Flavor dependent azimuthal modulations in unpolarized SIDIS cross section @ HERMES

SPIN 2010, Jülich

<u>Francesca Giordano</u> Rebecca Lamb

Semi-Inclusive DIS

Collinear case

 $\frac{d^5\sigma}{dxdydz} = \frac{\alpha^2}{xyQ^2} \left(\frac{y^2}{2(1-\epsilon)}\right) \left(1 + \frac{\gamma^2}{2x}\right) \left\{F_{UU,T} + \epsilon F_{UU,L}\right\}$

 Q^2 Negative squared

- 4-momentum transfer to the target
- $y\,$ Fractional energy of the virtual photon
- x Bjorken scaling variable
- χ Fractional energy transfer to the

produced hadron

Semi-Inclusive DIS

target
polarization
$$F_{XY,Z} = F_{XY,Z}(x, y, z, P_{h\perp})$$

beam $\bigvee_{V} \bigvee_{V}$
olarization
virtual photon
polarization

 $= \frac{\alpha^2}{xuQ^2} \left(1 + \frac{\gamma^2}{2x}\right) \left\{A(y)F_{UU,T} + B(y)F_{UU,L}\right\}$ $+C(y)\cos\phi_h F_{UU}^{\cos\phi_h} + B(y)\cos 2\phi_h F_{UU}^{\cos 2\phi_h} \}$

 Q^2 Negative squared

- 4-momentum transfer to the target
- $y\,$ Fractional energy of the virtual photon
- ${\mathcal X}$ Bjorken scaling variable
- χ Fractional energy transfer to the

produced hadron

Semi-Inclusive DIS

target
polarization
$$F_{XY,Z} = F_{XY,Z}(x, y, z, P_{h\perp})$$

beam \bigvee
polarization
virtual photon
polarization

 $\int \cos n\phi_h \frac{d^5\sigma}{xdydzd\phi_h dP_{h\perp}^2}$

 $-d\phi_h$

 $-d\phi_h$

$$= \frac{\alpha^2}{xyQ^2} \left(1 + \frac{\gamma^2}{2x} \right) \left\{ A(y) F_{UU,T} + B(y) F_{UU,L} + C(y) \cos \phi_h F_{UU}^{\cos \phi_h} + B(y) \cos 2\phi_h F_{UU}^{\cos 2\phi_h} \right\}$$

 Q^2 Negative squared

- 4-momentum transfer to the target
- ${m y}$ Fractional energy of the virtual photon
- x Bjorken scaling variable
- χ Fractional energy transfer to the

produced hadron

$$\langle \cos n\phi_h
angle = rac{\sigma}{\int \frac{d^5\sigma}{xdydzd\phi_h dP_h^2}}$$

Semi-Inclusive DIS

FF

 $\sigma^{ep \to ehX} = \sum DF \otimes \sigma^{eq \to eq} \otimes$

distribution functions

FF

 $\sigma^{ep \to ehX} = \sum DF \otimes \sigma^{eq \to eq} \otimes$

distribution functions

 $F_{UU}^{\cos 2\phi_h} \propto C \Big[-\frac{2(\hat{P}_{h\perp} \times \vec{\kappa}_T)(\hat{P}_{h\perp} \times \vec{p}_T) - \vec{\kappa}_T \times \vec{p}_T}{MM_h} h_1^{\perp} H_1^{\perp} \Big]$

implicit sum over quark flavors

Leading twist

Boer-Mulders effect

 $F_{UU}^{\cos 2\phi_h} \propto C \Big[-\frac{2(\hat{P}_{h\perp} \times \vec{\kappa}_T)(\hat{P}_{h\perp} \times \vec{p}_T) - \vec{\kappa}_T \times \vec{p}_T}{MM_h} h_1^{\perp} H_1^{\perp} \Big]$

implicit sum over quark flavors

Leading twist

Boer-Mulders effect

$$\begin{aligned} F_{UU}^{\cos 2\phi_h} \propto C \Big[-\frac{2(\hat{P}_{h\perp} \times \vec{\kappa}_T)(\hat{P}_{h\perp} \times \vec{p}_T) - \vec{\kappa}_T \times \vec{p}_T}{MM_h} h_1^{\perp} H_1^{\perp} \Big] \\ F_{UU}^{\cos \phi_h} \propto \frac{2M}{Q} C \Big[-\frac{\hat{P}_{h\perp} \times \vec{p}_T}{M_h} x h_1^{\perp} H_1^{\perp} - \frac{\hat{P}_{h\perp} \times \vec{\kappa}_T}{M} x f_1 D_1 + \dots \Big] \end{aligned}$$

implicit sum over quark flavors

Leading and Next-to Leading twist

implicit sum over quark flavors

Leading and Next-to Leading twist

Leading and Next-to Leading twist

HERMES

HERMES spectrometer

 $\sigma^{0}[1+2\langle\cos_{\eta}\phi_{\underline{h}}\rangle\cos_{\eta}\phi_{\underline{h}}\rangle\cos_{\eta}\phi_{\underline{h}}\phi$

$$n = \int L\sigma_w^0 \left[1 + 2\left< \cos\phi_h^0 \right> \cos\phi_h^0 + 2\left< \cos^2\phi_h^0 \right> \cos^2\phi_h^0 \right] \epsilon_{w,\phi_h}^{courrel} du$$

5, 201

Wednesday, September 15, 2010

Wednesday, Wednesday, Wednesday, Sectors berid 5, 2010

 $\sigma^{0}[1+2\langle\cos,\phi_{h}\rangle\cos\phi_{h}|+2\langle\cos,\phi_{h}\rangle\cos\phi_{h}|+2\langle\cos\phi_{h}\rangle\cos\phi_{h}|+2\langle\cos\phi_{h}\rangle\cos\phi_{h}|+2\langle\cos\phi_{h}\rangle\cos\phi_{h}|+2\langle\cos\phi_{h}\rangle\cos\phi_{h}|+2\langle\cos\phi_{h}\rangle\cos\phi_{h}|+2\langle\phi_{h}|+2\langle\phi_{h$

$$n = \int L\sigma_w^0 \left[1 + 2\left< \cos\phi_h^0 \right> \cos\phi_h^0 + 2\left< \cos^2\phi_h^0 \right> \cos^2\phi_h^0 \right] \epsilon_{w,\phi_h}^{accer adw} dw$$

, 201

Wednesday, September 15, 2010

Wednesday, Wednesday, Wednesday, September 15, 2010

 $\sigma^{0}[1+2\langle\cos,\phi_{h}\rangle\cos\phi_{h}|+2\langle\cos,\phi_{h}\rangle\cos\phi_{h}|+2\langle\cos\phi_{h}\rangle\cos\phi_{h}|+2\langle\cos\phi_{h}\rangle\cos\phi_{h}|+2\langle\cos\phi_{h}\rangle\cos\phi_{h}|+2\langle\cos\phi_{h}\rangle\cos\phi_{h}|+2\langle\cos\phi_{h}\rangle\cos\phi_{h}|+2\langle\phi_{h}|+2\langle\phi_{h$

, 2010

Vednesday, September 15, 2010

Wednesday, Wednesday, September 15, 2010

 $\sigma^{0}[1+2\langle\cos_{\eta}\phi_{h}\rangle\cos_{\eta}\phi_{h}] + 2\langle\cos_{\eta}\phi_{h}\rangle + 2\langle\cos_{2}\phi_{h}\rangle + 2\langle\cos_{2}\phi_$

$$n = \int L\sigma_w^0 [1 + 2\langle \cos\phi_h^0 | \psi \cos\phi_h^0 | \psi \cos\phi_h^0 + 2\langle \cos2\phi_h^0 | \psi \cos2\phi_h^0 | \psi \cos\phi_h^0 | \psi \cos\phi_h^0$$

Multi-dimensional (w)

Binning 900 kinematic bins x ϕ_h -bins Variable # Bin limits 0.023 0.04 0.27 0.078 0.145 0.6 5 Х 0.2 0.3 0.45 0.6 0.7 0.85 5 у 6 0.2 0.3 0.4 0.5 0.6 0.75 1 Z $P_{h \perp}$ 0.05 0.2 1.3 6 0.35 0.50.7 1

Experimental extraction

Wednesday, September 15, 20

Wednesday, September 19, 2010

 $\sigma^{0}[1+2\langle\cos\phi_{h}\rangle\cos\phi_{h}|+2\langle\phi_{h}\rangle\cos\phi_{h}|+2\langle\phi_{h}\rangle\cos\phi_{h}|+2\langle\phi_{h}\rangle\cos\phi_{h}|+2\langle\phi_{h}\rangle\cos\phi_{h}|+2\langle\phi_{h}\rangle\cos\phi_{h}|+2\langle\phi_{h}\rangle\cos\phi_{h})+2\langle\phi_{h}\otimes\phi_$

 $n = \int L\sigma_w^0 [1 + 2\langle \cos\phi_h \rangle_w^n \cos\phi_h + 2\langle \cos2\phi_h \rangle_w^n \cos 2\phi_h]\epsilon_{w,\phi_h}^n \epsilon_{w,\phi_h}^n dw$

$$n_{born} = S^{-1}[n - B]$$

Multi-dimensional (w)unfolding

Binning 900 kinematic bins x ϕ_h -bins								
Variable		Bin limits						
x	0.023	0.023 0.04 0.078 0.145 0.27 0.6						
У	0.2	0.3	0.45	0.6	0.7	0.85		5
z	0.2	0.3	0.4	0.5	0.6	0.75	1	6
$P_{h\perp}$	0.05	0.2	0.35	0.5	0.7	1	1.3	6

 $\sigma^{0}[1+2\langle\cosq\phi_{h}\rangle\cos\phi_{h}|+2\langle\cos\varphi_{h}\rangle\cos\phi_{h}\rangle\cos\phi_{h}|+2\langle\cos\varphi_{h}\rangle\cos\phi_{h})$

 $n = \int L\sigma_w^0 [1 + 2\langle \cos\phi_h^0 + 2\langle \cos\phi_h^0 + 2\langle \cos2\phi_h^0 \rangle \cos2\phi_h^0]\epsilon_{w,\phi_h}^{n,\phi_h} dw$

$$^{\circ} n_{born} = S^{-1}[n - B]$$
 restored
describes the
smearing between
adjacent bins

Multi-dimensional (w)unfolding

Binning 900 kinematic bins x ϕ_h -bins								
Variable		Bin limits						#
x	0.023	0.023 0.04 0.078 0.145 0.27 0.6						5
У	0.2	0.3	0.45	0.6	0.7	0.85		5
z	0.2	0.3	0.4	0.5	0.6	0.75	1	6
$P_{h\perp}$	0.05	0.2	0.35	0.5	0.7	1	1.3	6

 $\sigma^{0}[1+2\langle\cos,\phi_{h}\rangle\cos\phi_{h}|+2\langle\cos,\phi_{h}\rangle\cos\phi_{h}\rangle\cos\phi_{h}|+2\langle\cos,\phi_{h}\rangle\cos\phi_{h})\cos\phi_{h}|+2\langle\cos,\phi_{h}\rangle\cos\phi_{h}|+2\langle\cos,\phi_{h}\rangle\cos\phi_{h}|+2\langle\cos,\phi_{h}\rangle\cos\phi_{h})\cos\phi_{h}|+2\langle\cos,\phi_{h}\rangle\cos\phi_{h}|+2\langle\cos,\phi_{h}\rangle\cos\phi_{h})\cos\phi_{h}|+2\langle\cos,\phi_{h}\rangle\cos\phi_{h}|+2\langle\cos,\phi_{h}\rangle\cos\phi_{h})\cos\phi_{h}|+2\langle\cos,\phi_{h}\rangle\cos\phi_{h}\otimes\phi_{h$

$$n_{born} = S^{-1} [n - B]$$

describes the smearing between adjacent bins

> events smeared in the sample from outside the acceptance

Multi-dimensional (w)unfolding

Binning 900 kinematic bins x ϕ_h -bins								
Variable		Bin limits						#
x	0.023	0.023 0.04 0.078 0.145 0.27 0.6						
У	0.2	0.3	0.45	0.6	0.7	0.85		5
z	0.2	0.3	0.4	0.5	0.6	0.75	1	6
$P_{h\perp}$	0.05	0.2	0.35	0.5	0.7	1	1.3	6

 $\sigma^{0}[1+2\langle\cos,\phi_{h}\rangle\cos\phi_{h}|+2\langle\cos,\phi_{h}\rangle\cos\phi_{h}\rangle\cos\phi_{h}|+2\langle\cos,\phi_{h}\rangle\cos\phi_{h})\cos\phi_{h}|+2\langle\cos,\phi_{h}\rangle\cos\phi_{h}|+2\langle\cos,\phi_{h}\rangle\cos\phi_{h}|+2\langle\cos,\phi_{h}\rangle\cos\phi_{h})\cos\phi_{h}|+2\langle\cos,\phi_{h}\rangle\cos\phi_{h}|+2\langle\cos,\phi_{h}\rangle\cos\phi_{h})\cos\phi_{h}|+2\langle\cos,\phi_{h}\rangle\cos\phi_{h}|+2\langle\cos,\phi_{h}\rangle\cos\phi_{h})\cos\phi_{h}|+2\langle\cos,\phi_{h}\rangle\cos\phi_{h}\otimes\phi_{h$

Multi-dimensional (w)unfolding

Binning 900 kinematic bins x ϕ_h -bins								
Variable		Bin limits						#
x	0.023	0.023 0.04 0.078 0.145 0.27 0.6						5
у	0.2	0.3	0.45	0.6	0.7	0.85		5
Z	0.2	0.3	0.4	0.5	0.6	0.75	1	6
$P_{h\perp}$	0.05	0.2	0.35	0.5	0.7	1	1.3	6

Projection vs. single variable

Hydrogen data

$\cos 2\phi_h$

 $F_{UU}^{\cos 2\phi_h} \propto C[-h_1^{\perp}H_1^{\perp}]$

Hydrogen data

$\cos 2\phi_h$

 $\overline{F_{UU}^{\cos 2\phi_h}} \propto C[-h_1^{\perp}H_1^{\perp}]$

$$H_1^{\perp, u \to \pi^-} \approx -H_1^{\perp, u \to \pi^+}$$

Hydrogen data

$\cos 2\phi_h$

0.05

0.04

Acos20 SUUS SUUS

-0.01

-0.02

Hydrogen data

$\cos 2\phi_h$

$$F_{UU}^{\cos 2\phi_h} \propto C[-h_1^{\perp}H_1^{\perp}]$$

Gamberg, Goldstein Phys. Rev. D77:094016, 2008 0.05 0.04 -... HERMES 27.5 GeV π JLAB 12 GeV JLAB 12 GeV π^{-} JLAB 12 GeV HERMES 27.5 GeV, n π 0.04 0.03 HERMES 27.5 GeV n π^{-} HERMES 27.5 GeV, # π^{-} JLAB 12 GeV 0.02 0.02 0.01 ∢ 1.5 0.7 0.8 0.5 0.6 0.1 0.3 0.4 0:2. 0.3 0.4 0.5 0.6 0.7 -0.01-0.01 π^+ π^+ π^+ -0.02-0.02Phu [GeV] \overline{z} x

Hydrogen data

$\cos 2\phi_h$

Hydrogen data

$\cos 2\phi_h$

Pions

$\cos 2\phi_h$

*

$\cos 2\phi_h$

Anselmino et al., Phys. Rev. D71:074006, 2005

 $< k_T^2 > = 0.25 \, GeV^2$

Pions

Global fit of existing Cahn effect measurements (2005)

$\cos 2\phi_h$

Extracted from a parametrization of HERMES $P_{h\perp}$ spectrum

 $< k_T^2 > = 0.18 \, GeV^2$

Barone, Melis, Prokudin

Pions

*

Hydrogen data

 $F_{UU}^{\cos \phi_h} \propto C [h_1^{\perp} H_1^{\perp} - f_1 D_1 +]$

Hydrogen data

 $F_{\mu\nu\nu}^{\cos\phi_h}$ $\propto C[h_1^{\perp}H_1^{\perp} - f_1D_1 +]$

Hydrogen data

Hydrogen vs. Deuterium

Hydrogen vs. Deuterium $h_1^{\perp,u} \approx h_1^{\perp,d}$

Hydrogen vs. Deuterium $h_1^{\perp,u} \approx h_1^{\perp,d}$

Kaons

Hydrogen data

$\cos 2\phi_h$

$F_{UU}^{\cos 2\phi_h}$ o	$\times C$	$[-h_1^{\perp}]$	$H_1^{\perp}]$
---------------------------	------------	------------------	----------------

$\cos 2\phi_h$

 $-H_1^{\perp,u\to\pi^+}$ $u \rightarrow \pi$ H_1^{\perp} \approx

Kaons

Kaons

Hydrogen data

$\cos 2\phi_h$

Kaons

Kaons

Deuterium data

$\cos 2\phi_h$

$F_{UU}^{\cos 2\phi_h}$	\propto	C[-	$-h_1^\perp$	H_1^{\perp}	-]

Kaons

Deuterium data

First flavor dependent measurement of cosine amplitudes in DIS reactions !

First flavor dependent measurement of cosine amplitudes in DIS reactions !

 \circ cos $2\phi_h$.

 \square opposite sign between π^+/π^-

- > evidence of a non-zero Boer-Mulders function
- > confirms opposite sign for favored and unfavored Collins fragmentation functions
- □ similar results for deuterium & hydrogen data
 - > suggest a Boer-Mulders function with same sign for u and d quarks
- \square large signal and same sign for $K^+\!/\,K^-$
 - > suggest a Collins function with same signs for $K^+\!/\,K^-$

First flavor dependent measurement of cosine amplitudes in DIS reactions !

 \circ cos $2\phi_h$.

 \square opposite sign between π^+/π^-

- > evidence of a non-zero Boer-Mulders function
- > confirms opposite sign for favored and unfavored Collins fragmentation functions
- □ similar results for deuterium & hydrogen data
 - > suggest a Boer-Mulders function with same sign for u and d quarks
- \square large signal and same sign for $K^+\!/\,K^-$
 - >~ suggest a Collins function with same signs for $K^+\!/\,K^-$
- $\cos \phi_h$:

 \square negative moments for π^+/K^+ and π^-/K^- , but smaller amplitude for negative hadrons

First flavor dependent measurement of cosine amplitudes in DIS reactions !

 \circ cos $2\phi_h$.

opposite sign between $\pi^+/\pi^ \Box$

> evidence of a non-zero Boer-Mulders function >

- > confirms opposite sign for favored and unfavored Gillins fragmentation functions
- similar results f

result of n k y h a n d quarks

late and same sign for K^+/K^-

> suggest a Collins function with same signs for $K^+\!/\,K^-$ >

 $\cos \phi_h$:

 \square negative moments for π^+/K^+ and π^-/K^- , but smaller amplitude for negative hadrons

Pions difference

Collins effect

 $\propto C[h_1H_1^{\perp}]$

 $\cos 2\phi_h$

* subsample HERMES data

 $\cos 2\phi_h$

COMPASS data

Barone, Melis, Prokudin Phys. Rev. D81:114026, 2010

