Correlations in Partonic and Hadronic Interactions 2018 Yerevan, September 24-28, 2018

Transverse-momentum distributions in electro-production and e⁺e⁻ annihilation

selected results from HERMES as well as BaBar, Belle and BESIII

Gunar.Schnell @ DESY.de

what makes the visible universe

what makes the visible universe

standard model

- not Higgs but non-abelian quantum chromodynamics (QCD) responsible for mass in every-day life
- 40+ years success story of (p)QCD
- but non-perturbative part (hadron structure and formation) still a vast, partly unexplored field

gunar.schnell @ desy.de

CPHI 2018

spin of the nucleon

- transverse single-spin asymmetries in powcollision onsistently describing the *TMDe (Transverse Memory Describing the
 - * TMDs (Transverse Momentum Dependent) dist * high-twist correlations
 - Interpretation not yet completely satisfactory
 - All available models predict **A**_N goes to zero high **p**_T values.
 - **BUT**: not yet DATA at such kinematic region
 - all available data coming from **p** p scattering

- transverse single-spin asymmetries in pp collision
- hadron-momentum preference in hadronization of pol. quarks

- transverse single-spin asymmetries in pp collision
- hadron-momentum preference in hadronization of pol. quarks
- violation of Lam-Tung relation in Drell-Yan

- violation of Lam-Tung relation in Drell-Yan
- Iarge hyperon polarization in unpolarized proton collisions

- go beyond collinear description of original quark-parton model
- explore correlations between spins and transverse momenta
- new insights into workings of QCD

• e.g., Sivers effect:

- correlation between nucleon (transverse)
 polarization and quark transverse
 momentum
- Iinked to orbital angular momentum
- rigorous QCD prediction: breaking of universality of parton distributions by change of sign going from deepinelastic scattering to Drell-Yan

 $f_1(x, k_T^2)$ 0.05 х 0.10 0.15 0.20 1.0 up 0.5 ky (GeV) 0.0 -0.5-1.0 1.0 0.5 -1.0 -0.5 0.0 k_x (GeV)

flavor-dependent tomographic maps in momentum space

inclusive DIS (one-photon exchange)

DIS ... deep-inelastic scattering

inclusive DIS (one-photon exchange)

gunar somelize desy.de

quark polarimetry

- unpolarized quarks: easy "just" hit them
- Iongitudinally polarized quarks: use polarized beam

quark polarimetry

- unpolarized quarks: easy "just" hit them
- Iongitudinally polarized quarks: use polarized beam

transversely polarized quarks: need final-state polarimetry, e.g.

semi-inclusive DIS

		U	L	Т
eon pol.	U	f_1		h_1^\perp
	L		g_{1L}	h_{1L}^{\perp}
nuc]	Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

quark pol.

in SIDIS^{*)} couple PDFs to:

*) semi-inclusive DIS with unpolarized final state

*) semi-inclusive DIS with unpolarized final state

CPHI 2018

15

FF

PDF

gives rise to characteristic azimuthal dependences

*) semi-inclusive DIS with unpolarized final state

single-hadron electroproduction ($ep \rightarrow ehX$)

$$d\sigma = d\sigma_{UU}^{0} + \cos 2\phi \, d\sigma_{UU}^{1} + \frac{1}{Q} \cos \phi \, d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q} \sin \phi \, d\sigma_{LU}^{3} \\ + S_{L} \left\{ \sin 2\phi \, d\sigma_{UL}^{4} + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^{5} + \lambda_{e} \left[d\sigma_{LL}^{6} + \frac{1}{Q} \cos \phi \, d\sigma_{LL}^{7} \right] \right\} \\ + S_{T} \left\{ \sin(\phi - \phi_{S}) \, d\sigma_{UT}^{8} + \sin(\phi + \phi_{S}) \, d\sigma_{UT}^{9} + \sin(3\phi - \phi_{S}) \, d\sigma_{UT}^{10} \\ + \frac{1}{Q} \left(\sin(2\phi - \phi_{S}) \, d\sigma_{UT}^{11} + \sin \phi_{S} \, d\sigma_{UT}^{12} \right) \\ \text{Beam Target} \\ \text{Polarization} + \lambda_{e} \left[\cos(\phi - \phi_{S}) \, d\sigma_{LT}^{13} + \frac{1}{Q} \left(\cos \phi_{S} \, d\sigma_{LT}^{14} + \cos(2\phi - \phi_{S}) \, d\sigma_{LT}^{15} \right) \right] \right\}$$

Mulders and Tangerman, Nucl. Phys. B 461 (1996) 197 Boer and Mulders, Phys. Rev. D 57 (1998) 5780 Bacchetta et al., Phys. Lett. B 595 (2004) 309 Bacchetta et al., JHEP 0702 (2007) 093 "Trento Conventions", Phys. Rev. D 70 (2004) 117504

single-hadron electroproduction ($ep \rightarrow ehX$)

$$d\sigma = d\sigma_{UU}^{0} + \cos 2\phi \, d\sigma_{UU}^{1} + \frac{1}{Q} \cos \phi \, d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q} \sin \phi \, d\sigma_{LU}^{3}$$

$$+S_{L} \left\{ \sin 2\phi \, d\sigma_{UL}^{4} + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^{5} + \lambda_{e} \left[d\sigma_{LL}^{6} + \frac{1}{Q} \cos \phi \, d\sigma_{LL}^{7} \right] \right\}$$

$$+S_{T} \left\{ \sin(\phi - \phi_{S}) \, d\sigma_{UT}^{8} + \sin(\phi + \phi_{S}) \, d\sigma_{UT}^{9} + \sin(3\phi - \phi_{S}) \, d\sigma_{UT}^{10} \right\}$$

$$+ \frac{1}{Q} \left(\sin(2\phi - \phi_{S}) \, d\sigma_{UT}^{11} + \sin \phi_{S} \, d\sigma_{UT}^{12} \right)$$

$$+ \lambda_{e} \left[\cos(\phi - \phi_{S}) \, d\sigma_{LT}^{13} + \frac{1}{Q} \left(\cos \phi_{S} \, d\sigma_{LT}^{14} + \cos(2\phi - \phi_{S}) \, d\sigma_{LT}^{15} \right) \right] \right\}$$

$$Mulders and Tangerman, Nucl. Phys. B 461 (1996) 197$$
Boer and Mulders, Phys. Rev. D 57 (1998) 5780

Mulders and Tangerman, Nucl. Phys. B 461 (1996) 197 Boer and Mulders, Phys. Rev. D 57 (1998) 5780 Bacchetta et al., Phys. Lett. B 595 (2004) 309 Bacchetta et al., JHEP 0702 (2007) 093 "Trento Conventions", Phys. Rev. D 70 (2004) 117504

B

single-hadron electroproduction ($ep \rightarrow ehX$)

$$d\sigma = d\sigma_{UU}^{0} + \cos 2\phi \, d\sigma_{UU}^{1} + \frac{1}{Q} \cos \phi \, d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q} \sin \phi \, d\sigma_{LU}^{3}$$
$$+ S_{L} \left\{ \sin 2\phi \, d\sigma_{UL}^{4} + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^{5} + \lambda_{e} \left[d\sigma_{LL}^{6} + \frac{1}{Q} \cos \phi \, d\sigma_{LL}^{7} \right] \right\}$$
$$+ S_{T} \left\{ \sin(\phi - \phi_{S}) \, d\sigma_{UT}^{8} + \sin(\phi + \phi_{S}) \, d\sigma_{UT}^{9} + \sin(3\phi - \phi_{S}) \, d\sigma_{UT}^{10} \right\}$$
$$+ \frac{1}{Q} \left(\sin(2\phi - \phi_{S}) \, d\sigma_{UT}^{11} + \sin \phi_{S} \, d\sigma_{UT}^{12} \right)$$
$$+ \lambda_{e} \left[\cos(\phi - \phi_{S}) \, d\sigma_{UT}^{13} + \frac{1}{Q} \left(\cos \phi_{S} \, d\sigma_{LT}^{14} + \cos(2\phi - \phi_{S}) \, d\sigma_{LT}^{15} \right) \right]$$

 $\frac{\vec{k}}{\vec{k}}$

Mulders and Tangerman, Nucl. Phys. B 461 (1996) 197 Boer and Mulders, Phys. Rev. D 57 (1998) 5780 Bacchetta et al., Phys. Lett. B 595 (2004) 309 Bacchetta et al., JHEP 0702 (2007) 093 "Trento Conventions", Phys. Rev. D 70 (2004) 117504

the rich world of fragmentation

		quark pol.				
		U	L	Т		
pol.	U	D_1		H_1^{\perp}		
ron	L		G_1	H_{1L}^{\perp}		
had	Т	D_{1T}^{\perp}	G_{1T}^{\perp}	$H_1 \ H_{1T}^{\perp}$		

the rich world of fragmentation

		quark poi.				
		U	L	Т		
pol.	U	D_1		H_1^{\perp}		
ron	L		G_1	H_{1L}^{\perp}		
had	Т	D_{1T}^{\perp}	G_{1T}^{\perp}	$H_1 H_{1T}^{\perp}$		

anarle nol

unpolarized/spin-less hadrons

the rich world of fragmentation

- unpolarized/spin-less hadrons
- polarized hadrons

- 6 out of 8 require final-state polarimetry
- most accessible: hyperons (parity-violating decay), but
 - Iower production rate
 - spin structure often dominated by strange quarks
- more involved: dihadron fragmentation functions
- clean process: e⁺e⁻ annihilation into hadron(s)

experimental data

The HERMES experiment (1995-2007)

27.5 GeV e^+/e^- beam of HERA

... transversely polarized through Sokolov-Ternov effect

=> longitudinal polarization at HERMES by means of spin rotators gunar.schnell @ desy.de

The HERMES experiment (1995-2007)

novel (pure) gas target:

- internal to HERA 27.6 GeV e[±] ring
- unpolarized (¹H ... Xe)
- Iongitudinally polarized: ¹H, ²H, ³He
- transversely polarized: ¹H

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

Iook at characteristic azimuthal dependence of single-hadron lepto-production cross section

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

- Iook at characteristic azimuthal dependence of single-hadron lepto-production cross section
- in practice, reverse nucleon-polarization orientation and form spin asymmetries

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

Iook at characteristic azimuthal dependence of single-hadron lepto-production cross section

21

- in practice, reverse nucleon-polarization orientation and form spin asymmetries
 - many of the systematics of polarization-averaged observables cancel (e.g., luminosity)

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

transverse polarization of quarks leads to large effects!

Non-zero transversity Non-zero Collins function

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

- transverse polarization of quarks leads to large effects!
- opposite in sign for charged pions

Non-zero transversity Non-zero Collins function

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

- transverse polarization of quarks leads to large effects!
- opposite in sign for charged pions
- disfavored Collins FF large and opposite in sign to favored one

Non-zero Collins function

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

- transverse polarization of quarks leads to large effects!
- opposite in sign for charged pions
- disfavored Collins FF large and opposite in sign to favored one

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

Collins effect for kaons and (anti) protons

gunar.schnell @ desy.de

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

Collins effect for kaons and (anti) protons

ositive Collins SSA amplitude for positive kaons (u-dominance)

Collins effect for kaons

- positive Collins SSA amplitude for positive kaons (u-dominance)
- consistent with zero for negative kaons and (anti)protons
 vanishing sea-quark transversity and baryon Collins effect?

gunar.schnell @ desy.de

Т

 h_1^{\perp}

U

 f_1

U

L

Worm-Gear? Pretzelosity?

but suppressed by one (two) power(s) of $P_{h\perp}$ (compared to, e.g., transversity Collins)

$\begin{array}{|c|c|c|c|c|c|} U & L & T \\ \hline U & f_1 & & h_1^{\perp} \\ \hline L & & g_{1L} & h_{1L}^{\perp} \\ \hline T & f_{1T}^{\perp} & g_{1T} & h_1, h_{1T}^{\perp} \end{array}$

signs of Boer-Mulders

[Airapetian et al., PRD 87 (2013) 012010]

$\begin{array}{|c|c|c|c|c|c|} U & L & T \\ \hline U & f_1 & h_1^{\perp} \\ \hline L & g_{1L} & h_{1L}^{\perp} \\ \hline T & f_{1T}^{\perp} & g_{1T} & h_1, h_{1T}^{\perp} \end{array}$

signs of Boer-Mulders

[Airapetian et al., PRD 87 (2013) 012010]

none-zero modulations!

$\begin{array}{|c|c|c|c|c|}\hline & U & L & T \\ \hline U & f_1 & & h_1^\perp \\ \hline L & & g_{1L} & h_{1L}^\perp \\ \hline T & f_{1T}^\perp & g_{1T} & h_1, h_{1T}^\perp \end{array}$

signs of Boer-Mulders

[Airapetian et al., PRD 87 (2013) 012010]

- none-zero modulations!
- opposite sign for charged pions with larger magnitude for π^{-}

- none-zero modulations!
- opposite sign for charged pions with larger magnitude for π^-
- intriguing behavior for kaons

- none-zero modulations!
- opposite sign for charged pions with larger magnitude for π⁻
- intriguing behavior for kaons
- available also in fully differential binning, e.g., before projecting

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, {h_{1T}^\perp}$

- chiral even
- first direct evidence for worm-gear g_{1T} on
 - ³He target at JLab
 - **H** target at HERMES

lacksquare

Worm-Gear π^+ NARY 8.0% scale uncertainty π**0** π 0.2 K⁺

0.2

0.1

-0.1

0.1

-0.1

0.1

-0.1

 $2 \left< \cos(\phi - \phi_S) \right>_{L\perp}^{\pi}$

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, rac{h_{1T}^{\perp}}{}$

Sivers amplitudes for pions

 $\sum_{q} e_q^2 f_{1T}^{\perp,q}(x,p_T^2) \otimes_{\mathcal{W}} D_1^q(z,k_T^2)$

 $\sum_{q} e_{q}^{2} f_{1}^{q}(x, p_{T}^{2}) \otimes D_{1}^{q}(z, k_{T}^{2})$

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, rac{h_{1T}^{\perp}}{}$

Sivers amplitudes for pions

$$\frac{\sum_{q} e_q^2 f_{1T}^{\perp,q}(x, p_T^2) \otimes_{\mathcal{W}} D_1^q(z, k_T^2)}{\sum_{q} e_q^2 f_1^q(x, p_T^2) \otimes D_1^q(z, k_T^2)}$$

π⁺ dominated by u-quark scattering:

$$- \frac{f_{1T}^{\perp,u}(x,p_T^2) \otimes_{\mathcal{W}} D_1^{u \to \pi^+}(z,k_T^2)}{f_1^u(x,p_T^2) \otimes D_1^{u \to \pi^+}(z,k_T^2)}$$

u-quark Sivers DF < 0</p>

CPHI 2018

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, rac{h_{1T}^{\perp}}{}$

Sivers amplitudes for pions

$$\frac{\sum_{q} e_{q}^{2} f_{1T}^{\perp,q}(x,p_{T}^{2}) \otimes_{\mathcal{W}} D_{1}^{q}(z,k_{T}^{2})}{\sum_{q} e_{q}^{2} f_{1}^{q}(x,p_{T}^{2}) \otimes D_{1}^{q}(z,k_{T}^{2})}$$

π⁺ dominated by u-quark scattering:

$$- \frac{f_{1T}^{\perp,u}(x,p_T^2) \otimes_{\mathcal{W}} D_1^{u \to \pi^+}(z,k_T^2)}{f_1^u(x,p_T^2) \otimes D_1^{u \to \pi^+}(z,k_T^2)}$$

u-quark Sivers DF < 0</p>

d-quark Sivers DF > 0
 (cancelation for π⁻)

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

Sivers amplitudes for mesons

 $\sum_{q} e_q^2 f_{1T}^{\perp,q}(x,p_T^2) \otimes_{\mathcal{W}} D_1^q(z,k_T^2)$

 $\sum_{q} e_{q}^{2} f_{1}^{q}(x, p_{T}^{2}) \otimes D_{1}^{q}(z, k_{T}^{2})$

Iarger amplitudes for positive kaons vs. pions

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

Sivers amplitudes for baryons

 $\sum_{q} e_q^2 f_{1T}^{\perp,q}(x,p_T^2) \otimes_{\mathcal{W}} D_1^q(z,k_T^2)$

similar amplitudes for positive pions and protons ru-quark dominance

e⁺e⁻ annihilation

- single-inclusive hadron production, e⁺e⁻ → hX
 - D₁ fragmentation fctn.
 - $D_{1T^{\perp}}$ spontaneous transv. pol.

- single-inclusive hadron production,
 e⁺e⁻ → hX
 - D₁ fragmentation fctn.
 - D_{1T}^{\perp} spontaneous transv. pol.
- inclusive "back-to-back" hadron pairs, e⁺e⁻ → h₁h₂X
 - product of FFs
 - flavor, transverse-momentum, and/or polarization tagging

- single-inclusive hadron production,
 e⁺e⁻ → hX
 - D₁ fragmentation fctn.
 - D_{1T}^{\perp} spontaneous transv. pol.
- inclusive "back-to-back" hadron pairs, e⁺e⁻ → h₁h₂X
 - product of FFs
 - flavor, transverse-momentum, and/or polarization tagging
- inclusive same-hemisphere hadron pairs, e⁺e⁻ → h₁h₂X
- dihadron fragmentation
 gunar.schnell @ desy.de

e+e⁻ annih

SIII, BaBar & Belle

BaBar & Belle: Instrumented asymmetric beam-energy Flux Return Solenoid (B=1.5T) e⁺e⁻ collider near/at Y(4S) 3.1 GeV **Electromagnetic Calorimeter** resonance (10.58 GeV) 6580 CsI(Tl) crystals **Drift CHamber** 9 Ge **BESIII: symmetric collider** with E_e=1...2.4 GeV DIRC 144 bars of fused silica Silicon Vertex Tracker 3.5 GeV e+ Solenoid (B=1 T) **RPC** muon detector EMC e⁻ (1-2.<u>4) GeV</u> (1-2.4) GeV 8 GeV e Time of Drift Flight Chamber

e⁺e⁻ annihilation at BESIII, BaBar & Belle

- BaBar & Belle: asymmetric beam-energy e⁺e⁻ collider near/at Y(4S) resonance (10.58 GeV)
- BESIII: symmetric collider with E_e=1...2.4 GeV
- integrated luminosities:

	Y(4S) on resonance	Y(4S) off resonance	other
BaBar	424.2 fb ⁻¹	43.9 fb ⁻¹	
Belle	(140+571) fb⁻¹	(15.6+73.8) fb ⁻¹	
BESIII			~62 pb ⁻¹ @3.65 GeV *)

*) used for the Collins analysis presented here

gunar.schnell @ desy.de

- before 2013: lack of precision data at (moderately) high z and at low √s
 - limits analysis of evolution and gluon fragmentation
 - limited information in kinematic region often used in semi-inclusive DIS

- before 2013: lack of precision data at (moderately) high z and at low √s
 - limits analysis of evolution and gluon fragmentation
 - limited information in kinematic region often used in semi-inclusive DIS

- BaBar Collaboration, Phys. Rev. D88 (2013) 032011: π^{\pm} , K^{\pm}, p+p
- Belle Collaboration, Phys. Rev. Lett. 111 (2013) 062002: π[±], K[±]
- Belle Collaboration, Phys. Rev. D92 (2015) 092007: π[±], K[±], p+p

- very precise data for charged pions and kaons
- Belle data available up to very large z (z<0.98)
- included in recent DEHSS fits
 - slight tension at low-z for BaBar and high-z for Belle

35

- very precise data for charged pions and kaons
- Belle data available up to very large z (z<0.98)
- included in recent DEHSS fits
 [e.g. PRD 91, 014035 (2015)]
- Belle radiative corrections undone in FF fits

[EPJC 77 (2017) 516, NNFF1.0]

- very precise data for charged pions and kaons
- Belle data available up to very large z (z<0.98)
- included in recent DEHSS fits
 [e.g. PRD 91, 014035 (2015)]
- Belle radiative corrections undone in FF fits
- data for protons & anti-protons
 - not (yet) included in DEHSS, but
 in NNFF 1.0 [EPJC 77 (2017) 516]
 - similar z dependence as pions
 - about ~½ of pion cross sections

inclusive hyperon production

- Λ production reasonably well described by Pythia
- less satisfactory for heavier hyperons
- fails to describe Ω⁻ production

gunar.schnell @ desy.de

hadron-pair production

- single-hadron production has low discriminating power for parton flavor
- can use 2nd hadron in **opposite hemisphere** to "tag" flavor
 - mainly sensitive to product of singlehadron FFs
- if hadrons in same hemisphere:
 dihadron fragmentation
 - a la de Florian & Vanni
 [Phys. Lett. B 578 (2004) 139]
 - a la Collins, Heppelmann & Ladinsky [Nucl. Phys. B 420 (1994) 565];
 Boer, Jacobs & Radici [Phys. Rev. D 67 (2003) 094003]
 - opens the question of **defining hemispheres**

[Phys. Rev. D92 (2015) 092007]

hadron-pairs: topology comparison

- any hemisphere vs. opposite- & same-hemisphere pairs
 - same-hemisphere pairs with kinematic limit at $z_1=z_2=0.5$

same-hemisphere data: Mh1h2 dependence

same-hemisphere data: Mh1h2 dependence

• unlike-sign pairs with clear decay and resonance structure: K_s , ρ^0 ...

Iike-sign pairs with much smoother and smaller cross sections

gunar.schnell @ desy.de

polarization

hadron pairs: angular correlations

- angular correlations between nearly back-to-back hadrons used to tag transverse quark polarization -> Collins fragmentation fct.
 - RF0: one hadron as reference axis $-> \cos(2\phi_0)$ modulation
 - RF12: thrust (or similar) axis

 $-> \cos(\phi_1 + \phi_2)$ modulation

different convolutions over transverse momenta used to "correct" thrust axis to $q\bar{q}$ axis

hadron pairs: angular correlations

 challenge: large modulations even without Collins effect (e.g., MC)

gunar.schnell @ desy.de

hadron pairs: angular correlations

 construct double ratio of normalized-yield distributions R₁₂, e.g. unlike-/like-sign:

$$\frac{R_{12}^U}{R_{12}^L} \simeq \frac{1 + \langle \frac{\sin^2 \theta_{\text{th}}}{1 + \cos^2 \theta_{\text{th}}} \rangle G^U \cos(\phi_1 + \phi_2)}{1 + \langle \frac{\sin^2 \theta_{\text{th}}}{1 + \cos^2 \theta_{\text{th}}} \rangle G^L \cos(\phi_1 + \phi_2)}$$
$$\simeq 1 + \left\langle \frac{\sin^2 \theta_{\text{th}}}{1 + \cos^2 \theta_{\text{th}}} \right\rangle \{G^U - G^L\} \cos(\phi_1 + \phi_2)$$

- suppresses flavor-independent sources of modulations
- GU/L specific combinations of FFs
- remaining MC asymmetries:
 -> systematics
 gunar.schnell @ desy.de

Collins asymmetries (RF0)

- first measurement of Collins

 asymmetries by Belle [PRL 96 (2006)
 232002, PRD 78 (2008) 032011, PRD
 86 (2012) 039905(E)]
 - significant asymmetries rising with z
 - used for first transversity and Collins FF extractions

Collins asymmetries (RF0)

BaBar results [PRD 90 (2014) 052003] consistent with Belle

Collins asymmetries (RF0)

48

Collins asymmetries - going further

 even larger effects seen for kaon pairs

gunar.schnell @ desy.de

Collins asymmetries - going further

 even larger effects seen for kaon pairs p_T dependence for pions

polarizing fragmentation function

• polarization normal to production plane, i.e \propto ("q" \times P_A) [note that the sign got reversed in the drawing]

- reference axis to define transverse momentum:
 - "thrust frame" use thrust axis
 - "hadron frame" use momentum direction of "back-to-back" hadron

gunar.schnell @ desy.de

instead of summarizing results ...

hadron structure (distribution functions)

- data from HERMES,
 JLab and COMPASS;
 planned for future EIC
- convolutes parton distribution (Φ) and fragmentation (Δ) functions $\Phi \otimes \Delta$
- need fragmentation function to extract distribution functions

- data from HERMES,
 JLab and COMPASS;
 planned for future EIC
- convolutes parton distribution (Φ) and fragmentation (Δ) functions $\Phi \otimes \Delta$
- need fragmentation function to extract distribution functions

- ideal place to study hadronization
- convolutes parton
 fragmentation
 functions Δ⊗Δ
- wealth of existing data from BELLE/ BaBar & BESIII and more to come (especially Belle2)

- data from HERMES,
 JLab and COMPASS;
 planned for future EIC
- convolutes parton distribution (Φ) and fragmentation (Δ) functions $\Phi \otimes \Delta$
- need fragmentation function to extract distribution functions

- testing ground for universality of TMDs
- convolutes parton distribution functions $\Phi \otimes \Phi$
- measurable at COMPASS, RHIC, Fermilab and LHC

- ideal place to study hadronization
- convolutes parton
 fragmentation
 functions Δ⊗Δ
- wealth of existing data from BELLE/ BaBar & BESIII and more to come (especially Belle2)

backup

Process dependence

simple QED example

DIS: attractive

Process dependence

