

Measurement of the Generalized GDH Integral at HERMES

Gunar Schnell

Tokyo Institute of Technology

gunar.schnell@desy.de

consider the complex series $z_{n+1} = z_n^2 + c$ where *c* is some complex constant and map out the complex plane for which this series converges:

consider the complex series $z_{n+1} = z_n^2 + c$ where *c* is some complex constant and map out the complex plane for which this series converges:

The Beauty of Simplicity

consider the complex series $z_{n+1} = z_n^2 + c$

where c is some completed complex plane for which $\frac{1}{2}$

The Beauty of Simplicity

consider the complex series $z_{n+1} = z_n^2 + c$ where c is some comple complex plane for which Gunar Schnell, HERMES Collaboration **RIKEN Seminar No** - p.2

epton-Nucleon Scattering exhibits different "faces":

- Resonance region:
 - Excitations of nucleon
 - Mesonic degrees of freedom
- Deep Inelastic Scattering (DIS) region:
 - Substructure described in terms of (asymptotically free) partons (quarks, gluons)
 - application of perturbative QCD

DUALITY = CONNECTION between RESONANCE and DIS REGION

Duality

Simplicity in Nuclear Physics II: Gerasimov-Drell-Hearn Sum Rule

• GDH (GDHHY)¹ Sum Rule:

$$\int_{\nu_0}^{\infty} \frac{d\nu}{\nu} \left[\sigma_{\frac{1}{2}}(\nu) - \sigma_{\frac{3}{2}}(\nu) \right] = -\frac{2\pi^2 \alpha}{M^2} \kappa^2$$

\Rightarrow A low-energy limit is expressed in terms of an integral that runs over all energies

¹Hosoda and Yamamoto are often ignored when talking about the derivation of the GDH sum rule. They actually were the first using current-algebra techniques!

- (Opening Remarks)
- Introduction
 - DIS & Parton Model
 - Concepts of Duality
 - The GDH Sum Rule
 - Generalized GDH Integral
- The HERMES experiment
- g_1 and the helicity distribution functions
- Duality in polarized case
- Measurements of the (generalized) GDH integrals
- Summary

Scattering off Nucleons

- scattering off asymptotically free quarks
- pQCD applicable
- data well reproduced in models

- complicated structure
- strong coupling constant
 ⇒ non-perturbative regime
- hard to reproduce in models

"well-understood"

Can we use knowledge from DIS in Resonance Region?

- DUALITY: Compare DIS and Resonance regions
- GDH: Combine DIS and Resonance regions

use well-known probe to study hadronic structure

use well-known probe to study hadronic structure

use well-known probe to study hadronic structure

Factorization $\Rightarrow \sigma^{ep \to ehX} = \sum_q f^{p \to q} \otimes \sigma^{eq \to eq} \otimes D^{q \to h}$

$$\frac{d^2\sigma}{d\Omega dE^2} = \frac{\alpha^2 E'}{Q^2 E} L_{\mu\nu}(k,q,s) W^{\mu\nu}(P,q,S)$$

 $L_{\mu\nu}$: Lepton Tensor (exactly calculable in QED) $W^{\mu\nu}$: Hadron Tensor (parametrized in terms of structure functions)

$$= -g^{\mu\nu}F_1(x,Q^2) + \frac{p^{\mu}p^{\nu}}{\nu}F_2(x,Q^2)$$
$$+i\epsilon^{\mu\nu\alpha\beta}\frac{q_{\alpha}}{\nu}\left(S_{\beta}g_1(x,Q^2) + \frac{1}{\nu}(p \cdot qS_{\beta} - S \cdot qp_{\beta})g_2(x,Q^2)\right)$$

 F_1, F_2 : unpolarized structure functions g_1, g_2 : polarized structure functions

structure functions can be written as probability densities (on the light cone)

$$F_{1}(x) = \frac{1}{2} \sum_{q} e_{q}^{2} q(x) \qquad \text{momentum distribution}$$

$$F_{2}(x) = 2x F_{1}(x) \qquad \text{Callan-Gross relation}$$

$$g_{1}(x) = \frac{1}{2} \sum_{q} e_{q}^{2} \Delta q(x) \qquad \text{helicity distribution}$$

$$g_{2}(x) = 0$$

including transverse momentum of partons:

 $g_2(x)=g_2^{WW}(x)+g_2^{twist-3}(x) \qquad \mbox{(Wandzura-Wilczek '77)} \label{eq:g2}$ where $g_2^{WW}(x)=\int_x^1 \frac{dy}{y}g_1(y)-g_1(x)$

Helicity distribution $\Delta q(x) = q^{\uparrow} - q^{\downarrow}$

 $q^{\uparrow(\downarrow)}(x)$ – probability to find quark of flavor q with momentum fraction x and spin (anti)aligned to proton spin

Helicity distribution $\Delta q(x) = q^{\uparrow} - q^{\downarrow}$ $\mathbf{S}_N = \frac{1}{2} \quad \stackrel{?}{=} \quad \frac{1}{2} \sum_q \int \Delta q(x) \ dx \stackrel{\mathsf{def}}{=} \quad \frac{1}{2} \ \Delta \Sigma$ only valence quarks Naive Quark Model: $\Delta \Sigma = 1$ EMC('88): $\Delta\Sigma \approx 10 - 20\%$ "SPIN CRISIS"

Helicity distribution $\Delta q(x) = q^{\uparrow} - q^{\downarrow}$ \downarrow $\mathbf{S}_{N} = \frac{1}{2}$ $\stackrel{?}{=}$ $\frac{1}{2} \sum_{q} \int \Delta q(x) dx \stackrel{\text{def}}{=} \frac{1}{2} \Delta \Sigma$ only valence quarks Naive Quark Model: $\Delta \Sigma = 1$ EMC('88): $\Delta \Sigma \approx 10 - 20\%$

$$\mathbf{S}_N = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_z$$

Angular Momentum Sum Rule

include also gluons, sea quarks & orbital angular momentum

DUALITY = RELATION BETWEEN DIS AND RESONANCE REGIONS (Bloom & Gilman '70)

- Curve measured in the resonance region (low W^2) is *in average* equal to the curve measured in DIS region (high W^2)
- Originally introduced for unpolarized photo-absorption cross section
- Quantified by means of ratios $R_i = \frac{I_i}{S_i}$ where

$$I_i(Q^2) = \int_{x_{min_i}}^{x_{max_i}} F_2^{Res}(x) dx$$
$$S_i(Q^2) = \int_{x_{min_i}}^{x_{max_i}} F_2^{DIS}(x) dx$$

Kinematic Plane

Duality in Unpolarized Case

- Duality observed for $Q^2 \ge 1.5 (GeV/c)^2$
- Holds for individual resonance contributions as well as for whole range $1.15 \le W^2 \le 3.9 (GeV/c)^2$
- Holds for phenomenological DIS fits but not for leading order fits

- Duality extensively studied for unpolarized case
- Duality hardly explored for spin-dependent photoabsorption cross section
- There is no *a-priori* reason to have the same situation as in unpolarized case
- Duality expected to fail at low Q² since for the proton the Ellis-Jaffe sum rule (integral over DIS region) and the GDH sum rule (real photon limit of integral over DIS+Resonance region) have opposite signs

Relates anomalous contribution κ to the magnetic moment of the nucleon with total absorption cross section for circularly polarized real photons on polarized nucleons

 \Rightarrow A low-energy limit is expressed in terms of an integral that runs over all energies

$$I_{GDH} = \int_{\nu_0}^{\infty} \frac{d\nu}{\nu} \left[\sigma_{\frac{1}{2}}(\nu) - \sigma_{\frac{3}{2}}(\nu) \right] = -\frac{2\pi^2 \alpha}{M^2} \kappa^2$$

 ν_0 : pion production threshold

 $\sigma_{\frac{1}{2}\left(\frac{3}{2}\right)}$: polarized photoabsorption cross section with total helicity in initial state equal $\frac{1}{2}\left(\frac{3}{2}\right)$

GDH Sum Rule II

• κ for proton (neutron, deuteron): 1.79 (-1.91, -0.143)

I^p_{GDH}	=	$-204 \ \mu \mathbf{b}$
I_{GDH}^n	=	$-233 \ \mu \mathbf{b}$
I^d_{GDH}	—	$-0.65 \ \mu b$

- hard to verify experimentally because of up-to-now limited range in photon energies
- results for low-energy part of integral in conjunction with Regge extrapolations => sizeable contributions from higher energies and multi-pion photoproduction needed
- expected NOT to fail EXCEPT in case of existence of J = 1 fixed poles

use virtual photons instead of real ($Q^2 = 0$) photons

$$\begin{split} I(Q^2) &\equiv \int_{\nu_0}^{\infty} \frac{d\nu}{\nu} \left[\sigma_{\frac{1}{2}}(\nu, Q^2) - \sigma_{\frac{3}{2}}(\nu, Q^2) \right] \\ &= \frac{16\pi^2 \alpha}{Q^2} \int_0^{x_0} dx \frac{g_1(x, Q^2) - \gamma^2 g_2(x, Q^2)}{\sqrt{1 + \gamma^2}} \\ &= \frac{8\pi^2 \alpha}{M} \int_0^{x_0} \frac{dx}{x} \frac{A_1(x, Q^2) F_1(x, Q^2)}{K} \end{split}$$

K: virtual photon flux factor (in Gilman convention)

 $\gamma = Q^2/\nu^2$

 A_1 : longitudinal cross-section asymmetry for virtual-photon absorption

• in leading-twist approximation, $\gamma \rightarrow 0$, Burkhardt-Cottingham sum rule holds, i.e.

$$\int_0^1 g_2(x, Q^2) dx = 0$$

$$I_{GDH}(Q^2)_{\gamma^2 \to 0} = \frac{16\pi^2 \alpha}{Q^2} \int_0^{x_0} dx \frac{g_1(x, Q^2) - \gamma^2 g_2(x, Q^2)}{\sqrt{1 + \gamma^2}} = \frac{16\pi^2 \alpha}{Q^2} \Gamma_1(Q^2)$$

- $\Gamma_1(Q^2) = \int_0^1 g_1(x, Q^2) dx$ Ellis-Jaffe Integral
- difference between proton and neutron \Rightarrow Bjorken SR:

$$\frac{Q^2}{16\pi^2\alpha} \{ I^p_{GDH}(Q^2) - I^n_{GDH}(Q^2) \}_{\gamma^2 \to 0} = \Gamma^P_1(Q^2) - \Gamma^n_1(Q^2) = \frac{1}{6}g_a$$

- Polarized lepton beam
- Polarized target

- Polarized lepton beam
- Polarized target
- Large acceptance spectrometer

- (E', p') (E, p)e q Polarized lepton beam u Polarized target
- Large acceptance spectrometer
- Good Particle IDentification (PID)

Polarized Beam at HERA

Polarized Beam at HERA

- 27.5 GeV e⁺/e⁻ beam
- Self-polarizing through Sokolov-Ternov-Effect
- Average beam polarization of about 55%

- Storage cell with atomic beam source
- Pure target (NO dilution)
- Polarized or unpolarized targets possible
- Different gas targets available (H, D, He, N, Kr ...)

The HERMES Spectrometer

- Internal storage cell: pure gas target
- Forward acceptance spectrometer: 40 mrad $\leq \Theta \leq$ 220 mrad
- Tracking: 57 tracking planes: $\delta P/P = (0.7 1.3)\%$, $\delta \Theta \le 0.6$ mrad
- PID: Cherenkov (RICH after 1997), TRD, Preshower, Calorimeter

Particle Identification

After 1997 use dual radiator Ring Imaging CHerenkov

Excellent e^+/e^- identification:

- Efficiency $\geq 98\%$
- Hadron contamination $\leq 1\%$

Particle Identification

After 1997 use dual radiator Ring Imaging CHerenkov \hookrightarrow very good hadron identification in the range $2 \ GeV \le P_h \le 15 \ GeV$

Excellent e^+/e^- identification:

- Efficiency $\ge 98\%$
- Hadron contamination $\leq 1\%$

– p.24

measure double spin asymmetries:

$$A_{\parallel} = \frac{1}{\langle P_T P_B \rangle} \frac{\sigma^{\uparrow\downarrow} - \sigma^{\uparrow\uparrow}}{\sigma^{\uparrow\downarrow} + \sigma^{\uparrow\uparrow}} = D(A_1 - \eta A_2)$$

$$A_1 = \frac{\sigma_{\frac{1}{2}} - \sigma_{\frac{3}{2}}}{\sigma_{\frac{1}{2}} + \sigma_{\frac{3}{2}}} = (1 - \gamma^2) \frac{g_1}{F_1}$$

•
$$F_1 = \frac{(1+\gamma^2)}{2x(1+R)}F_2$$

- F_2 from world data
- A_2 : use $A_2^n = 0$, fit to A_2^p data or $A_2^d = A_2^{WW}$

Polarized Deuterium Data

World Data on $x \cdot g_1(x)$

"back-on-the-envelope"

 $g_1^p > g_1^d > g_1^n$

(neglecting sea quark contributions)

$$p: 2 \cdot \frac{4}{p} \Delta u_p + \frac{1}{9} \Delta d_p$$

$$d: p + n$$

$$n: 2 \cdot \frac{1}{9} \Delta d_n + \frac{4}{9} \Delta u_n$$

$$= 2 \cdot \frac{1}{p} \Delta u_p + \frac{4}{9} \Delta d_p$$

$$\Delta u_p > 0 \qquad \Delta d_p < 0$$

 $\Gamma_1^{p,d} > 0$ VS. $I_{GDH}(0) < 0 !!!$

Hadron Asymmetries

- 5-param. flavor decomposition
- assume symmetric quark sea
- u-quark strongly polarized
- *d*-quark strongly anti-polarized
- sea quark polarizations consistent with zero
- good agreement with LO-QCD fits

$$g_1^{Res,DIS}(x,Q^2) = A_1(x) \cdot F_1(x,Q^2)$$

Resonance Region:

•
$$A_1 = \frac{A_{\parallel}}{D} - \eta A_2$$

- $F_1 = \frac{F_2}{2x(1+R)}$
- $R = 0.18; F_2 = F_2^{Res}$ Bodek et al.'79
- $A_2 = 0.06 \pm 0.16 \ (Q^2 = 3)$ E143 '98

DIS Region:

• A_1 from parametrization (i.e. x^{α} with $\alpha = 0.7$) or from data

•
$$F_1 = \frac{F_2}{2x(1+R)}$$

• $R = R(x, Q^2);$ $F_2 = F_2^{DIS}$ Whitlow et al. '90; NMC '95

want to study $R_i = I_i/S_i$ with

$$I_i(Q^2) = \int_{x_{min_i}}^{x_{max_i}} g_1^{Res}(x) dx$$
$$S_i(Q^2) = \int_{x_{min_i}}^{x_{max_i}} g_1^{DIS}(x) dx$$

 Δx_i delimited by ΔW^2 region ($1 \le W^2 \le 4.0 \text{ GeV}^2$):

Q_i^2 (GeV 2)	Δx_i	
1.2 - 2.4	0.35 - 0.93	
2.4 - 4.0	0.49 - 0.96	
4.0 - 12.0	0.63 - 0.98	

Background Contributions

$$A_{\parallel}^{meas} = f_{el}A_{\parallel}^{el} + f_{Res}A_{\parallel}^{Res} + f_{DIS}A_{\parallel}^{DIS}$$

$$A_{\parallel}^{Res} = (A_{\parallel}^{meas} - f_{el}A_{\parallel}^{el} - f_{DIS}A_{\parallel}^{DIS})/f_{Res}$$

Contributions to Resonance Region:

Q^2 -bin	from elastic peak	from DIS
1	0.091	0.099
2	0.054	0.135
3	0.038	0.184

small contribution from elastic tail

Duality for Polarized Proton

Scattering

First observation of duality in polarized lepton scattering

The Generalized GDH at HERMES

Combine data from DIS and Resonance regions to evaluate generalized GDH integral:

$$\begin{split} I_{GDH}(Q^2) &= \frac{8\pi^2\alpha}{M} \int_0^{x_0} \frac{dx}{x} \frac{A_1(x,Q^2)F_1(x,Q^2)}{K} \\ I_{GDH}^n &= \frac{I_{GDH}^d}{1 - 1.5\omega_d} - I_{GDH}^p \\ A_1 &= \frac{A_{\parallel}}{D} - \eta A_2 \\ A_{\parallel} &= \frac{N^{\uparrow\downarrow}L^{\uparrow\uparrow} - N^{\uparrow\uparrow}L^{\uparrow\downarrow}}{N^{\uparrow\downarrow}L_p^{\uparrow\uparrow} + N^{\uparrow\uparrow}L_p^{\uparrow\downarrow}} \\ F_1 &= F_2 \frac{1 + \gamma^2}{2x(1 + R)} \\ K &= \nu \sqrt{1 + \gamma^2} \\ Y^2 &= Q^2/\nu^2 \\ x_0 &= Q^2/2M\nu_0 \end{split} \qquad \begin{aligned} F_2^{Res} \to \text{Bodek fit} \\ A_2^{Res,d(p)} &= 0 (0.06 \pm 0.16) \end{aligned}$$

Gunar Schnell, HERMES Collaboration

 $\gamma^2 = Q^2 / \nu^2$

RIKEN Seminar November 5th, 2003

GDH Integral for Proton and Deuteron

- Parametrization by Soffer and Teryaev (solid) describe both data sets well
- Model for resonance contribution (dashed) by Aznauryan falls off to early at low Q^2
- **Q**²- behaviour consistent with pQCD evolution of integral
- DIS contribution dominates at higher Q² Gunar Schnell, HERMES Collaboration

GDH Integral

- I_{GDH} for neutron is negativ and smaller than for proton
- I_{GDH} for deuteron is positiv and smaller than for proton
- Agreement with SLAC and JLab data
- Turn-over to meet real-photon prediction not seen ($I_{GDH}^{p,n,d}$ =-204, -233, -0.65) Gunar Schnell, HERMES Collaboration RIKEN Seminar November 5th, 2003

Q^2 -Dependence of the GDH Integral

- No indication of higher-twist or resonance form factor contributions
- Agreement with Bjorken Sum Rule prediction and measurements for $Q^2=5~{
 m GeV}^2$
- No turn-over seen to meet GDH prediction: $I^p_{GDH}(0) I^n_{GDH}(0) = 29$ Gunar Schnell, HERMES Collaboration

- Precision measurement of polarized deuteron structure function presented
- First 5-parameter flavor decomposition of quark polarization
- First evidence of Quark-Hadron-Duality in spin structure function
- First extensive measurement of the generalized GDH integral for proton, deuteron and neutron
- DIS contribution to generalized GDH integral dominates for $Q^2 > 3$ GeV²
- Turn-over of proton and deuteron GDH integral towards (negative) real photon prediction NOT observed at HERMES
- GDH difference Proton-Neutron in good agreement with Bjorken Sum Rule prediction and SLAC data
- Leading-Twist ($1/Q^2$ -behaviour) for Q^2 down to 1.5 GeV 2

HERMES RICH

