TMD Measurements at Hermes

*S. Gliske, L. Pappalardo, M. Diefenthaler, F. Giordano, R. Lamb, A. Lopez Ruiz, A. Martinez de la Ossa, (For the HERMES Collaboration)

*Univ. of Michigan

Indiana-Illinois Workshop on Fragmentation Functions Bloomington, Illinois 14 December, 2013

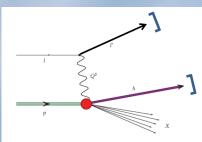
Outline

- Inclusive hadron electroproduction in DIS
- Single hadron production in TMD Semi-inclusive DIS
- Dihadron production in TMD Semi-inclusive DIS

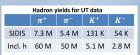
Inclusive hadron electroproduction in DIS

Semi-Inclusive vs. Inclusive DIS

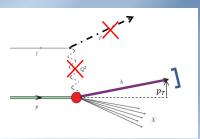
Semi-Inclusive



- Hadron detected in coincidence with lepton
- ▶ DIS regime $Q^2 > 1 \text{ GeV}^2$
- Hard scales: Q^2 , $P_{h\perp}$ (w.r.t. γ^*)
- Factorization valid for $P_{h\perp} \ll Q^2$



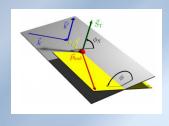
Inclusive



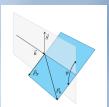
- No Q^2 information
- Data dominated by $Q^2 \approx 0$
- Hard scale: P_T (w.r.t. incident l)
- Main variables $x_F = 2\frac{P_L}{\sqrt{s}}, P_T$
- Events selected with at least one π^{\pm} or K^{\pm} , regardless of any detected leptons.

Angles Semi-Inclusive vs. Inclusive DIS

Semi-Inclusive



Inclusive



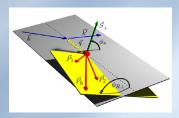
Cross Section

$$\begin{split} d\sigma &\propto F_{UU,T} + \epsilon F_{UU,L} + \\ &\sqrt{2\epsilon(1+\epsilon)}\cos\phi_h F_{UU}^{\cos\phi_h} + \epsilon\cos2\phi_h F_{UU}^{\cos\phi_h} + \\ S_T \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \epsilon F_{UT,L}^{\sin(\phi_h - \phi_S)}\right) + \\ &\epsilon\sin(\phi_h + \phi_S)F_{UT}^{\sin(\phi_h + \phi_S)} + \\ &\epsilon\sin(3\phi_h - \phi_S)F_{UT}^{\sin(3\phi_h - \phi_S)} + \\ &\sqrt{2\epsilon(1+\epsilon)}\sin(\phi_S)F_{UT}^{\sin(\phi_S)} + \\ &\sqrt{2\epsilon(1+\epsilon)}\sin(2\phi_h - \phi_S)F_{UT}^{\sin(2\phi_h - \phi_S)}\right] + \dots \end{split}$$

- Cross section $d\sigma = d\sigma_{UU} \left[1 + S_{\perp} A_{UT}^{\sin \psi} \sin \psi \right].$
- $A_{UT}^{\sin\psi}$ includes contributions from Sivers, Collins, & higher twist
- HERMES kinematics implies $\sin \psi \approx \phi_h \phi_S$

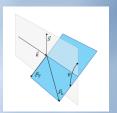
Angles Semi-Inclusive vs. Inclusive DIS

Semi-Inclusive



- Cross Section
 - Same general form, but polarization in the final state

Inclusive



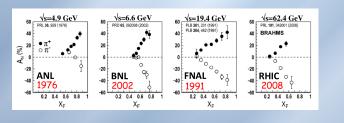
- Cross section $d\sigma = d\sigma_{UU} \left[1 + S_{\perp} A_{UT}^{\sin \psi} \sin \psi \right].$
- $A_{UT}^{\sin \psi}$ includes contributions from Sivers, Collins, & higher twist
- HERMES kinematics implies $\sin \psi \approx \phi_h \phi_S$

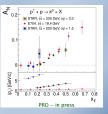
Inclusive Hadronic Lepto-production vs. pp^{\uparrow}

For an ideal detector with full 2π coverage in ψ :

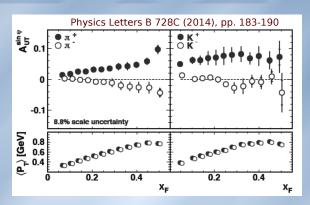
$$A_{UT}^{\sin\psi} = -rac{\pi}{2} rac{\int_0^{\pi} d\psi \, \sin\psi d\sigma_{UT}}{\int_0^{\pi} d\psi d\sigma_{UT}} = -rac{\pi}{2} A_N$$

- ▶ $pp A_N$ results mirror symmetric for π^{\pm} vs x_F
- Reproduced by various experiments over 35 years over wide energy range $(\sqrt{s} \text{ from 5 to } 200 \text{ GeV})$
- Cannot be interpreted using standard leading-twist framework based on collinear factorization.



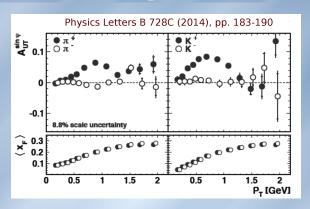


HERMES Results vs. x_F



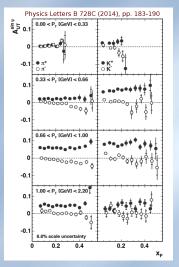
- π^+ amplitude rises fairly linearly with x_F up to a magnitude of 10%
- π^- amplitude is negative, also fairly linearly, but smaller magnitude Pion results vs x_F have comparable features as A_N in pp scattering
- K^+ amplitude is quite constant, around 7%
- $\sim K^-$ amplitude is also quite constant, but consistent with zero.
 - Significant flavor dependence

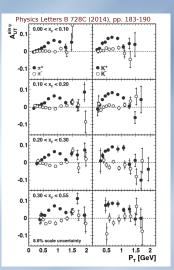
HERMES Results vs. p_T



- No pp^{\uparrow} scattering data with sufficient coverage in p_T with high enough $|x_F|$
 - Expectation is linear rise from zero at small P_T and $1/P_T$ scaling at large P_T with minimal constraints on behavior at intermediate P_T
- π^+ and K^+ rise linearly from zero, as might be expected from A_N in pp.
 - Clear node in π^+ results, suggested node in K^+ results
 - Node in both cases around $P_T \approx 1.3 \text{ GeV}$
- Negative mesons have much smaller amplitude, except one π^- point

Inclusive HERMES Results, 2D binning

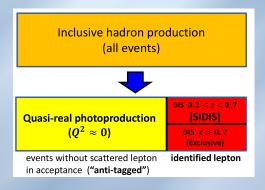




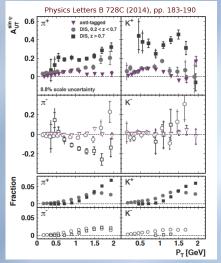
- Results generally quite flat with x_F
- Shape versus p_T persists even in limited x_F bins

Inclusive HERMES Results, Interpretation

- Results include mixtures of various contributions with different kinematic dependencies
 - Makes interpretation of the underlying physics quite difficult
- More insight can be gained through separating different contributing processes
- Overall, anti-tagged events constitute 98% of the statistics



Inclusive HERMES Results per Region

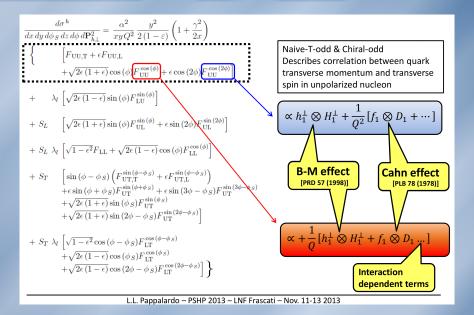


- Anti-tagged events look much like overall results, as they dominate the statistics
- Exclusive-like events: very large asymmetries!
 - Pions have contributions from exclusive ρ decays Large π^- could be from d-quark Sivers and favored D_1 distribution function.

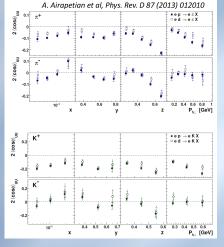
- SIDIS-like events: π^{\pm} are larger and the magnitudes increase fairly linearly with P_T
 - In this regime, $Q^2 > P_T^2$ and TMDs can contribute without P_T -suppression

Single Hadron SIDIS

The Boer-Mulders Moment



Boer-Mulders Moment Results



Pion Results:

Similar results for H and D indicate $h_1^{\perp,u} \approx h_1^{\perp,d}$.

Opposite sign for π^{\pm} consistent w/ opposite signs of fav./unfav.

Collins function.

Kaon Results:

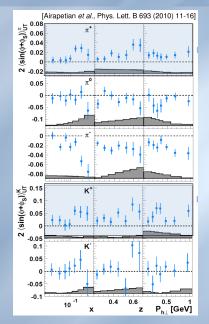
- Kaon results are larger magnitude than pions and have different kinematic dependencies K^+ generally positive, $K^$
 - generally positive, K⁻
- Suggests significant flavor dependence in Collin's fragmentation

Preform your own projections of the 5D results
http://www-hermes.desy.de/cosnphi/

The Collins Moment

$$\begin{split} \frac{d\sigma^h}{dx\,dy\,d\phi_S\,dz\,d\phi\,d\mathbf{P}_{h\perp}^2} &= \frac{\alpha^2}{xyQ^2}\,\frac{y^2}{2\left(1-\varepsilon\right)}\left(1+\frac{\gamma^2}{2x}\right) \\ &\left\{ \begin{array}{c} \left[F_{\mathrm{UU,T}} + \epsilon F_{\mathrm{UU,L}} \right. \\ &\left. + \sqrt{2\epsilon\left(1+\epsilon\right)}\cos\left(\phi\right)F_{\mathrm{UU}}^{\cos\left(\phi\right)} + \epsilon\cos\left(2\phi\right)F_{\mathrm{UU}}^{\cos\left(2\phi\right)}\right] \\ + & \lambda_l\left[\sqrt{2\epsilon\left(1-\epsilon\right)}\sin\left(\phi\right)F_{\mathrm{LU}}^{\sin\left(\phi\right)}\right] \\ + & S_L\left[\sqrt{2\epsilon\left(1+\epsilon\right)}\sin\left(\phi\right)F_{\mathrm{UL}}^{\sin\left(\phi\right)} + \epsilon\sin\left(2\phi\right)F_{\mathrm{UL}}^{\sin\left(2\phi\right)}\right] \\ + & S_L\lambda_l\left[\sqrt{1-\epsilon^2}F_{\mathrm{LL}} + \sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(\phi\right)F_{\mathrm{LL}}^{\cos\left(\phi-\phi_S\right)}\right] \\ + & S_T\left[\sin\left(\phi-\phi_S\right)\left(F_{\mathrm{UT,T}}^{\sin\left(\phi-\phi_S\right)} + F_{\mathrm{UT,L}}^{\sin\left(\phi-\phi_S\right)}\right) + \epsilon\sin\left(\phi-\phi_S\right)F_{\mathrm{UT}}^{\sin\left(\phi-\phi_S\right)}\right) \\ & + \epsilon\sin\left(\phi+\phi_S\right)\left(F_{\mathrm{UT}}^{\sin\left(\phi+\phi_S\right)} + \epsilon\sin\left(3\phi-\phi_S\right)F_{\mathrm{UT}}^{\sin\left(3\phi-\phi_S\right)}\right) \\ & + \sqrt{2\epsilon\left(1+\epsilon\right)}\sin\left(\phi_S\right)F_{\mathrm{UT}}^{\sin\left(2\phi-\phi_S\right)}\right] \\ + & S_T\lambda_l\left[\sqrt{1-\epsilon^2}\cos\left(\phi-\phi_S\right)F_{\mathrm{LT}}^{\cos\left(\phi-\phi_S\right)} + \sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(\phi_S\right)F_{\mathrm{LT}}^{\cos\left(\phi-\phi_S\right)} \\ & + \sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(2\phi-\phi_S\right)F_{\mathrm{LT}}^{\cos\left(2\phi-\phi_S\right)}\right]\right\} \end{split}$$

The Collins Moment Results

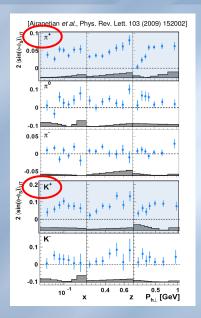


- Results high magnitude and opposite sign for π^{\pm}
- Results consistent with zero for π^0
- *u*-quark dominance suggests opposite signs of fav./unfav. Collins function.
- K^+ results positive with higher magnitude than π^+
- K^- results consistent with zero.
- Exist TMD transversity extraction using these results, along with Compass and Belle M. Anselmino, *et al.*, Phys. Rev. D 75 (2007)

The Sivers Moment

$$\begin{split} \frac{d\sigma^h}{dx\,dy\,d\phi_S\,dz\,d\phi\,d\mathbf{P}_{h\perp}^2} &= \frac{\alpha^2}{xyQ^2}\,\frac{y^2}{2\left(1-\varepsilon\right)}\left(1+\frac{\gamma^2}{2x}\right) \\ &\left\{ \begin{array}{c} \left[F_{\mathrm{UU,T}} + \epsilon F_{\mathrm{UU,L}} \right. \\ &\left. + \sqrt{2\epsilon\left(1+\epsilon\right)}\cos\left(\phi\right)F_{\mathrm{UU}}^{\cos\left(\phi\right)} + \epsilon\cos\left(2\phi\right)F_{\mathrm{UU}}^{\cos\left(2\phi\right)}\right] \\ + & \lambda_l\left[\sqrt{2\epsilon\left(1-\epsilon\right)}\sin\left(\phi\right)F_{\mathrm{LU}}^{\sin\left(\phi\right)}\right] \\ + & S_L\left[\sqrt{2\epsilon\left(1+\epsilon\right)}\sin\left(\phi\right)F_{\mathrm{UL}}^{\sin\left(\phi\right)} + \epsilon\sin\left(2\phi\right)F_{\mathrm{UL}}^{\sin\left(2\phi\right)}\right] \\ + & S_L\lambda_l\left[\sqrt{1-\epsilon^2}F_{\mathrm{LL}} + \sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(\phi\right)F_{\mathrm{LL}}^{\cos\left(\phi\right)}\right] \\ + & S_T\left[\sin\left(\phi-\phi_S\right)\left(F_{\mathrm{UT,T}}^{\sin\left(\phi-\phi_S\right)} + \epsilon F_{\mathrm{UT,L}}^{\sin\left(\phi-\phi_S\right)}\right) \\ & + \epsilon\sin\left(\phi+\phi_S\right)F_{\mathrm{UT}}^{\sin\left(\phi+\phi_S\right)} + \epsilon\sin\left(3\phi-\phi_S\right)F_{\mathrm{UT}}^{\sin\left(3\phi-\phi_S\right)} \\ & + \sqrt{2\epsilon\left(1+\epsilon\right)}\sin\left(\phi_S\right)F_{\mathrm{UT}}^{\sin\left(\phi_S\right)} \\ & + \sqrt{2\epsilon\left(1+\epsilon\right)}\sin\left(2\phi-\phi_S\right)F_{\mathrm{UT}}^{\sin\left(2\phi-\phi_S\right)}\right] \\ + & S_T\lambda_l\left[\sqrt{1-\epsilon^2}\cos\left(\phi-\phi_S\right)F_{\mathrm{LT}}^{\cos\left(\phi-\phi_S\right)} \\ & + \sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(\phi_S\right)F_{\mathrm{LT}}^{\cos\left(\phi-\phi_S\right)} \\ & + \sqrt{2\epsilon\left(1-\epsilon\right)}\cos\left(2\phi-\phi_S\right)F_{\mathrm{LT}}^{\cos\left(2\phi-\phi_S\right)}\right] \right\} \end{split}$$

The Sivers Moment Results



- Results significantly positive for π^+
- Results consistent with zero for π^-
- π^0 results appear as average of π^+ , π^-
- K^+ results positive with higher magnitude than π^+
- K^- results slightly positive
- Further studies hints that K^+ , π^+ difference may be due to higher twist effects for kaons

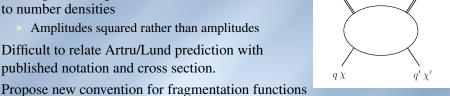
Dihadron SIDIS

Why SIDIS TMD Dihadrons?

- Dihadron cross section similar to single hadron cross section
 - Involves identical distribution functions but different factorization functions.
 - Dihadrons also access different flavor combinations.
 - Dihadrons give a wealth of flavor-dependent information
 - Different distribution functions also occur in the collinear cross section.
 - Collinear access to transversity
- Lund/Artru string fragmentation model predicts sign change in the Collins function between single hadron and the corresponding transversely polarized vector meson.
- Siver's function in ϕ -meson production may be related to gluon orbital angular momentum.

Fragmentation Functions and Spin/Polarization

- Leading twist Fragmentation functions are related to number densities
- Difficult to relate Artru/Lund prediction with published notation and cross section.



- - Functions entirely identified by the polarization states of the quarks, χ and χ'
 - Any final-state polarization, i.e. $|\ell_1, m_1\rangle|\ell_2, m_2\rangle$, contained within partial wave expansion of fragmentation functions
- Exists exactly two fragmentation functions
 - \triangleright D_1 , the unpolarized fragmentation function ($\chi = \chi'$)
 - $\vdash H_1^{\perp}$, the polarized (Collins) fragmentation function $(\chi \neq \chi')$
- New partial waves analysis proposed, using direct sum basis $|\ell, m\rangle$ rather than the direct product basis $|\ell_1, m_1\rangle |\ell_2, m_2\rangle$.

$$H_1^{\perp} = \sum_{\ell=1}^{\infty} \sum_{m=-\ell}^{\ell} P_{\ell,m}(\cos \vartheta) e^{im(\phi_R - \phi_k)} H_1^{\perp |\ell,m\rangle}(z, M_h, |\mathbf{k}_T|),$$

 $h' | \ell_2, m_2 \rangle$

 $h | \ell_1, m_1 \rangle$

Dihadron Twist-2 and Twist-3 Cross Section

$$d\sigma_{UU} = \frac{\alpha^{2}M_{h}P_{h\perp}}{2\pi xyQ^{2}} \left(1 + \frac{\gamma^{2}}{2x}\right)$$

$$\times \sum_{\ell=0}^{2} \left\{ A(x,y) \sum_{m=0}^{\ell} \left[P_{\ell,m} \cos(m(\phi_{h} - \phi_{R})) \left(F_{UU,T}^{P_{\ell,m}} \cos(m(\phi_{h} - \phi_{R})) + \epsilon F_{UU,L}^{P_{\ell,m}} \cos(m(\phi_{h} - \phi_{R})) \right) \right] \right.$$

$$+ B(x,y) \sum_{m=-\ell}^{\ell} P_{\ell,m} \cos((2-m)\phi_{h} + m\phi_{R}) F_{UU}^{P_{\ell,m}} \cos((2-m)\phi_{h} + m\phi_{R})$$

$$+ V(x,y) \sum_{m=-\ell}^{\ell} P_{\ell,m} \cos((1-m)\phi_{h} + m\phi_{R}) F_{UU}^{P_{\ell,m}} \cos((1-m)\phi_{h} + m\phi_{R}) \right\},$$

$$d\sigma_{UT} = \frac{\alpha^{2}M_{h}P_{h\perp}}{2\pi xyQ^{2}} \left(1 + \frac{\gamma^{2}}{2x} \right) |S_{\perp}| \sum_{\ell=0}^{2} \sum_{m=-\ell}^{\ell} \left\{ A(x,y) \left[P_{\ell,m} \sin((m+1)\phi_{h} - m\phi_{R} - \phi_{S}) \right) \right.$$

$$\times \left(F_{UT,T}^{P_{\ell,m}} \sin((m+1)\phi_{h} - m\phi_{R} - \phi_{S}) + \epsilon F_{UT,L}^{P_{\ell,m}} \sin((m+1)\phi_{h} - m\phi_{R} - \phi_{S}) \right) \right]$$

$$+ B(x,y) \left[P_{\ell,m} \sin((1-m)\phi_{h} + m\phi_{R} + \phi_{S}) F_{UT}^{P_{\ell,m}} \sin((3-m)\phi_{h} + m\phi_{R} - \phi_{S}) \right]$$

$$+ P_{\ell,m} \sin((3-m)\phi_{h} + m\phi_{R} - \phi_{S}) F_{UT}^{P_{\ell,m}} \sin((3-m)\phi_{h} + m\phi_{R} - \phi_{S}) \right]$$

$$+ P_{\ell,m} \sin((2-m)\phi_{h} + m\phi_{R} - \phi_{S}) F_{UT}^{P_{\ell,m}} \sin((2-m)\phi_{h} + m\phi_{R} - \phi_{S}) \right] \right\}.$$

Twist-2 Structure Functions, Transverse Target

 $F_{UT,T}^{P_{\ell,m}\sin((m+1)\phi_h-m\phi_R-\phi_S)} = -\Im\left[\frac{|\boldsymbol{p}_T|}{M}\cos\left((m+1)\phi_h-\phi_p-m\phi_k\right)\right]$

 $F_{IIT}^{\sin^2\vartheta\sin(5\phi_h-2\phi_R-\phi_S)}$ via pretzelocity

 $F_{UT,L}^{P_{\ell,m}\sin((m+1)\phi_h-m\phi_R-\phi_S)}$

$$F_{UT}^{P_{\ell,m}\sin((1-m)\phi_h+m\phi_R+\phi_S)} = -\Im\left[\frac{|k_T|}{M_h}\cos\left((m-1)\phi_h - \phi_p - m\phi_k\right) \frac{h_1H_1^{\perp|\ell,m\rangle}}{h_1H_1^{\perp|\ell,m\rangle}}\right],$$

$$F_{UT}^{P_{\ell,m}\sin((3-m)\phi_h+m\phi_R-\phi_S)} = \Im\left[\frac{|p_T|^2|k_T|}{M^2M_h}\cos\left((m-3)\phi_h + 2\phi_p - (m-1)\phi_k\right) \frac{h_1^{\perp}H_1^{\perp|\ell,m\rangle}}{h_1H_1^{\perp|\ell,m\rangle}}\right].$$
Can test Lund/Artru model with $F_{UT}^{\sin^2\vartheta\sin((-\phi_h+2\phi_R+\phi_S))}$ and $F_{UT}^{\sin^2\vartheta\sin((3\phi_h-2\phi_R+\phi_S))}$ via transversity

 $\times \left(f_{1T}^{\perp} \left(D_1^{|\ell,m\rangle} + D_1^{|\ell,-m\rangle} \right) + \chi(m) g_{1T} \left(D_1^{|\ell,m\rangle} - D_1^{|\ell,-m\rangle} \right) \right) \Big],$

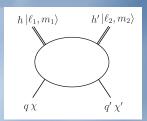
Data from SIDIS pseudo-scalar production indicate pretzelocity very small or possibly zero

In theory, could also test Lund/Artru and gluon radiation models with $F_{UT}^{\sin^2 \vartheta \sin(\phi_h + 2\phi_R - \phi_S)}$ and

Where is "the Collins function?"

Consider direct sum vs. direct product basis

$$\begin{split} \frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} &= \left(\frac{1}{2} \otimes \frac{1}{2}\right) \otimes \left(\frac{1}{2} \otimes \frac{1}{2}\right), \\ &= \left(1 \oplus 0\right) \otimes \left(1 \oplus 0\right), \\ &= 2 \oplus 1 \oplus 1 \oplus 1 \oplus 0 \oplus 0. \end{split}$$

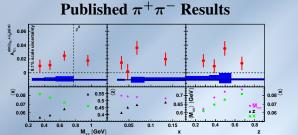


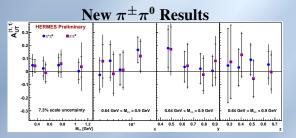
- The three $\ell = 1$ cannot be separated experimentally
 - Note: the usual IFF, related to $H_1^{\perp |1,1\rangle}$ is not pure sp, but also includes pp interference.
- Longitudinal vector meson state $|1,0\rangle|1,0\rangle$ is a mixture of $|2,0\rangle$ and $|0,0\rangle$
 - $|2,0\rangle$ partial waves affected very strongly by $\cos\vartheta$ acceptance
- Transverse vector meson states $|1,\pm 1\rangle |1,\pm 1\rangle$ are exactly $|2,\pm 2\rangle$
 - Models predict dihadron $H_1^{\perp |2,\pm 2\rangle}$ has opposite sign as pseudo-scalar H_1^{\perp} .
 - Cross section has direct access to $H_1^{\perp |2,\pm 2\rangle}$
- Using symmetry, can calculate cross section for any polarized final state from the scalar final state cross section

Analysis Considerations

- Dihadrons considered in this talk: $\pi^{\pm}\pi^{0}$ (ρ^{\pm}), $\pi^{+}\pi^{-}$ (ρ^{0}), $K^{+}K^{-}$ (ϕ)
- K^+K^- near the ϕ -peak ($M_{KK} < 1.05 \text{ GeV}^2$) analyzed separately than non-resonant region (1.05 GeV $^2 < M_{KK} < 2.5 \text{ GeV}^2$)
- Both TMDGen and Pythia were used as Monte Carlo generators for systematic studies
 - ► TMDGen was also used in the acceptance correction
- TMDGen uses a new TMD spectator model for the unpolarized dihadron fragmentation function $D_1^{[0,0)}$
 - Different tunes of the model are used for each dihadron type and region.
- Acceptance effects are corrected by inverting the smearing matrix in the parameter space.
- As no *p*-wave signal was found in the non-resonant K^+K^- region, only the $\ell=0$ sector is used in the fitting functions.

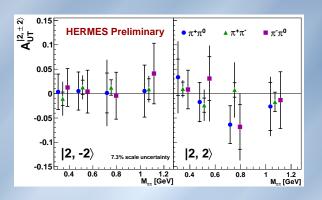
$|1,1\rangle$ Moment for $\pi\pi$ Dihadrons





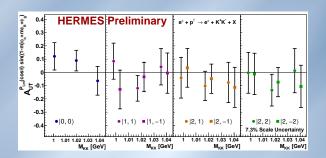
- Signs of moments are consistent for all $\pi\pi$ dihadron species.
- Statistics are much more limited for $\pi^{\pm}\pi^{0}$ dihadrons.
- Despite uncertainties, may still help constrain global fits.

$|2,\pm2\rangle$ Moments for $\pi\pi$ Dihadrons



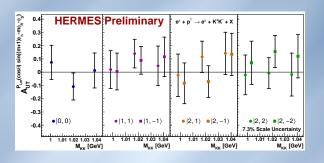
- $|2,-2\rangle$ moment very consistent with zero for all flavors
- Results for $|2,2\rangle$ are consistent with expectations
 - No indication of any signal outside the ρ -mass bin
 - Suggests negative moments for ρ^{\pm} , very small ρ^{0} moments
 - Results are sufficiently suggestive to merit measurements at current experiments.

K^+K^- , Res. Region, Collins Moments



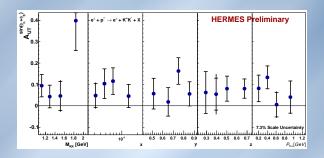
- Exists rotation in SU(3) space, so no direct testing of Lund/Artru
- No obvious change within ϕ -meson peak (middle bin) vs. sidebands within available statistics for any partial waves.
- Collinear access to transversity: s-flavor of either transversity or Collins is small

K^+K^- , Res. Region, Sivers Moments



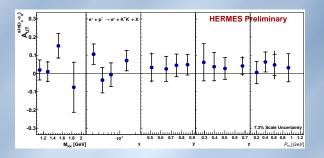
- Again, no obvious change within ϕ -meson peak vs. sidebands within available statistics
- The $|0,0\rangle$ partial wave may suggest difference between strange and other sea flavors of Sivers function

K^+K^- , Non-Res. Region, Collins Moment



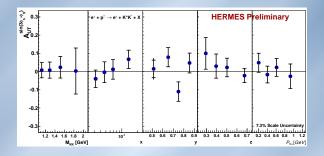
- Results consistent with small positive value
- Note: single hadron K^+ results positive and K^- are consistent with zero

K^+K^- , Non-Res. Region, Sivers Moment



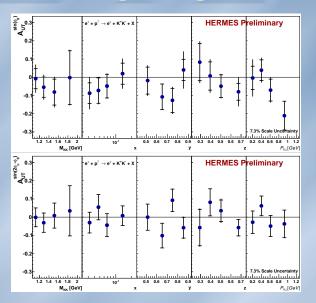
- Results consistent with small positive value
- Note: single hadron K^+ results also large and positive and K^- results small and slightly positive

K^+K^- , Non-Res. Region, Pretzelocity Moment



Consistent with zero, as expected

K^+K^- , Non-Res. Region, Higher Twist Moments



Higher twist moments also mostly consistent with zero

Conclusions

- HERMES inclusive hadron electroproduction reveal interesting features, common with A_N in pp^{\uparrow} and the Sivers effect in SIDIS
- SIDIS single and dihadron results provide rich details regarding flavor separation for many distribution functions and both fragmentation functions.
 - ► DFs: h_1^{\perp} , h_1 , f_{1T}^{\perp} , h_{1T}^{\perp} , ...
 - FFs: Single and dihadron $D_1^{|\ell,m\rangle}$, $H_1^{\perp|\ell,m\rangle}$
- ► The HERMES experiment has played a pioneering role in TMD studies, and there is still more to come...