of each gener-

ated event. These values are stored in a table for the comparison of extracted and imple-

mented moments. This allows the systematic study of biases on the extracted asymmetry

moments from different sources, including the dependence on intrinsic transverse quark

momenta, in particular with respect to the limited Ph⊥ acceptance of the spectrometer.

In the gmc_trans generator, certain parameters can be adjusted for a good descrip-

tion of the data. Here, the two parameters Cs and Cc are set to a value of 0.25 which

iHere, other DFs than q(x, p2
T ), δq(x, p2

T ), and f⊥q
1T (x, p2

T ) are set to 0.
iiA missing factor of 2 in the reference is added here.
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Figure 5.2.2: Comparison of the azimuthal angular distributions between HER-

MES data and the polarised Monte Carlo generator gmc_trans. All

histograms are normalised to unit area.

allows the generation of maximum absolute values for Sivers and Collins Ph⊥–weighted

moments. The mean values 〈p2
T 〉 and 〈K2

T 〉 = z2〈k2
T 〉, which are assumed to be the same

for all quark flavours, are chosen to be independent of x and z, respectively. These pa-

rameters were varied iteratively for a good description of hadron transverse momentum

distributions obtained from data. In Figure 5.2.1 the resulting distributions are plotted for

〈p2
T 〉 = 〈K2

T 〉 = 0.18 GeV2 (〈|!pT |〉 = 〈| !KT |〉 = 0.38 GeV). To speed up the simulation of de-

tector events, the effects of tracking are parametrised with a new version of HSG, which

includes the smearing of photons, instead of the time consuming tracking using HMC.

The smearing of the photons is caused by the limited energy resolution of the calorimeter

which leads to an uncertainty in the determination of the impact position and photon

energies. The inclusion of the smearing results in an improved description of the π0 distri-

butions compared to earlier generators, which neglected the smearing of the photons.

In Figure 5.2.1, the distributions of neutral pions reconstructed from the smeared photons

(solid line) and from generated photons (dashed line) are compared in addition to HER-

MES data. The agreement for charged pions is better than for neutral pions and the rise

of the Ph⊥ distribution for π0 is better described by taking smearing into account also for

photons. Also the azimuthal angular distributions are well described by the Monte Carlo,

as can be seen in Figure 5.2.2. Here, the distribution of neutral pions reconstructed from

photons neglecting any smearing (with the kinematics at generator level) is virtually in-

distinguishable from the distribution for smeared photons and therefore not shown in the

figure. Note that neither the unpolarised cosine moments nor radiative effects are imple-

mented in gmc_trans while the influence from the transverse target magnet is simulated
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Figure 5.2.2: Comparison of the azimuthal angular distributions between HER-

MES data and the polarised Monte Carlo generator gmc_trans. All

histograms are normalised to unit area.

allows the generation of maximum absolute values for Sivers and Collins Ph⊥–weighted

moments. The mean values 〈p2
T 〉 and 〈K2

T 〉 = z2〈k2
T 〉, which are assumed to be the same

for all quark flavours, are chosen to be independent of x and z, respectively. These pa-

rameters were varied iteratively for a good description of hadron transverse momentum

distributions obtained from data. In Figure 5.2.1 the resulting distributions are plotted for

〈p2
T 〉 = 〈K2

T 〉 = 0.18 GeV2 (〈|!pT |〉 = 〈| !KT |〉 = 0.38 GeV). To speed up the simulation of de-

tector events, the effects of tracking are parametrised with a new version of HSG, which

includes the smearing of photons, instead of the time consuming tracking using HMC.

The smearing of the photons is caused by the limited energy resolution of the calorimeter

which leads to an uncertainty in the determination of the impact position and photon

energies. The inclusion of the smearing results in an improved description of the π0 distri-

butions compared to earlier generators, which neglected the smearing of the photons.

In Figure 5.2.1, the distributions of neutral pions reconstructed from the smeared photons

(solid line) and from generated photons (dashed line) are compared in addition to HER-

MES data. The agreement for charged pions is better than for neutral pions and the rise

of the Ph⊥ distribution for π0 is better described by taking smearing into account also for

photons. Also the azimuthal angular distributions are well described by the Monte Carlo,

as can be seen in Figure 5.2.2. Here, the distribution of neutral pions reconstructed from

photons neglecting any smearing (with the kinematics at generator level) is virtually in-

distinguishable from the distribution for smeared photons and therefore not shown in the

figure. Note that neither the unpolarised cosine moments nor radiative effects are imple-

mented in gmc_trans while the influence from the transverse target magnet is simulated

where:
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now:
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Figure 5.2.3: The implemented and extracted asymmetry amplitudes (upper

half) and the differences between implemented and extracted

amplitudes (lower half) for generated and reconstructed positive

pion events. The generated events cover the whole range of the

solid angle.
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Figure 5.2.4: The implemented and extracted asymmetry amplitudes (upper

half) and the differences between implemented and extracted

amplitudes (lower half) for generated and reconstructed negative

pion events. The generated events cover the whole range of the

solid angle.
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in the analysed Monte Carlo production.

5.2.1 Unweighted Asymmetry Amplitudes

In the Monte Carlo generator gmc_trans, leading order parametrisations of the unpo-

larised FFs
[

Kre00
]

and the unpolarised and helicity DFs
[

Glü96
]

, which are based on fits

to world data, are implemented as functions of x and z. Different models for the x and z

dependencies of the transversity, Sivers, and Collins functions are available for the event

generation. In most of the models a given moment of the DF or FF is proportional to q(x),

∆q(x), or D1(z). The model parameters were chosen such that the extracted asymme-

try amplitudes are comparable to the amplitudes observed in the data. The transversity

functions are proportional to the helicity DF:

δu(x) = 0.7 · ∆u(x) , (5.2.10)

δd(x) = 0.7 · ∆d(x) , (5.2.11)

δq(x) = 0.3 · ∆q(x) for q = ū, d̄, s, s̄ . (5.2.12)

In contrast, Sivers functions are modelled proportional to the unpolarised DF:

f⊥u
1T (x) = −0.3 · u(x) , (5.2.13)

f⊥d
1T (x) = 0.9 · d(x) , (5.2.14)

f⊥q
1T (x) = 0.0 for q = ū, d̄, s, s̄ . (5.2.15)

The parametrisation of the unpolarised FFs fulfil isospin and charge conjugation symmetry
[

Kre00
]

leaving three independent FFs: the favoured, disfavoured, and strange function

(cf. Section 2.5.1). In addition, disfavoured and strange FFs are equal in the parametrisa-

tion. The first moments of the Collins function are constructed proportional to the unpo-

larised FFs. The coefficient for the disfavoured FF is twice as large as for the favoured FF

but has the opposite sign:

H⊥(1)
1,fav(z) = 0.65 · D1,fav(z) , (5.2.16)

H⊥(1)
1,dis (z) = −1.30 · D1,dis(z) . (5.2.17)

Hence, on average favoured and disfavoured Collins function are of similar magnitude

but of opposite sign.

In each kinematic bin four different asymmetry amplitudes can be determined. One

amplitude can be extracted from the generated events (in the solid angle 4π) and

another one from the reconstructed events (in the HERMES acceptance) with the two–

dimensional fit procedure described in Chapter 4. Furthermore, for the reconstructed

and generated events, the implemented asymmetry amplitudes Asin(φ±φS)
imp , which are

stored for each event j in a data table, can be averaged over all events in a kinematic

bin:

〈

Asin(φ±φS)
imp

〉

rec
=

∑Nrec
j=0 Asin(φ±φS)

imp,j

Nrec
,

〈

Asin(φ±φS)
imp

〉

gen
=

∑Ngen

j=0 Asin(φ±φS)
imp,j

Ngen
. (5.2.18)

The implemented asymmetry amplitudes are integrated over Ph⊥ and can therefore not

be compared to the extracted asymmetries in the individual Ph⊥ bins. In this case, the
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Comparison for weighted moments
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Figure 5.2.6: The implemented and extracted Ph⊥–weighted asymmetry am-

plitudes (upper half) and the differences between implemented

and extracted amplitudes (lower half) for generated and recon-

structed positive pion events. The generated events cover the

whole range of the solid angle.
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Figure 5.2.7: The implemented and extracted Ph⊥–weighted asymmetry am-

plitudes (upper half) and the differences between implemented

and extracted amplitudes (lower half) for generated and recon-

structed negative pion events. The generated events cover the

whole range of the solid angle.

Not so good news for weighted moments



Where to go from here?
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Models for integrated DFs and FF

“usual PDFs”           from PEPSI library

       from KKP or Kretzer

       can be

 

Soffer bound

Leader parametrization

30

f1, g1

D1

h1

= g1



Gunar Schnell, Universiteit Gent ECT* Workshop, June 12, 2007

Models for Sivers and Collins Fcts
Sivers function 

 

 

Boglione-Mulders parametrization

 

Collins function:

 

Boglione-Mulders

Leader

31

f⊥1T (x) ∼ f1(x)

f⊥1T (x) ∼ g1(x)

H⊥
1 (z) ∼ D1(z)

H⊥(1)
1 (z) ∼ D1(z)

f⊥(1)
1T (x) ∼ f1(x)

f⊥1T

H⊥
1
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Models for Sivers and Collins Fcts
Sivers function 

 

 

Boglione-Mulders parametrization

 

Collins function:

 

Boglione-Mulders

Leader

32

f⊥1T (x) ∼ f1(x)

f⊥1T (x) ∼ g1(x)

H⊥
1 (z) ∼ D1(z)

H⊥(1)
1 (z) ∼ D1(z)

f⊥(1)
1T (x) ∼ f1(x)

f⊥1T

H⊥
1

obviously want m
ore (new) fit

s/parametrizations
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Beyond Collins and Sivers

certainly would like to model all TMDs, e.g., Boer-
Mulders function, to get full cross section

even go to subleading-twist, e.g., Cahn effect

first attempts to implement those have been made

leading twist -- “straight forward” (just a few more 
convolution integrals)

subleading twist -- “hmmmm...”

biggest problem there: positivity limits don’t exist on 
DF and FF level

33
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Status of unpolarized cross section

34

almost implemented:

Boer-Mulders effect

Cahn effect

can adjust Gaussian width, kinematic dependencies 
and normalization

generated values (cross-section and unweighted 
moments) are available for end-user, however, 
weighted moments not available
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Status of polarized cross section

hardly implemented:

twist-3 AUT            term (involves transversity)

can partially adjust Gaussian width (involves 2 
terms - only the one involving the Collins function 
is adjustable), kinematic dependencies and 
normalization

generated values: cross-section is available for end-
user, however, moments are not available

35

sinφS
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             - term in A_UT

36

sinφS
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             - term in A_UT

37

convolution integral and
DF & FF known/implemented

twist-3 FF 
(Koike?)

(turned off in 
gmc_trans)
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Cahn Effect

similar to twist-3 AUT term

reduced to product of f1 and D1

neglect any interaction-dependent terms

get f1 and D1 from PDF/FF library

however, 

need additional scaling factor, and

need different Gaussian width than normal f1 and D1

38
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The Twist-3 Problems

need scaling factors, even though Mulders&Tangerman 
etc. would suggest a normalization that is fixed by 
involved PDFs and FFs

same is true for Gaussian widths: need different ones 
than for “normal” f1 and D1 (or transversity and 
Collins FF)

therefore: intrinsicly inconsistent treatment --                 
failure of Gaussian Ansatz?

in general: encountered severe positivity violations (in 
particular with Cahn effect)

39



Gunar Schnell, Universiteit Gent ECT* Workshop, June 12, 2007

Summary

gmc_trans is a working MC generator for TMDs in 
SIDIS (pion production)

based on Gaussian Ansatz for transverse momentum 
dependencies

Collins and Sivers effect implemented

z-dependence of Gaussian widths tuned to HERMES 
data

implementation of other (partially subleading-twist) 
terms not straight-forward

40
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Outlook / Wishlist

finish Boer-Mulders implemention

implement newest results from fits and model 
calculations on transversity, Sivers & Collins functions

implement Kaons and neutron target

➡ comparison with HERMES and COMPASS data 
possible

add radiative corrections (RADGEN)

solve twist-3 problems

gmc_trans for 2-hadron production
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