HERMES measurements of nucleon transverse spin structure

Pacific Spin 2009, Yamagata, Japan

Francesca Giordano DESY, Hamburg

For the ollaboration

HERA MEasurement of Spin

HERA storage ring @ DESY

Francesca Giordano

HERA MEasurement of Spin

HERMES spectrometer

Resolution: $\Delta p/p \sim 1-2\% \Delta \theta < 0.6$ mrad Electron-hadron separation efficiency $\sim 98-99\%$ Hadron identification with dual-radiator RICH

$$\frac{d^{5}\sigma}{dx \, dy \, dz \, d\phi_{h}dP_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}} \left(\frac{y^{2}}{2(1-\varepsilon)}\right) \left(1 + \frac{\gamma^{2}}{2x}\right) \left\{F_{UU,T} + \varepsilon F_{UU,L}\right\}$$

 $+\sqrt{2\mathcal{E}(1+\mathcal{E})}\cos\phi_{h}F_{UU}^{\cos\phi_{h}}+\mathcal{E}\cos 2\phi_{h}F_{UU}^{\cos 2\phi_{h}}$

$$F_{\dots} = F_{\dots}(x, y, z, P_{h\perp})$$

Francesca Giordano

Semi-Inclusive DIS cross section

$$\frac{d^5\sigma}{dx \, dy \, dz \, d\phi_h dP_{h\perp}^2} = \frac{\alpha^2}{xyQ^2} \left(\frac{y^2}{2(1-\varepsilon)}\right) \left(1 + \frac{\gamma^2}{2x}\right) \left\{F_{UU,T} + \varepsilon F_{UU,L}\right\}$$

$$+\sqrt{2\varepsilon(1+\varepsilon)}\cos\phi_{h}F_{UU}^{\cos\phi_{h}}+\varepsilon\cos2\phi_{h}F_{UU}^{\cos2\phi_{h}}$$

$$+ \left| S_T \right| \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon \ F_{UT,L}^{\sin(\phi_h - \phi_S)} \right) \right]$$

$$+ \varepsilon \sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h + \phi_S)}$$

$$\begin{array}{c}
\vec{k} \\
\vec$$

+
$$\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{S}F_{UT}^{\sin\phi_{S}} + \varepsilon\sin(3\phi_{h}-\phi_{S})F_{UT}^{\sin(3\phi_{h}-\phi_{S})}$$

+ $\sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_{h}-\phi_{S})F_{UT,L}^{\sin(2\phi_{h}-\phi_{S})}$

$$F_{\dots} = F_{\dots}(x, y, z, P_{h\perp})$$

Distribution Functions (DF)			
N / q	U	L	Т
U	f_1		h_1^{\perp}
L		g_1	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}^{\perp}	h_1, h_{1T}^\perp

Fragmentation Functions (FF)	
q/h	U
U	D_1
Т	H_1^\perp

Distribution Functions (DF)			
N / q	U	L	Т
U	f_1		h_1^{\perp}
L		g_1	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}^{\perp}	h_1, h_{1T}^\perp

Fragmentation Functions (FF)	
q/h	U
U	D_1
Т	H_1^\perp

Distribution Functions (DF)			
N / q	U	L	Т
U	f_1		h_1^\perp
L		g_1	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}^{\perp}	h_1, h_{1T}^\perp

Fragmentation Functions (FF)	
q/h	U
U	D_1
Т	H_1^\perp

h_1^{\perp} = Boer-Mulders function CHIRAL-ODD

Unpolarized Semi-Inclusive DIS

$$\begin{array}{l} \underline{\text{leading twist}}\\ F_{UU}^{\cos 2\phi_{h}} \propto C \begin{bmatrix} -\frac{2(\hat{P}_{h\perp} \cdot \vec{k}_{T})(\hat{P}_{h\perp} \cdot \vec{p}_{T}) - \vec{k}_{T} \cdot \vec{p}_{T}}{MM_{h}} \end{bmatrix} \\ \hline \\ H_{LU}^{\cos 2\phi_{h}} \propto C \begin{bmatrix} -\frac{2(\hat{P}_{h\perp} \cdot \vec{k}_{T})(\hat{P}_{h\perp} \cdot \vec{p}_{T}) - \vec{k}_{T} \cdot \vec{p}_{T}}{MM_{h}} \end{bmatrix} \\ \hline \\ \end{array}$$

(Implicit sum over quark flavours)

Francesca Giordano

Unpolarized Semi-Inclusive DIS

(Implicit sum over quark flavours)

Experimental extraction

$$A = 2\langle \cos \phi_h \rangle$$

$$B = 2\langle \cos 2\phi_h \rangle$$

$$n^{EXP} = \int \sigma_0(w) \left[1 + A(w) \cos \phi_h + B(w) \cos 2\phi_h \right] \mathcal{E}_{acc}(w, \phi_h) \mathcal{E}_{RAD}(w, \phi_h) L dw$$

$$w = (x, y, z, P_{h\perp})$$

г

Experimental extraction

$$A = 2 \left\langle \cos \phi_h \right\rangle$$
$$B = 2 \left\langle \cos 2\phi_h \right\rangle$$

 $n^{EXP} = \int \sigma_0(w) \left[1 + \frac{A(w)\cos\phi_h + B(w)\cos2\phi_h}{2} \right] \mathcal{E}_{acc}(w,\phi_h) \mathcal{E}_{RAD}(w,\phi_h) L dw$

The multi-dimensional analysis

$$H_1^{\perp,u\to\pi^-} \approx -H_1^{\perp,u\to\pi^+}$$

Hydrogen data: $\cos 2\phi_h \qquad F_{UU}^{\cos 2\phi_h} \propto C \left[-h_1^{\perp} H_1^{\perp} \right]$

Hydrogen data: $\cos\phi_{\rm h}$ $F_{UU}^{\cos\phi_h} = \frac{2M}{Q} C \left[-\frac{\widehat{P}_{h\perp} \cdot \overrightarrow{p}_T}{M_h} x h_1^{\perp} H_1^{\perp} - \frac{\widehat{P}_{h\perp} \cdot \overrightarrow{k}_T}{M} x f_1 D_1 + \dots \right]$ $2(\cos(\phi_h))_{UU}$ 0.2 Hydrogen **HERMES** Preliminary 0 ģ Φ -0.1 ٥ -0.2 -0.3 10⁻¹ 0.6 0.4 0.6 0.8 0.6 P_{h1} [GeV] 0.4 0.8 0.4 0.2 1 Х Ζ y

$$H_1^{\perp,u\to\pi^-} \approx -H_1^{\perp,u\to\pi^+}$$

Hydrogen data: $\cos \phi_h$ $F_{UU}^{\cos \phi_h} = \frac{2M}{Q} C \left[-\frac{\hat{P}_{h\perp} \cdot \vec{p}_T}{M_h} x h_1^{\perp} H_1^{\perp} - \frac{\hat{P}_{h\perp} \cdot \vec{k}_T}{M} x f_1 D_1 + ... \right]$ HERMES Preliminary

Hydrogen vs. Deuterium data h⁺

Hydrogen vs. Deuterium data h⁻

Semi-Inclusive DIS cross section

$$\frac{d^{5}\sigma}{dx \, dy \, dz \, d\phi_{h}dP_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}} \left(\frac{y^{2}}{2(1-\varepsilon)}\right) \left(1+\frac{\gamma^{2}}{2x}\right) \left\{F_{UU,T}+\varepsilon F_{UU,L}\right\}$$

$$+\sqrt{2\varepsilon(1+\varepsilon)}\cos\phi_{h}F_{UU}^{\cos\phi_{h}}+\varepsilon\cos 2\phi_{h}F_{UU}^{\cos 2\phi_{h}}$$

$$+|S_{T}|\left[\sin(\phi_{h}-\phi_{S})\left(F_{UT,T}^{\sin(\phi_{h}-\phi_{S})}+\varepsilon F_{UT,L}^{\sin(\phi_{h}-\phi_{S})}\right)\right]$$

$$+\varepsilon\sin(\phi_{h}+\phi_{S})F_{UT}^{\sin(\phi_{h}+\phi_{S})}$$

$$+\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{S}F_{UT}^{\sin\phi_{S}}+\varepsilon\sin(3\phi_{h}-\phi_{S})F_{UT}^{\sin(3\phi_{h}-\phi_{S})}$$

$$+\sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_h-\phi_S)F_{UT,L}^{\sin(2\phi_h-\phi_S)}$$

$$F_{\dots} = F_{\dots}(x, y, z, P_{h\perp})$$

Francesca Giordano

Distribution Functions (DF)			
N / q	U	L	Т
U	f_1		h_1^\perp
L		g_1	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}^{\perp}	h_1, h_{1T}^{\perp}

Fragmentation Functions (FF)	
q/h	U
U	D_1
Т	H_1^\perp

Distribution Functions (DF)			
N / q	U	L	Т
U	f_1		h_1^{\perp}
L		g_1	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}^{\perp}	h_1, h_{1T}^\perp

Fragmentation Functions (FF)	
q/h	U
U	D_1
Т	H_1^\perp

h_1 = Transversity function

Francesca Giordano

Distribution Functions (DF)			
N / q	U	L	Т
U	f_1		h_1^\perp
L		g_1	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}^{\perp}	h_1, h_{1T}^\perp

Fragmentation Functions (FF)	
q/h	U
U	D_1
Т	H_1^\perp

h_1 = Transversity function

Semi Inclusive DIS on transversely polarized target

$$A_{UT}^{h} \propto \frac{2|S_{T}|}{e^{2}[f_{1}D_{1}]} \left\{ \sin(\phi_{h} + \phi_{S})e^{2}C\left[\frac{(\vec{k}_{T} \cdot \hat{P}_{h\perp})}{M_{h}}h_{1}H_{1}^{\perp}\right] \right\}$$

Semi Inclusive DIS on transversely polarized target

The Sivers function: describes the correlations between the transverse polarization of the nucleon and the transverse momentum of the struck quark → spin-orbit structure of the nucleon

Francesca Giordano

Pacific Spin 2009

Collins amplitudes

Francesca Giordano

Pacific Spin 2009

Francesca Giordano

Pacific Spin 2009

Additional Twist-3 contributions:

Summary

SIDIS over Unpolarized targets:

- Negative $\langle \cos \phi_h \rangle$ moments are extracted for positive and negative hadrons, with a larger absolute value for the positive ones
- The results for the <cos2\$\$\$\$cos2\$ moments are negative for the positive hadrons and positive for the negative hadrons:
 Evidence of a non-zero Boer-Mulders function

Summary

SIDIS over Unpolarized targets:

- Negative $\langle \cos \phi_h \rangle$ moments are extracted for positive and negative hadrons, with a larger absolute value for the positive ones
- The results for the <cos2\$\$\$cos2\$ moments are negative for the positive hadrons and positive for the negative hadrons:
 Evidence of a non-zero Boer-Mulders function

SIDIS over Transversely polarized target:

• First evidence of a significant SSA Collins amplitudes for π -mesons:

allowed the first extraction of the transversity function!

• Significant SSA Sivers amplitudes for π^+ and K^+ :

non-zero quark orbital angular momenta!

• Additional sine contributions to A_{UT} found to be consistent with zero, except the sizable negative $\sin\phi_s$ ampltudes for π -

Francesca Giordano

Why a multi-dimensional analysis?

Compass results

Experimental status: $\langle \cos \phi_h \rangle$

- 4 Negative results in all the existing measurements
- No distinction between hadron type or charge

Vector meson contamination

