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2.4 The Boer-Mulders effect 21

Figure 2.6: Densities of unpolarized quarks in transversely polarized nucleon (left) and

transversely polarized quarks in unpolarized nucleon (right) for up (upper plots) and down

(lower plots) quarks. The inner and outer arrows indicate respectively the quarks and

nucleon transverse polarization.

quark transverse position asymmetry into the outgoing quark transverse momentum
asymmetry.

The sign of the distortions of figures 2.6 for the up and the down quarks are
determined by the signs of the anomalous proton and neutron magnetic moments due
to quark orbital motion (standard magnetic moment κ) and transverse polarization
(transverse magnetic moment κT ). If κq is the q-flavoured quark contribution to
the anomalous magnetic moment, and κq

T is the transverse dipole moment, the
description of quark DFs in the impact parameter space [30] predicts for the Sivers
and Boer-Mulders functions:

f⊥,q
1T ∼ −κq

h⊥,q
1 ∼ −κq

T

(2.47)

The predicted signs for the Sivers DF have been confirmed by the experimental
measurement of HERMES [18].

Since they are originated by similar mechanisms, the Boer-Mulders and the Sivers
functions are expected to be of the same order of magnitude, except for the factor

5Analog to the non-relativistic center of mass.
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FIG. 27: Same as Fig. 26 except for H4/(H2 + εH1) arising from the 〈cos 2φ〉 moment (open triangles - moments, full squares
- fits).
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FIG. 26: The p2
T -dependence of H3/(H2 + εH1) (open squares - moments, full triangles - fits) for different z averaged over x

and Q2. The thick curves show theoretical predictions of the Cahn effect [31, 32] (dashed), predictions of the Berger effect [41]
using a convex pion wave function (dotted) and their sum (solid). The two data sets (from moments and fits extractions)
are shifted equally along the x-axis in opposite directions from their central values for visibility. The hatched area show the
systematic uncertainties.
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116 The Born moments

Figure 6.1: The Feynman diagrams of the lepton-nucleon scattering from the tree (Born)

level up to the second order QED correction: the process in (a) represents the Born level,

(d) and (e) correspond respectively to the vertex loop correction and the vacuum polariza-

tion, while processes described in (b) and (c) are the initial and final state bremsstrahlung.

the definitions see chapter 2), all other kinematical variables can be expressed in
terms of θ and E ′. When an event is detected in the spectrometer, it can either
be a non-radiative (Born) or a radiative event, in the second case it should contain
a real hard photon with four-momentum pµ

γ = (Eγ , "pγ). The existence of the real
photon introduces new degrees of freedom, thus three new variables are needed to
fix the event kinematics, for instance the real photon energy Eγ and the angles θγ∗γ ,
between the real and virtual photon momenta, and φγ∗γ, between the scattering
plane and the plane defined by the two photon momenta. With the use of these
quantities and the standard kinematical variables, it is possible to resume the Born
variables in the radiative events:

W 2
Born = W 2 − 2Eγ(ν + M −

√

ν2 + Q2 cos θγ)
νBorn = ν − Eγ

Q2
Born = Q2 + 2Eγ(ν −

√

ν2 + Q2 cos θγ)
xBorn = Q2

Born/2MνBorn

From the latter definition is clear that these kinematical variables do not change
if the radiation occurred in the initial or in the final state, since the Born virtual
photon momentum qBorn is independent from that condition:

qBorn =

{

(k − pγ) − k′ : initial state radiation
k − (k′ + pγ) : final state radiation

}

= q − pγ (6.1)

In the so called peaking approximation, used in this work, the real photon is radiated
collinear to the lepton momentum, thus the place where the radiation is emitted is
irrelevant also for the definition of the scattering plane and the azimuthal angle φh.

6.1.2 Detector smearing

The interactions of the final state particles with target and detector materials is
another source of kinematic smearing. In passing through the matter in fact the
particles, especially light leptons, loose part of their energy and deviate from their

Francesca Giordano
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6.3 Unfolded results 121

Figure 6.2: Left: the event migration between the kinematical bins of y, z and Ph⊥

variables (indicated respectively by squares of decreasing size) in one of the x bin. Right:

the event migration between the 12 φh bins in the same kinematical bin.

The relative differences between unfolded and 4π mean values is used as systematic
uncertainty due to possible model dependence in the unfolding procedure.

6.3 Unfolded results

The unfolded results extracted with the 5-dimensional analysis for the different data
taking periods are presented in figures from 6.5 to 6.8 for hydrogen data, and in
figures from 6.9 to 6.12 for deuterium data.

After the unfolding procedure, the 〈cos φh〉 moments are sizable and negative for
positive hadrons, almost compatible with zero for the negatively charged hadrons.
The 〈cos 2φh〉 moments for positive hadrons are found to be slightly negative as
in the raw ratios, although the signal seems to be reduced here. The 〈cos 2φh〉
moments for negative hadrons remain slightly positive.

In most of the cases the discrepancies between the years seem to be reduced by
the unfolding. However there exist still differences, i. e. in 〈cos 2φh〉. The signals
become almost compatible along the different data taking periods, suggesting the
hypothesis of results stable in time. The remaining discrepancies between the differ-
ent data taking samples can be attributed to variations in detector setup during the
years, like, for instance, different beam position or detector misalignment, as dis-
cussed in last chapter. The year dependence left over in the data after the correcting
procedure will be therefore treated as systematic uncertainty.
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Systematic Checks

Model independent only if fully differential ratio (4D binning)
only in the limit of infinitely small bins

are the bins small enough?nborn= S−1[n−B0]

Different cross section models used for corrections

  Model dependence of unfolding procedure: 
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1.              Pythiaσ0
w|mc

2.                                               Pythia + azimuthal  
                                                                       modulations
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Figure 6.25: Parameterization of the hydrogen π+ data with 34 (top), 38 (second row) 42 (third row) or 50
(bottom row) parameters.
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Figure 6.26: Parameterization of the hydrogen π− data with 34 (top), 38 (second row) 42 (third row) or 50
(bottom row) parameters.
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4D Parametrization
Used to correct or evaluate sensitivity of other 

HERMES analysis on cosine modulations
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Systematic Checks
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Figure 5.21: 2007 hydrogen π+ moments unfolded with the standard migration matrix from Pythia (black
squares) or the same matrix reweighted with the 38 parameter fit to the data (blue triangles).

5.4 MC model dependence tests

As shown in the last section, this analysis is dependent on MC to correct for the spectrometer acceptance

and other effects. Tests designed to evaluate the influence of the physical model implemented in the MC on

the extracted results are presented in this section.

5.4.1 Model dependence of the smearing matrix

The smearing matrix (Section 4.4.1) is designed to minimize its dependence on the physics model of the

cross section implemented in the MC. Since it is a ratio of the reconstructed to Born-level yields, in the

limit of infinitely small bins in all the variables on which the cross section depends (i.e. the 5-dimensional

binning used here, but with infinitely small bins), the smearing matrix is completely model independent and

depends only on the detector simulation.

In order to test the model dependence of the smearing matrix the 2007 hydrogen π+ smearing matrix

was weighted with the cos nφh moments from the 4-dimensional parameterization (described in Section 4.4.7

and presented in Section 6.4) and applied to the data. This is compared to the data unfolded with the

standard smearing matrix with no cos nφh moments included and shown in Figure 5.21. As expected, the

two results are compatible. The systematic error includes a contribution from the difference between the

moments extracted with these two different smearing matrices.
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FIG. 6: The experimental data on two different azimuthal cor-
relations in unpolarized e+e− → h1h2 X processes, as mea-
sured by Belle Collaboration [7], are compared to the curves
obtained from Eqs. (44) [A12] and (60) [A0] with the param-
eterizations of Eqs. (14), (16) and (17). The solid lines corre-
spond to the parameters given in Table I, obtained by fitting
the A12 asymmetry; the shaded area corresponds to the the-
oretical uncertainty on these parameters, as explained in the
text. The dashed lines correspond to the parameters given in
Table II obtained by fitting the A0 asymmetry. The agree-
ment between the results obtained from the two fits shows
the consistency between the two sets of Belle data and the
solidity of our analysis.
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ment between the results obtained from the two fits shows
the consistency between the two sets of Belle data and the
solidity of our analysis.
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(upper lines).
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FIG. 6: The experimental data on two different azimuthal cor-
relations in unpolarized e+e− → h1h2 X processes, as mea-
sured by Belle Collaboration [7], are compared to the curves
obtained from Eqs. (44) [A12] and (60) [A0] with the param-
eterizations of Eqs. (14), (16) and (17). The solid lines corre-
spond to the parameters given in Table I, obtained by fitting
the A12 asymmetry; the shaded area corresponds to the the-
oretical uncertainty on these parameters, as explained in the
text. The dashed lines correspond to the parameters given in
Table II obtained by fitting the A0 asymmetry. The agree-
ment between the results obtained from the two fits shows
the consistency between the two sets of Belle data and the
solidity of our analysis.
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Notice that the Cahn term is only a part of the total, still unknown, twist-4 contribution.
The asymmetry determined experimentally is defined as

Acos 2φ ≡ 2 〈cos 2φ〉 = 2

∫

dσ cos 2φ
∫

dσ
. (6)

The integrations are performed over the measured ranges of x, y, z, with a lower cutoff Pmin
T on PT , which represents

the minimum value of PT of the detected charged particles.
Using the expressions above, the numerator and the denominator of (6) are given by

∫

dσ cos 2φ =
4πα2

ems
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and (χ is the angle between PT and kT )
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III. PARAMETRIZATIONS OF DISTRIBUTION AND FRAGMENTATION FUNCTIONS

To calculate the azimuthal asymmetries we need first of all the kT -dependent unpolarized distribution functions,
which we assume to have a Gaussian behavior in kT :

f q
1 (x, k

2
T ) = f q

1 (x)
e−k2

T /〈k2
T 〉

π〈k2T 〉
. (13)
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Gaussian ansatz

4

Au = −0.35 Ad = 0.90 As = 0.24

Aū = −0.04 Ad̄ = 0.40 As̄ = −1

αu = 0.73 αd = 1.08 αsea = 0.79

β = 3.46 M2

1 = 0.34 (GeV/c)2

TABLE I: Parameters of the Sivers function used in Eqs. (16,17)

The Gaussian dependence of the transverse-momentum distribution functions is supported by a recent lattice study
[35]. The integrated unpolarized distribution functions f q

1 are taken from the GRV98 fit [36].
The available data on 〈cos 2φ〉 do not allow a full extraction of the Boer-Mulders function. Thus we simply take

h⊥
1 to be proportional to the Sivers function f⊥

1T ,

h⊥q
1 (x, k2T ) = λq f

⊥q
1T (x, k2T ) , (14)

with a coefficient λq to be fitted to the data. Various theoretical arguments (based on the impact-parameter picture
[22], on large-Nc arguments [24], and on model calculations [10–12]) suggest that that the u and d components of h⊥

1 ,
at variance with f⊥

1T , should have the same sign and in particular be both negative (which means that λd should be
negative). This is indeed what we find in our analysis. Moreover, the impact-parameter approach [22] combined with
lattice results [23] predicts a u component of h⊥

1 larger in magnitude than the corresponding component of f⊥
1T , and

the d components of h⊥
1 and f⊥

1T with approximately the same magnitude (and opposite sign).
We parametrize the Boer–Mulders function using the Ansatz (14) and taking the Sivers function from a fit to

single–spin asymmetry data [37]. Thus we set

h⊥q
1 (x, k2T ) = λq f

⊥q
1T (x, k2T ) = λq ρq(x) η(kT ) f

q
1 (x,k

2
T ) , (15)

where

ρq(x) = Aq x
aq (1− x)bq

(aq + bq)(aq+bq)

a
aq
q b

bq
q

, (16)

η(kT ) =
√
2e

MP

M1
e−k2

T /M2
1 · (17)

Here MP is the proton mass, Aq, aq, bq and M1 are parameters determined in [37] (see Table I). Being a quark spin
asymmetry, f⊥

1T must satisfy a positivity bound, which is automatically fulfilled by the parametrization of Ref. [37].

Notice that the Sivers function parametrization, as defined in Ref. [37], is: ∆Nfq(x, k⊥) = −2 k⊥

MP
f⊥q
1T (x, k⊥).

Concerning the antiquark Boer-Mulders distributions, the SIDIS (at least, the present ones) are not able to constrain
them. Thus we simply take the Boer-Mulders antiquark distributions to be equal in magnitude to the corresponding
Sivers distributions and both negative. Note that the Drell-Yan measurements of the cos 2φ asymmetry [38, 39] would
in principle give information about the antiquark sector [40, 41], but most of the present data seem to be explainable
in terms of perturbative QCD [42, 43].
Let us now turn to the fragmentation functions. We distinguish their favored and unfavored components, according

to the following general relations

Dπ+/u = Dπ+/d̄ = Dπ−/d = Dπ−/ū ≡ Dfav (18)

Dπ+/d = Dπ+/ū = Dπ−/u = Dπ−/d̄ = Dπ±/s = Dπ±/s̄ ≡ Dunf , (19)

The pT –dependent unpolarized fragmentation D1(z, p2T ) is assumed to have the form

D1(z, p
2
T ) = D1(z)

e−p2
T /〈p2

T 〉

π〈p2T 〉
, (20)

again with a Gaussian behavior in pT . The integrated fragmentation function D1(z) is taken from the the DSS fit
[44].
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TABLE I: Parameters of the Sivers function used in Eqs. (16,17)

The Gaussian dependence of the transverse-momentum distribution functions is supported by a recent lattice study
[35]. The integrated unpolarized distribution functions f q

1 are taken from the GRV98 fit [36].
The available data on 〈cos 2φ〉 do not allow a full extraction of the Boer-Mulders function. Thus we simply take
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1 to be proportional to the Sivers function f⊥

1T ,
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1T (x, k2T ) , (14)

with a coefficient λq to be fitted to the data. Various theoretical arguments (based on the impact-parameter picture
[22], on large-Nc arguments [24], and on model calculations [10–12]) suggest that that the u and d components of h⊥

1 ,
at variance with f⊥

1T , should have the same sign and in particular be both negative (which means that λd should be
negative). This is indeed what we find in our analysis. Moreover, the impact-parameter approach [22] combined with
lattice results [23] predicts a u component of h⊥

1 larger in magnitude than the corresponding component of f⊥
1T , and

the d components of h⊥
1 and f⊥

1T with approximately the same magnitude (and opposite sign).
We parametrize the Boer–Mulders function using the Ansatz (14) and taking the Sivers function from a fit to
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Here MP is the proton mass, Aq, aq, bq and M1 are parameters determined in [37] (see Table I). Being a quark spin
asymmetry, f⊥

1T must satisfy a positivity bound, which is automatically fulfilled by the parametrization of Ref. [37].

Notice that the Sivers function parametrization, as defined in Ref. [37], is: ∆Nfq(x, k⊥) = −2 k⊥

MP
f⊥q
1T (x, k⊥).

Concerning the antiquark Boer-Mulders distributions, the SIDIS (at least, the present ones) are not able to constrain
them. Thus we simply take the Boer-Mulders antiquark distributions to be equal in magnitude to the corresponding
Sivers distributions and both negative. Note that the Drell-Yan measurements of the cos 2φ asymmetry [38, 39] would
in principle give information about the antiquark sector [40, 41], but most of the present data seem to be explainable
in terms of perturbative QCD [42, 43].
Let us now turn to the fragmentation functions. We distinguish their favored and unfavored components, according

to the following general relations

Dπ+/u = Dπ+/d̄ = Dπ−/d = Dπ−/ū ≡ Dfav (18)

Dπ+/d = Dπ+/ū = Dπ−/u = Dπ−/d̄ = Dπ±/s = Dπ±/s̄ ≡ Dunf , (19)

The pT –dependent unpolarized fragmentation D1(z, p2T ) is assumed to have the form
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2
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again with a Gaussian behavior in pT . The integrated fragmentation function D1(z) is taken from the the DSS fit
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. (13)
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The Gaussian dependence of the transverse-momentum distribution functions is supported by a recent lattice study
[35]. The integrated unpolarized distribution functions f q

1 are taken from the GRV98 fit [36].
The available data on 〈cos 2φ〉 do not allow a full extraction of the Boer-Mulders function. Thus we simply take
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1 to be proportional to the Sivers function f⊥

1T ,
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1 (x, k2T ) = λq f
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1T (x, k2T ) , (14)

with a coefficient λq to be fitted to the data. Various theoretical arguments (based on the impact-parameter picture
[22], on large-Nc arguments [24], and on model calculations [10–12]) suggest that that the u and d components of h⊥

1 ,
at variance with f⊥

1T , should have the same sign and in particular be both negative (which means that λd should be
negative). This is indeed what we find in our analysis. Moreover, the impact-parameter approach [22] combined with
lattice results [23] predicts a u component of h⊥

1 larger in magnitude than the corresponding component of f⊥
1T , and

the d components of h⊥
1 and f⊥

1T with approximately the same magnitude (and opposite sign).
We parametrize the Boer–Mulders function using the Ansatz (14) and taking the Sivers function from a fit to

single–spin asymmetry data [37]. Thus we set
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Here MP is the proton mass, Aq, aq, bq and M1 are parameters determined in [37] (see Table I). Being a quark spin
asymmetry, f⊥

1T must satisfy a positivity bound, which is automatically fulfilled by the parametrization of Ref. [37].

Notice that the Sivers function parametrization, as defined in Ref. [37], is: ∆Nfq(x, k⊥) = −2 k⊥

MP
f⊥q
1T (x, k⊥).

Concerning the antiquark Boer-Mulders distributions, the SIDIS (at least, the present ones) are not able to constrain
them. Thus we simply take the Boer-Mulders antiquark distributions to be equal in magnitude to the corresponding
Sivers distributions and both negative. Note that the Drell-Yan measurements of the cos 2φ asymmetry [38, 39] would
in principle give information about the antiquark sector [40, 41], but most of the present data seem to be explainable
in terms of perturbative QCD [42, 43].
Let us now turn to the fragmentation functions. We distinguish their favored and unfavored components, according

to the following general relations

Dπ+/u = Dπ+/d̄ = Dπ−/d = Dπ−/ū ≡ Dfav (18)

Dπ+/d = Dπ+/ū = Dπ−/u = Dπ−/d̄ = Dπ±/s = Dπ±/s̄ ≡ Dunf , (19)

The pT –dependent unpolarized fragmentation D1(z, p2T ) is assumed to have the form

D1(z, p
2
T ) = D1(z)

e−p2
T /〈p2

T 〉

π〈p2T 〉
, (20)

again with a Gaussian behavior in pT . The integrated fragmentation function D1(z) is taken from the the DSS fit
[44].
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[22], on large-Nc arguments [24], and on model calculations [10–12]) suggest that that the u and d components of h⊥

1 ,
at variance with f⊥

1T , should have the same sign and in particular be both negative (which means that λd should be
negative). This is indeed what we find in our analysis. Moreover, the impact-parameter approach [22] combined with
lattice results [23] predicts a u component of h⊥

1 larger in magnitude than the corresponding component of f⊥
1T , and

the d components of h⊥
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1T with approximately the same magnitude (and opposite sign).
We parametrize the Boer–Mulders function using the Ansatz (14) and taking the Sivers function from a fit to
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Here MP is the proton mass, Aq, aq, bq and M1 are parameters determined in [37] (see Table I). Being a quark spin
asymmetry, f⊥

1T must satisfy a positivity bound, which is automatically fulfilled by the parametrization of Ref. [37].

Notice that the Sivers function parametrization, as defined in Ref. [37], is: ∆Nfq(x, k⊥) = −2 k⊥

MP
f⊥q
1T (x, k⊥).

Concerning the antiquark Boer-Mulders distributions, the SIDIS (at least, the present ones) are not able to constrain
them. Thus we simply take the Boer-Mulders antiquark distributions to be equal in magnitude to the corresponding
Sivers distributions and both negative. Note that the Drell-Yan measurements of the cos 2φ asymmetry [38, 39] would
in principle give information about the antiquark sector [40, 41], but most of the present data seem to be explainable
in terms of perturbative QCD [42, 43].
Let us now turn to the fragmentation functions. We distinguish their favored and unfavored components, according

to the following general relations

Dπ+/u = Dπ+/d̄ = Dπ−/d = Dπ−/ū ≡ Dfav (18)

Dπ+/d = Dπ+/ū = Dπ−/u = Dπ−/d̄ = Dπ±/s = Dπ±/s̄ ≡ Dunf , (19)

The pT –dependent unpolarized fragmentation D1(z, p2T ) is assumed to have the form

D1(z, p
2
T ) = D1(z)

e−p2
T /〈p2
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, (20)

again with a Gaussian behavior in pT . The integrated fragmentation function D1(z) is taken from the the DSS fit
[44].
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FIG. 6: The experimental data on two different azimuthal cor-
relations in unpolarized e+e− → h1h2 X processes, as mea-
sured by Belle Collaboration [7], are compared to the curves
obtained from Eqs. (44) [A12] and (60) [A0] with the param-
eterizations of Eqs. (14), (16) and (17). The solid lines corre-
spond to the parameters given in Table I, obtained by fitting
the A12 asymmetry; the shaded area corresponds to the the-
oretical uncertainty on these parameters, as explained in the
text. The dashed lines correspond to the parameters given in
Table II obtained by fitting the A0 asymmetry. The agree-
ment between the results obtained from the two fits shows
the consistency between the two sets of Belle data and the
solidity of our analysis.
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uncertainty in the determination of the free parameters.

(z
)

un
f

(z
)/2

D
un

f
 DN !-

(z
)

fa
v

(z
)/2

D
fa

v
 DN ! 

  )
(z

, p
un

f
 DN !-

  )
(z

, p
fa

v
 DN ! 

z   (GeV)p

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1 2 = 2.4 GeV2Q
z = 0.36

0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1 2 = 2.4 GeV2Q
z = 0.36

FIG. 8: Favored and unfavored Collins fragmentation func-
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responding unpolarized fragmentation functions; we compare
them to the results of Refs. [24] (dashed line) and [25] (dot-
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of Table II. In all cases we also show the positivity bound (19)
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Collins AC
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fragmentation γ = 0.96 δ = 0.01

function M2

C = 0.91 (GeV2/c)

TABLE II: Parameters of the favored and unfavored Collins fragmentation functions [45].

For the Collins function we use the parametrization of [45], based on a combined analysis of SIDIS and e+e− data:

H⊥q
1 (z, p2T ) = ρCq (z) η

C(pT )D1(z, p
2
T ) , (21)

with

ρCq (z) = AC
q zγ(1− z)δ

(γ + δ)(γ+δ)

γγδδ
(22)

ηC(pT ) =
√
2e

zMh

MC
e−p2

T /M2
C , (23)

We let the coefficients AC
q to be flavor dependent (q = u, d), while all the exponents γ, δ and the dimensional

parameter MC are taken to be flavor independent. The parametrization is devised in such a way that the Collins
function satisfies the positivity bound (remember that H⊥

1 is essentially a transverse momentum asymmetry). The
values of the parameters as determined in the fit of Ref. [45] are listed in Table II.
The remaining crucial ingredients to be considered are the average values of k2T and p2T . Notice that the following

kinematical relation holds between the transverse momentum of the produced hadron and the transverse momenta of
quarks:

〈P 2
T 〉 = 〈p2T 〉+ z2 〈k2T 〉 . (24)

Due to the limitations of the present data sets it is not possible to treat 〈k2T 〉 and 〈p2T 〉 as two additional parameters
to be determined by the fit. We have to make some assumptions about them.
In our main fit (hereafter called Fit 1) we take 〈k2T 〉 and 〈p2T 〉 from the analysis of the azimuthal dependence of the

unpolarized SIDIS cross section performed in Ref. [5]:

〈k2T 〉 = 0.25 GeV2 , 〈p2T 〉 = 0.20 GeV2 . (25)

We also tried another fit (“Fit 2”), using for HERMES the values of 〈k2T 〉 and 〈p2T 〉 given by their own analysis of
the PT spectrum, which turns out to be reproduced by Monte Carlo calculations [46] with 〈k2T 〉 = 0.18 GeV2 and a
z-dependent transverse momentum of the fragmenting quark, 〈p2T 〉 = 0.42 z0.37(1 − z)0.54 GeV2. In the z range of
interest this is very well approximated by 〈p2T 〉 % 0.20 GeV2. Thus in our Fit 2 we choose for HERMES:

〈k2T 〉 = 0.18 GeV2 , 〈p2T 〉 = 0.20 GeV2 . (26)

We have no similar information for the COMPASS measurement and for their data we still use in Fit 2 the values
(25). Therefore Fit 2 is characterized by a 〈k2T 〉 which is different for the two sets of data. As we shall see in the next
Section, Fit 2 turns out to be significantly better than Fit 1.
Finally, concerning a possible flavor-dependence of 〈k2T 〉 [47], we showed in our previous paper [14] that it hardly

affects the results, hence we shall not take it into account here (it should also be remarked that the experimental
evidence for a flavor-dependent 〈k2T 〉 is still far from being established).
In summary the assumptions of our fits are:

• h⊥q
1 (x, k2T ) = λq f

⊥q
1T (x, k2T ) for u and d quarks while h⊥q̄

1 (x, k2T ) = −|f⊥q̄
1T (x, k2T )| for sea quarks, with f⊥q,q̄

1T
functions as given in Ref. [37].

• The Collins functions H⊥q
1 (z, pT ) is taken as in Ref. [45].

• Gaussian transverse momentum distribution is assumed for all the distribution/fragmentation functions.
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TABLE I: Parameters of the Sivers function used in Eqs. (16,17)

The Gaussian dependence of the transverse-momentum distribution functions is supported by a recent lattice study
[35]. The integrated unpolarized distribution functions f q

1 are taken from the GRV98 fit [36].
The available data on 〈cos 2φ〉 do not allow a full extraction of the Boer-Mulders function. Thus we simply take

h⊥
1 to be proportional to the Sivers function f⊥

1T ,

h⊥q
1 (x, k2T ) = λq f

⊥q
1T (x, k2T ) , (14)

with a coefficient λq to be fitted to the data. Various theoretical arguments (based on the impact-parameter picture
[22], on large-Nc arguments [24], and on model calculations [10–12]) suggest that that the u and d components of h⊥

1 ,
at variance with f⊥

1T , should have the same sign and in particular be both negative (which means that λd should be
negative). This is indeed what we find in our analysis. Moreover, the impact-parameter approach [22] combined with
lattice results [23] predicts a u component of h⊥

1 larger in magnitude than the corresponding component of f⊥
1T , and

the d components of h⊥
1 and f⊥

1T with approximately the same magnitude (and opposite sign).
We parametrize the Boer–Mulders function using the Ansatz (14) and taking the Sivers function from a fit to

single–spin asymmetry data [37]. Thus we set

h⊥q
1 (x, k2T ) = λq f

⊥q
1T (x, k2T ) = λq ρq(x) η(kT ) f

q
1 (x,k

2
T ) , (15)

where

ρq(x) = Aq x
aq (1− x)bq

(aq + bq)(aq+bq)

a
aq
q b

bq
q

, (16)

η(kT ) =
√
2e

MP

M1
e−k2

T /M2
1 · (17)

Here MP is the proton mass, Aq, aq, bq and M1 are parameters determined in [37] (see Table I). Being a quark spin
asymmetry, f⊥

1T must satisfy a positivity bound, which is automatically fulfilled by the parametrization of Ref. [37].

Notice that the Sivers function parametrization, as defined in Ref. [37], is: ∆Nfq(x, k⊥) = −2 k⊥

MP
f⊥q
1T (x, k⊥).

Concerning the antiquark Boer-Mulders distributions, the SIDIS (at least, the present ones) are not able to constrain
them. Thus we simply take the Boer-Mulders antiquark distributions to be equal in magnitude to the corresponding
Sivers distributions and both negative. Note that the Drell-Yan measurements of the cos 2φ asymmetry [38, 39] would
in principle give information about the antiquark sector [40, 41], but most of the present data seem to be explainable
in terms of perturbative QCD [42, 43].
Let us now turn to the fragmentation functions. We distinguish their favored and unfavored components, according

to the following general relations

Dπ+/u = Dπ+/d̄ = Dπ−/d = Dπ−/ū ≡ Dfav (18)

Dπ+/d = Dπ+/ū = Dπ−/u = Dπ−/d̄ = Dπ±/s = Dπ±/s̄ ≡ Dunf , (19)

The pT –dependent unpolarized fragmentation D1(z, p2T ) is assumed to have the form

D1(z, p
2
T ) = D1(z)

e−p2
T /〈p2

T 〉

π〈p2T 〉
, (20)

again with a Gaussian behavior in pT . The integrated fragmentation function D1(z) is taken from the the DSS fit
[44].
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Notice that the Cahn term is only a part of the total, still unknown, twist-4 contribution.
The asymmetry determined experimentally is defined as

Acos 2φ ≡ 2 〈cos 2φ〉 = 2

∫
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. (6)

The integrations are performed over the measured ranges of x, y, z, with a lower cutoff Pmin
T on PT , which represents
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To calculate the azimuthal asymmetries we need first of all the kT -dependent unpolarized distribution functions,
which we assume to have a Gaussian behavior in kT :
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The Gaussian dependence of the transverse-momentum distribution functions is supported by a recent lattice study
[35]. The integrated unpolarized distribution functions f q

1 are taken from the GRV98 fit [36].
The available data on 〈cos 2φ〉 do not allow a full extraction of the Boer-Mulders function. Thus we simply take
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1 to be proportional to the Sivers function f⊥
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with a coefficient λq to be fitted to the data. Various theoretical arguments (based on the impact-parameter picture
[22], on large-Nc arguments [24], and on model calculations [10–12]) suggest that that the u and d components of h⊥

1 ,
at variance with f⊥

1T , should have the same sign and in particular be both negative (which means that λd should be
negative). This is indeed what we find in our analysis. Moreover, the impact-parameter approach [22] combined with
lattice results [23] predicts a u component of h⊥

1 larger in magnitude than the corresponding component of f⊥
1T , and

the d components of h⊥
1 and f⊥

1T with approximately the same magnitude (and opposite sign).
We parametrize the Boer–Mulders function using the Ansatz (14) and taking the Sivers function from a fit to

single–spin asymmetry data [37]. Thus we set
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Here MP is the proton mass, Aq, aq, bq and M1 are parameters determined in [37] (see Table I). Being a quark spin
asymmetry, f⊥

1T must satisfy a positivity bound, which is automatically fulfilled by the parametrization of Ref. [37].

Notice that the Sivers function parametrization, as defined in Ref. [37], is: ∆Nfq(x, k⊥) = −2 k⊥

MP
f⊥q
1T (x, k⊥).

Concerning the antiquark Boer-Mulders distributions, the SIDIS (at least, the present ones) are not able to constrain
them. Thus we simply take the Boer-Mulders antiquark distributions to be equal in magnitude to the corresponding
Sivers distributions and both negative. Note that the Drell-Yan measurements of the cos 2φ asymmetry [38, 39] would
in principle give information about the antiquark sector [40, 41], but most of the present data seem to be explainable
in terms of perturbative QCD [42, 43].
Let us now turn to the fragmentation functions. We distinguish their favored and unfavored components, according

to the following general relations

Dπ+/u = Dπ+/d̄ = Dπ−/d = Dπ−/ū ≡ Dfav (18)

Dπ+/d = Dπ+/ū = Dπ−/u = Dπ−/d̄ = Dπ±/s = Dπ±/s̄ ≡ Dunf , (19)

The pT –dependent unpolarized fragmentation D1(z, p2T ) is assumed to have the form

D1(z, p
2
T ) = D1(z)

e−p2
T /〈p2

T 〉

π〈p2T 〉
, (20)

again with a Gaussian behavior in pT . The integrated fragmentation function D1(z) is taken from the the DSS fit
[44].
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The Gaussian dependence of the transverse-momentum distribution functions is supported by a recent lattice study
[35]. The integrated unpolarized distribution functions f q

1 are taken from the GRV98 fit [36].
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at variance with f⊥

1T , should have the same sign and in particular be both negative (which means that λd should be
negative). This is indeed what we find in our analysis. Moreover, the impact-parameter approach [22] combined with
lattice results [23] predicts a u component of h⊥

1 larger in magnitude than the corresponding component of f⊥
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the d components of h⊥
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Here MP is the proton mass, Aq, aq, bq and M1 are parameters determined in [37] (see Table I). Being a quark spin
asymmetry, f⊥

1T must satisfy a positivity bound, which is automatically fulfilled by the parametrization of Ref. [37].

Notice that the Sivers function parametrization, as defined in Ref. [37], is: ∆Nfq(x, k⊥) = −2 k⊥

MP
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Concerning the antiquark Boer-Mulders distributions, the SIDIS (at least, the present ones) are not able to constrain
them. Thus we simply take the Boer-Mulders antiquark distributions to be equal in magnitude to the corresponding
Sivers distributions and both negative. Note that the Drell-Yan measurements of the cos 2φ asymmetry [38, 39] would
in principle give information about the antiquark sector [40, 41], but most of the present data seem to be explainable
in terms of perturbative QCD [42, 43].
Let us now turn to the fragmentation functions. We distinguish their favored and unfavored components, according

to the following general relations

Dπ+/u = Dπ+/d̄ = Dπ−/d = Dπ−/ū ≡ Dfav (18)

Dπ+/d = Dπ+/ū = Dπ−/u = Dπ−/d̄ = Dπ±/s = Dπ±/s̄ ≡ Dunf , (19)

The pT –dependent unpolarized fragmentation D1(z, p2T ) is assumed to have the form
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again with a Gaussian behavior in pT . The integrated fragmentation function D1(z) is taken from the the DSS fit
[44].



Barone et al
Phys. Rev. D78:045022, 2008

Zhang et al
Phys. Rev. D78:034035, 2008

Gamberg, Goldstein
Phys. Rev. D77:094016, 2008

10

) 2
, z 1

(z 0A
) 2

, z 1
(z 0A

2z 2z

0

0.05

0.1

0.15

0.2  < 0.310.2 < z  < 0.510.3 < z

0.2 0.4 0.6 0.8
-0.05

0

0.05

0.1

0.15

0.2  < 0.710.5 < z

0.2 0.4 0.6 0.8

 < 110.7 < z

) 2
, z 1

(z
12A

) 2
, z 1

(z
12A

2z 2z

0

0.05

0.1

0.15

0.2  < 0.310.2 < z  < 0.510.3 < z

0.2 0.4 0.6 0.8
-0.05

0

0.05

0.1

0.15

0.2  < 0.710.5 < z

0.2 0.4 0.6 0.8

 < 110.7 < z

FIG. 6: The experimental data on two different azimuthal cor-
relations in unpolarized e+e− → h1h2 X processes, as mea-
sured by Belle Collaboration [7], are compared to the curves
obtained from Eqs. (44) [A12] and (60) [A0] with the param-
eterizations of Eqs. (14), (16) and (17). The solid lines corre-
spond to the parameters given in Table I, obtained by fitting
the A12 asymmetry; the shaded area corresponds to the the-
oretical uncertainty on these parameters, as explained in the
text. The dashed lines correspond to the parameters given in
Table II obtained by fitting the A0 asymmetry. The agree-
ment between the results obtained from the two fits shows
the consistency between the two sets of Belle data and the
solidity of our analysis.
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FIG. 8: Favored and unfavored Collins fragmentation func-
tions as determined through our global best fit. In the left
panel we show the z dependence of the p⊥ integrated Collins
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responding unpolarized fragmentation functions; we compare
them to the results of Refs. [24] (dashed line) and [25] (dot-
ted line). In the right panel we show the p⊥ dependence of
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of Table II. In all cases we also show the positivity bound (19)
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Collins AC
fav = 0.44 NC

unf = −1.00
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function M2

C = 0.91 (GeV2/c)

TABLE II: Parameters of the favored and unfavored Collins fragmentation functions [45].

For the Collins function we use the parametrization of [45], based on a combined analysis of SIDIS and e+e− data:

H⊥q
1 (z, p2T ) = ρCq (z) η

C(pT )D1(z, p
2
T ) , (21)

with

ρCq (z) = AC
q zγ(1− z)δ

(γ + δ)(γ+δ)

γγδδ
(22)

ηC(pT ) =
√
2e

zMh

MC
e−p2

T /M2
C , (23)

We let the coefficients AC
q to be flavor dependent (q = u, d), while all the exponents γ, δ and the dimensional

parameter MC are taken to be flavor independent. The parametrization is devised in such a way that the Collins
function satisfies the positivity bound (remember that H⊥

1 is essentially a transverse momentum asymmetry). The
values of the parameters as determined in the fit of Ref. [45] are listed in Table II.
The remaining crucial ingredients to be considered are the average values of k2T and p2T . Notice that the following

kinematical relation holds between the transverse momentum of the produced hadron and the transverse momenta of
quarks:

〈P 2
T 〉 = 〈p2T 〉+ z2 〈k2T 〉 . (24)

Due to the limitations of the present data sets it is not possible to treat 〈k2T 〉 and 〈p2T 〉 as two additional parameters
to be determined by the fit. We have to make some assumptions about them.
In our main fit (hereafter called Fit 1) we take 〈k2T 〉 and 〈p2T 〉 from the analysis of the azimuthal dependence of the

unpolarized SIDIS cross section performed in Ref. [5]:

〈k2T 〉 = 0.25 GeV2 , 〈p2T 〉 = 0.20 GeV2 . (25)

We also tried another fit (“Fit 2”), using for HERMES the values of 〈k2T 〉 and 〈p2T 〉 given by their own analysis of
the PT spectrum, which turns out to be reproduced by Monte Carlo calculations [46] with 〈k2T 〉 = 0.18 GeV2 and a
z-dependent transverse momentum of the fragmenting quark, 〈p2T 〉 = 0.42 z0.37(1 − z)0.54 GeV2. In the z range of
interest this is very well approximated by 〈p2T 〉 % 0.20 GeV2. Thus in our Fit 2 we choose for HERMES:

〈k2T 〉 = 0.18 GeV2 , 〈p2T 〉 = 0.20 GeV2 . (26)

We have no similar information for the COMPASS measurement and for their data we still use in Fit 2 the values
(25). Therefore Fit 2 is characterized by a 〈k2T 〉 which is different for the two sets of data. As we shall see in the next
Section, Fit 2 turns out to be significantly better than Fit 1.
Finally, concerning a possible flavor-dependence of 〈k2T 〉 [47], we showed in our previous paper [14] that it hardly

affects the results, hence we shall not take it into account here (it should also be remarked that the experimental
evidence for a flavor-dependent 〈k2T 〉 is still far from being established).
In summary the assumptions of our fits are:

• h⊥q
1 (x, k2T ) = λq f

⊥q
1T (x, k2T ) for u and d quarks while h⊥q̄

1 (x, k2T ) = −|f⊥q̄
1T (x, k2T )| for sea quarks, with f⊥q,q̄

1T
functions as given in Ref. [37].

• The Collins functions H⊥q
1 (z, pT ) is taken as in Ref. [45].

• Gaussian transverse momentum distribution is assumed for all the distribution/fragmentation functions.
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Au = −0.35 Ad = 0.90 As = 0.24

Aū = −0.04 Ad̄ = 0.40 As̄ = −1

αu = 0.73 αd = 1.08 αsea = 0.79

β = 3.46 M2

1 = 0.34 (GeV/c)2

TABLE I: Parameters of the Sivers function used in Eqs. (16,17)

The Gaussian dependence of the transverse-momentum distribution functions is supported by a recent lattice study
[35]. The integrated unpolarized distribution functions f q

1 are taken from the GRV98 fit [36].
The available data on 〈cos 2φ〉 do not allow a full extraction of the Boer-Mulders function. Thus we simply take

h⊥
1 to be proportional to the Sivers function f⊥

1T ,

h⊥q
1 (x, k2T ) = λq f

⊥q
1T (x, k2T ) , (14)

with a coefficient λq to be fitted to the data. Various theoretical arguments (based on the impact-parameter picture
[22], on large-Nc arguments [24], and on model calculations [10–12]) suggest that that the u and d components of h⊥

1 ,
at variance with f⊥

1T , should have the same sign and in particular be both negative (which means that λd should be
negative). This is indeed what we find in our analysis. Moreover, the impact-parameter approach [22] combined with
lattice results [23] predicts a u component of h⊥

1 larger in magnitude than the corresponding component of f⊥
1T , and

the d components of h⊥
1 and f⊥

1T with approximately the same magnitude (and opposite sign).
We parametrize the Boer–Mulders function using the Ansatz (14) and taking the Sivers function from a fit to

single–spin asymmetry data [37]. Thus we set

h⊥q
1 (x, k2T ) = λq f

⊥q
1T (x, k2T ) = λq ρq(x) η(kT ) f

q
1 (x,k

2
T ) , (15)

where

ρq(x) = Aq x
aq (1− x)bq

(aq + bq)(aq+bq)

a
aq
q b

bq
q

, (16)

η(kT ) =
√
2e

MP

M1
e−k2

T /M2
1 · (17)

Here MP is the proton mass, Aq, aq, bq and M1 are parameters determined in [37] (see Table I). Being a quark spin
asymmetry, f⊥

1T must satisfy a positivity bound, which is automatically fulfilled by the parametrization of Ref. [37].

Notice that the Sivers function parametrization, as defined in Ref. [37], is: ∆Nfq(x, k⊥) = −2 k⊥

MP
f⊥q
1T (x, k⊥).

Concerning the antiquark Boer-Mulders distributions, the SIDIS (at least, the present ones) are not able to constrain
them. Thus we simply take the Boer-Mulders antiquark distributions to be equal in magnitude to the corresponding
Sivers distributions and both negative. Note that the Drell-Yan measurements of the cos 2φ asymmetry [38, 39] would
in principle give information about the antiquark sector [40, 41], but most of the present data seem to be explainable
in terms of perturbative QCD [42, 43].
Let us now turn to the fragmentation functions. We distinguish their favored and unfavored components, according

to the following general relations

Dπ+/u = Dπ+/d̄ = Dπ−/d = Dπ−/ū ≡ Dfav (18)

Dπ+/d = Dπ+/ū = Dπ−/u = Dπ−/d̄ = Dπ±/s = Dπ±/s̄ ≡ Dunf , (19)

The pT –dependent unpolarized fragmentation D1(z, p2T ) is assumed to have the form

D1(z, p
2
T ) = D1(z)

e−p2
T /〈p2

T 〉

π〈p2T 〉
, (20)

again with a Gaussian behavior in pT . The integrated fragmentation function D1(z) is taken from the the DSS fit
[44].

3

×
∫

d2kT

∫

d2pT δ2(PT − zkT − pT )

×
2 (kT · h)2 − k2T

Q2
fa
1 (x, k

2
T )D

a
1 (z, p

2
T ) cos 2φ . (5)

Notice that the Cahn term is only a part of the total, still unknown, twist-4 contribution.
The asymmetry determined experimentally is defined as

Acos 2φ ≡ 2 〈cos 2φ〉 = 2

∫
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∫

dσ
. (6)

The integrations are performed over the measured ranges of x, y, z, with a lower cutoff Pmin
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A[fa
1 , D

a
1 ] ≡

∫

d2kT

∫

d2pT δ2(PT − zkT − pT )

×
2 (kT · h)2 − k2T

Q2
fa
1 (x, k

2
T )D

a
1(z, p

2
T ) cos 2φ

=

∫ ∞

0
dkT kT

∫ 2π

0
dχ

2 k2T cos2 χ− k2T
Q2

× fa
1 (x, k

2
T )D

a
1 (z, |PT − zkT |2) , (10)

B[h⊥a
1 , H⊥a

1 ] ≡
∫

d2kT

∫

d2pT δ2(PT − zkT − pT )

×
2h · kT h · pT − kT · pT

zMNMh
h⊥a
1 (x, k2T )H

⊥a
1 (z, p2T )

=

∫ ∞

0
dkT kT

∫ 2π

0
dχ

k2T + (PT /z) kT cosχ− 2 k2T cos2 χ

MMh

× h⊥a
1 (x, k2T )H

⊥a
1 (z, |PT − zkT |2) , (11)

C[fa
1 , D

a
1 ] ≡

∫

d2kT

∫

d2pT δ2(PT − zkT − pT ) f
a
1 (x, k

2
T )D

a
1(z, p

2
T )

=

∫ ∞

0
dkT kT

∫ 2π

0
dχ fa

1 (x, k
2
T )D

a
1 (z, |PT − zkT |2) . (12)

III. PARAMETRIZATIONS OF DISTRIBUTION AND FRAGMENTATION FUNCTIONS

To calculate the azimuthal asymmetries we need first of all the kT -dependent unpolarized distribution functions,
which we assume to have a Gaussian behavior in kT :
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The Gaussian dependence of the transverse-momentum distribution functions is supported by a recent lattice study
[35]. The integrated unpolarized distribution functions f q

1 are taken from the GRV98 fit [36].
The available data on 〈cos 2φ〉 do not allow a full extraction of the Boer-Mulders function. Thus we simply take
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1 to be proportional to the Sivers function f⊥
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with a coefficient λq to be fitted to the data. Various theoretical arguments (based on the impact-parameter picture
[22], on large-Nc arguments [24], and on model calculations [10–12]) suggest that that the u and d components of h⊥

1 ,
at variance with f⊥

1T , should have the same sign and in particular be both negative (which means that λd should be
negative). This is indeed what we find in our analysis. Moreover, the impact-parameter approach [22] combined with
lattice results [23] predicts a u component of h⊥

1 larger in magnitude than the corresponding component of f⊥
1T , and

the d components of h⊥
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1T with approximately the same magnitude (and opposite sign).
We parametrize the Boer–Mulders function using the Ansatz (14) and taking the Sivers function from a fit to
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Sivers distributions and both negative. Note that the Drell-Yan measurements of the cos 2φ asymmetry [38, 39] would
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in terms of perturbative QCD [42, 43].
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them. Thus we simply take the Boer-Mulders antiquark distributions to be equal in magnitude to the corresponding
Sivers distributions and both negative. Note that the Drell-Yan measurements of the cos 2φ asymmetry [38, 39] would
in principle give information about the antiquark sector [40, 41], but most of the present data seem to be explainable
in terms of perturbative QCD [42, 43].
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FIG. 6: The experimental data on two different azimuthal cor-
relations in unpolarized e+e− → h1h2 X processes, as mea-
sured by Belle Collaboration [7], are compared to the curves
obtained from Eqs. (44) [A12] and (60) [A0] with the param-
eterizations of Eqs. (14), (16) and (17). The solid lines corre-
spond to the parameters given in Table I, obtained by fitting
the A12 asymmetry; the shaded area corresponds to the the-
oretical uncertainty on these parameters, as explained in the
text. The dashed lines correspond to the parameters given in
Table II obtained by fitting the A0 asymmetry. The agree-
ment between the results obtained from the two fits shows
the consistency between the two sets of Belle data and the
solidity of our analysis.
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TABLE I: Parameters of the Sivers function used in Eqs. (16,17)

The Gaussian dependence of the transverse-momentum distribution functions is supported by a recent lattice study
[35]. The integrated unpolarized distribution functions f q

1 are taken from the GRV98 fit [36].
The available data on 〈cos 2φ〉 do not allow a full extraction of the Boer-Mulders function. Thus we simply take

h⊥
1 to be proportional to the Sivers function f⊥

1T ,

h⊥q
1 (x, k2T ) = λq f

⊥q
1T (x, k2T ) , (14)

with a coefficient λq to be fitted to the data. Various theoretical arguments (based on the impact-parameter picture
[22], on large-Nc arguments [24], and on model calculations [10–12]) suggest that that the u and d components of h⊥

1 ,
at variance with f⊥

1T , should have the same sign and in particular be both negative (which means that λd should be
negative). This is indeed what we find in our analysis. Moreover, the impact-parameter approach [22] combined with
lattice results [23] predicts a u component of h⊥

1 larger in magnitude than the corresponding component of f⊥
1T , and

the d components of h⊥
1 and f⊥

1T with approximately the same magnitude (and opposite sign).
We parametrize the Boer–Mulders function using the Ansatz (14) and taking the Sivers function from a fit to

single–spin asymmetry data [37]. Thus we set
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Here MP is the proton mass, Aq, aq, bq and M1 are parameters determined in [37] (see Table I). Being a quark spin
asymmetry, f⊥

1T must satisfy a positivity bound, which is automatically fulfilled by the parametrization of Ref. [37].

Notice that the Sivers function parametrization, as defined in Ref. [37], is: ∆Nfq(x, k⊥) = −2 k⊥

MP
f⊥q
1T (x, k⊥).

Concerning the antiquark Boer-Mulders distributions, the SIDIS (at least, the present ones) are not able to constrain
them. Thus we simply take the Boer-Mulders antiquark distributions to be equal in magnitude to the corresponding
Sivers distributions and both negative. Note that the Drell-Yan measurements of the cos 2φ asymmetry [38, 39] would
in principle give information about the antiquark sector [40, 41], but most of the present data seem to be explainable
in terms of perturbative QCD [42, 43].
Let us now turn to the fragmentation functions. We distinguish their favored and unfavored components, according

to the following general relations

Dπ+/u = Dπ+/d̄ = Dπ−/d = Dπ−/ū ≡ Dfav (18)

Dπ+/d = Dπ+/ū = Dπ−/u = Dπ−/d̄ = Dπ±/s = Dπ±/s̄ ≡ Dunf , (19)

The pT –dependent unpolarized fragmentation D1(z, p2T ) is assumed to have the form

D1(z, p
2
T ) = D1(z)

e−p2
T /〈p2

T 〉

π〈p2T 〉
, (20)

again with a Gaussian behavior in pT . The integrated fragmentation function D1(z) is taken from the the DSS fit
[44].
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asymmetry, f⊥
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Concerning the antiquark Boer-Mulders distributions, the SIDIS (at least, the present ones) are not able to constrain
them. Thus we simply take the Boer-Mulders antiquark distributions to be equal in magnitude to the corresponding
Sivers distributions and both negative. Note that the Drell-Yan measurements of the cos 2φ asymmetry [38, 39] would
in principle give information about the antiquark sector [40, 41], but most of the present data seem to be explainable
in terms of perturbative QCD [42, 43].
Let us now turn to the fragmentation functions. We distinguish their favored and unfavored components, according

to the following general relations

Dπ+/u = Dπ+/d̄ = Dπ−/d = Dπ−/ū ≡ Dfav (18)

Dπ+/d = Dπ+/ū = Dπ−/u = Dπ−/d̄ = Dπ±/s = Dπ±/s̄ ≡ Dunf , (19)

The pT –dependent unpolarized fragmentation D1(z, p2T ) is assumed to have the form

D1(z, p
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again with a Gaussian behavior in pT . The integrated fragmentation function D1(z) is taken from the the DSS fit
[44].
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Collins AC
fav = 0.44 NC

unf = −1.00

fragmentation γ = 0.96 δ = 0.01

function M2

C = 0.91 (GeV2/c)

TABLE II: Parameters of the favored and unfavored Collins fragmentation functions [45].

For the Collins function we use the parametrization of [45], based on a combined analysis of SIDIS and e+e− data:

H⊥q
1 (z, p2T ) = ρCq (z) η

C(pT )D1(z, p
2
T ) , (21)

with

ρCq (z) = AC
q zγ(1− z)δ

(γ + δ)(γ+δ)

γγδδ
(22)

ηC(pT ) =
√
2e

zMh

MC
e−p2

T /M2
C , (23)

We let the coefficients AC
q to be flavor dependent (q = u, d), while all the exponents γ, δ and the dimensional

parameter MC are taken to be flavor independent. The parametrization is devised in such a way that the Collins
function satisfies the positivity bound (remember that H⊥

1 is essentially a transverse momentum asymmetry). The
values of the parameters as determined in the fit of Ref. [45] are listed in Table II.
The remaining crucial ingredients to be considered are the average values of k2T and p2T . Notice that the following

kinematical relation holds between the transverse momentum of the produced hadron and the transverse momenta of
quarks:

〈P 2
T 〉 = 〈p2T 〉+ z2 〈k2T 〉 . (24)

Due to the limitations of the present data sets it is not possible to treat 〈k2T 〉 and 〈p2T 〉 as two additional parameters
to be determined by the fit. We have to make some assumptions about them.
In our main fit (hereafter called Fit 1) we take 〈k2T 〉 and 〈p2T 〉 from the analysis of the azimuthal dependence of the

unpolarized SIDIS cross section performed in Ref. [5]:

〈k2T 〉 = 0.25 GeV2 , 〈p2T 〉 = 0.20 GeV2 . (25)

We also tried another fit (“Fit 2”), using for HERMES the values of 〈k2T 〉 and 〈p2T 〉 given by their own analysis of
the PT spectrum, which turns out to be reproduced by Monte Carlo calculations [46] with 〈k2T 〉 = 0.18 GeV2 and a
z-dependent transverse momentum of the fragmenting quark, 〈p2T 〉 = 0.42 z0.37(1 − z)0.54 GeV2. In the z range of
interest this is very well approximated by 〈p2T 〉 % 0.20 GeV2. Thus in our Fit 2 we choose for HERMES:

〈k2T 〉 = 0.18 GeV2 , 〈p2T 〉 = 0.20 GeV2 . (26)

We have no similar information for the COMPASS measurement and for their data we still use in Fit 2 the values
(25). Therefore Fit 2 is characterized by a 〈k2T 〉 which is different for the two sets of data. As we shall see in the next
Section, Fit 2 turns out to be significantly better than Fit 1.
Finally, concerning a possible flavor-dependence of 〈k2T 〉 [47], we showed in our previous paper [14] that it hardly

affects the results, hence we shall not take it into account here (it should also be remarked that the experimental
evidence for a flavor-dependent 〈k2T 〉 is still far from being established).
In summary the assumptions of our fits are:

• h⊥q
1 (x, k2T ) = λq f

⊥q
1T (x, k2T ) for u and d quarks while h⊥q̄

1 (x, k2T ) = −|f⊥q̄
1T (x, k2T )| for sea quarks, with f⊥q,q̄

1T
functions as given in Ref. [37].

• The Collins functions H⊥q
1 (z, pT ) is taken as in Ref. [45].

• Gaussian transverse momentum distribution is assumed for all the distribution/fragmentation functions.
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Concerning the antiquark Boer-Mulders distributions, the SIDIS (at least, the present ones) are not able to constrain
them. Thus we simply take the Boer-Mulders antiquark distributions to be equal in magnitude to the corresponding
Sivers distributions and both negative. Note that the Drell-Yan measurements of the cos 2φ asymmetry [38, 39] would
in principle give information about the antiquark sector [40, 41], but most of the present data seem to be explainable
in terms of perturbative QCD [42, 43].
Let us now turn to the fragmentation functions. We distinguish their favored and unfavored components, according

to the following general relations

Dπ+/u = Dπ+/d̄ = Dπ−/d = Dπ−/ū ≡ Dfav (18)

Dπ+/d = Dπ+/ū = Dπ−/u = Dπ−/d̄ = Dπ±/s = Dπ±/s̄ ≡ Dunf , (19)

The pT –dependent unpolarized fragmentation D1(z, p2T ) is assumed to have the form

D1(z, p
2
T ) = D1(z)

e−p2
T /〈p2

T 〉

π〈p2T 〉
, (20)

again with a Gaussian behavior in pT . The integrated fragmentation function D1(z) is taken from the the DSS fit
[44].
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Here MP is the proton mass, Aq, aq, bq and M1 are parameters determined in [37] (see Table I). Being a quark spin
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1T must satisfy a positivity bound, which is automatically fulfilled by the parametrization of Ref. [37].
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Concerning the antiquark Boer-Mulders distributions, the SIDIS (at least, the present ones) are not able to constrain
them. Thus we simply take the Boer-Mulders antiquark distributions to be equal in magnitude to the corresponding
Sivers distributions and both negative. Note that the Drell-Yan measurements of the cos 2φ asymmetry [38, 39] would
in principle give information about the antiquark sector [40, 41], but most of the present data seem to be explainable
in terms of perturbative QCD [42, 43].
Let us now turn to the fragmentation functions. We distinguish their favored and unfavored components, according

to the following general relations

Dπ+/u = Dπ+/d̄ = Dπ−/d = Dπ−/ū ≡ Dfav (18)
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again with a Gaussian behavior in pT . The integrated fragmentation function D1(z) is taken from the the DSS fit
[44].
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Concerning the antiquark Boer-Mulders distributions, the SIDIS (at least, the present ones) are not able to constrain
them. Thus we simply take the Boer-Mulders antiquark distributions to be equal in magnitude to the corresponding
Sivers distributions and both negative. Note that the Drell-Yan measurements of the cos 2φ asymmetry [38, 39] would
in principle give information about the antiquark sector [40, 41], but most of the present data seem to be explainable
in terms of perturbative QCD [42, 43].
Let us now turn to the fragmentation functions. We distinguish their favored and unfavored components, according

to the following general relations
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FIG. 6: The experimental data on two different azimuthal cor-
relations in unpolarized e+e− → h1h2 X processes, as mea-
sured by Belle Collaboration [7], are compared to the curves
obtained from Eqs. (44) [A12] and (60) [A0] with the param-
eterizations of Eqs. (14), (16) and (17). The solid lines corre-
spond to the parameters given in Table I, obtained by fitting
the A12 asymmetry; the shaded area corresponds to the the-
oretical uncertainty on these parameters, as explained in the
text. The dashed lines correspond to the parameters given in
Table II obtained by fitting the A0 asymmetry. The agree-
ment between the results obtained from the two fits shows
the consistency between the two sets of Belle data and the
solidity of our analysis.
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Eq. (5), are shown as functions of x and Q2 = 2.4 GeV2. The
Soffer bound [20] is also shown for comparison (bold blue line).
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as that of the unpolarized distribution functions: we plot it
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uncertainty in the determination of the free parameters.
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TABLE I: Parameters of the Sivers function used in Eqs. (16,17)

The Gaussian dependence of the transverse-momentum distribution functions is supported by a recent lattice study
[35]. The integrated unpolarized distribution functions f q

1 are taken from the GRV98 fit [36].
The available data on 〈cos 2φ〉 do not allow a full extraction of the Boer-Mulders function. Thus we simply take
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1 to be proportional to the Sivers function f⊥

1T ,

h⊥q
1 (x, k2T ) = λq f

⊥q
1T (x, k2T ) , (14)

with a coefficient λq to be fitted to the data. Various theoretical arguments (based on the impact-parameter picture
[22], on large-Nc arguments [24], and on model calculations [10–12]) suggest that that the u and d components of h⊥

1 ,
at variance with f⊥

1T , should have the same sign and in particular be both negative (which means that λd should be
negative). This is indeed what we find in our analysis. Moreover, the impact-parameter approach [22] combined with
lattice results [23] predicts a u component of h⊥

1 larger in magnitude than the corresponding component of f⊥
1T , and

the d components of h⊥
1 and f⊥

1T with approximately the same magnitude (and opposite sign).
We parametrize the Boer–Mulders function using the Ansatz (14) and taking the Sivers function from a fit to

single–spin asymmetry data [37]. Thus we set
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Here MP is the proton mass, Aq, aq, bq and M1 are parameters determined in [37] (see Table I). Being a quark spin
asymmetry, f⊥

1T must satisfy a positivity bound, which is automatically fulfilled by the parametrization of Ref. [37].

Notice that the Sivers function parametrization, as defined in Ref. [37], is: ∆Nfq(x, k⊥) = −2 k⊥

MP
f⊥q
1T (x, k⊥).

Concerning the antiquark Boer-Mulders distributions, the SIDIS (at least, the present ones) are not able to constrain
them. Thus we simply take the Boer-Mulders antiquark distributions to be equal in magnitude to the corresponding
Sivers distributions and both negative. Note that the Drell-Yan measurements of the cos 2φ asymmetry [38, 39] would
in principle give information about the antiquark sector [40, 41], but most of the present data seem to be explainable
in terms of perturbative QCD [42, 43].
Let us now turn to the fragmentation functions. We distinguish their favored and unfavored components, according

to the following general relations

Dπ+/u = Dπ+/d̄ = Dπ−/d = Dπ−/ū ≡ Dfav (18)

Dπ+/d = Dπ+/ū = Dπ−/u = Dπ−/d̄ = Dπ±/s = Dπ±/s̄ ≡ Dunf , (19)

The pT –dependent unpolarized fragmentation D1(z, p2T ) is assumed to have the form

D1(z, p
2
T ) = D1(z)

e−p2
T /〈p2

T 〉

π〈p2T 〉
, (20)

again with a Gaussian behavior in pT . The integrated fragmentation function D1(z) is taken from the the DSS fit
[44].
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Aū = −0.04 Ad̄ = 0.40 As̄ = −1

αu = 0.73 αd = 1.08 αsea = 0.79

β = 3.46 M2

1 = 0.34 (GeV/c)2

TABLE I: Parameters of the Sivers function used in Eqs. (16,17)

The Gaussian dependence of the transverse-momentum distribution functions is supported by a recent lattice study
[35]. The integrated unpolarized distribution functions f q

1 are taken from the GRV98 fit [36].
The available data on 〈cos 2φ〉 do not allow a full extraction of the Boer-Mulders function. Thus we simply take

h⊥
1 to be proportional to the Sivers function f⊥

1T ,

h⊥q
1 (x, k2T ) = λq f

⊥q
1T (x, k2T ) , (14)

with a coefficient λq to be fitted to the data. Various theoretical arguments (based on the impact-parameter picture
[22], on large-Nc arguments [24], and on model calculations [10–12]) suggest that that the u and d components of h⊥

1 ,
at variance with f⊥

1T , should have the same sign and in particular be both negative (which means that λd should be
negative). This is indeed what we find in our analysis. Moreover, the impact-parameter approach [22] combined with
lattice results [23] predicts a u component of h⊥

1 larger in magnitude than the corresponding component of f⊥
1T , and

the d components of h⊥
1 and f⊥

1T with approximately the same magnitude (and opposite sign).
We parametrize the Boer–Mulders function using the Ansatz (14) and taking the Sivers function from a fit to

single–spin asymmetry data [37]. Thus we set

h⊥q
1 (x, k2T ) = λq f

⊥q
1T (x, k2T ) = λq ρq(x) η(kT ) f

q
1 (x,k

2
T ) , (15)

where

ρq(x) = Aq x
aq (1− x)bq

(aq + bq)(aq+bq)

a
aq
q b

bq
q

, (16)

η(kT ) =
√
2e

MP

M1
e−k2

T /M2
1 · (17)

Here MP is the proton mass, Aq, aq, bq and M1 are parameters determined in [37] (see Table I). Being a quark spin
asymmetry, f⊥
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Concerning the antiquark Boer-Mulders distributions, the SIDIS (at least, the present ones) are not able to constrain
them. Thus we simply take the Boer-Mulders antiquark distributions to be equal in magnitude to the corresponding
Sivers distributions and both negative. Note that the Drell-Yan measurements of the cos 2φ asymmetry [38, 39] would
in principle give information about the antiquark sector [40, 41], but most of the present data seem to be explainable
in terms of perturbative QCD [42, 43].
Let us now turn to the fragmentation functions. We distinguish their favored and unfavored components, according

to the following general relations

Dπ+/u = Dπ+/d̄ = Dπ−/d = Dπ−/ū ≡ Dfav (18)

Dπ+/d = Dπ+/ū = Dπ−/u = Dπ−/d̄ = Dπ±/s = Dπ±/s̄ ≡ Dunf , (19)

The pT –dependent unpolarized fragmentation D1(z, p2T ) is assumed to have the form
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again with a Gaussian behavior in pT . The integrated fragmentation function D1(z) is taken from the the DSS fit
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Collins AC
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unf = −1.00

fragmentation γ = 0.96 δ = 0.01

function M2

C = 0.91 (GeV2/c)

TABLE II: Parameters of the favored and unfavored Collins fragmentation functions [45].

For the Collins function we use the parametrization of [45], based on a combined analysis of SIDIS and e+e− data:

H⊥q
1 (z, p2T ) = ρCq (z) η

C(pT )D1(z, p
2
T ) , (21)

with

ρCq (z) = AC
q zγ(1− z)δ

(γ + δ)(γ+δ)

γγδδ
(22)

ηC(pT ) =
√
2e

zMh

MC
e−p2

T /M2
C , (23)

We let the coefficients AC
q to be flavor dependent (q = u, d), while all the exponents γ, δ and the dimensional

parameter MC are taken to be flavor independent. The parametrization is devised in such a way that the Collins
function satisfies the positivity bound (remember that H⊥

1 is essentially a transverse momentum asymmetry). The
values of the parameters as determined in the fit of Ref. [45] are listed in Table II.
The remaining crucial ingredients to be considered are the average values of k2T and p2T . Notice that the following

kinematical relation holds between the transverse momentum of the produced hadron and the transverse momenta of
quarks:

〈P 2
T 〉 = 〈p2T 〉+ z2 〈k2T 〉 . (24)

Due to the limitations of the present data sets it is not possible to treat 〈k2T 〉 and 〈p2T 〉 as two additional parameters
to be determined by the fit. We have to make some assumptions about them.
In our main fit (hereafter called Fit 1) we take 〈k2T 〉 and 〈p2T 〉 from the analysis of the azimuthal dependence of the

unpolarized SIDIS cross section performed in Ref. [5]:

〈k2T 〉 = 0.25 GeV2 , 〈p2T 〉 = 0.20 GeV2 . (25)

We also tried another fit (“Fit 2”), using for HERMES the values of 〈k2T 〉 and 〈p2T 〉 given by their own analysis of
the PT spectrum, which turns out to be reproduced by Monte Carlo calculations [46] with 〈k2T 〉 = 0.18 GeV2 and a
z-dependent transverse momentum of the fragmenting quark, 〈p2T 〉 = 0.42 z0.37(1 − z)0.54 GeV2. In the z range of
interest this is very well approximated by 〈p2T 〉 % 0.20 GeV2. Thus in our Fit 2 we choose for HERMES:

〈k2T 〉 = 0.18 GeV2 , 〈p2T 〉 = 0.20 GeV2 . (26)

We have no similar information for the COMPASS measurement and for their data we still use in Fit 2 the values
(25). Therefore Fit 2 is characterized by a 〈k2T 〉 which is different for the two sets of data. As we shall see in the next
Section, Fit 2 turns out to be significantly better than Fit 1.
Finally, concerning a possible flavor-dependence of 〈k2T 〉 [47], we showed in our previous paper [14] that it hardly

affects the results, hence we shall not take it into account here (it should also be remarked that the experimental
evidence for a flavor-dependent 〈k2T 〉 is still far from being established).
In summary the assumptions of our fits are:

• h⊥q
1 (x, k2T ) = λq f

⊥q
1T (x, k2T ) for u and d quarks while h⊥q̄

1 (x, k2T ) = −|f⊥q̄
1T (x, k2T )| for sea quarks, with f⊥q,q̄

1T
functions as given in Ref. [37].

• The Collins functions H⊥q
1 (z, pT ) is taken as in Ref. [45].

• Gaussian transverse momentum distribution is assumed for all the distribution/fragmentation functions.

4

Au = −0.35 Ad = 0.90 As = 0.24

Aū = −0.04 Ad̄ = 0.40 As̄ = −1

αu = 0.73 αd = 1.08 αsea = 0.79

β = 3.46 M2

1 = 0.34 (GeV/c)2

TABLE I: Parameters of the Sivers function used in Eqs. (16,17)

The Gaussian dependence of the transverse-momentum distribution functions is supported by a recent lattice study
[35]. The integrated unpolarized distribution functions f q

1 are taken from the GRV98 fit [36].
The available data on 〈cos 2φ〉 do not allow a full extraction of the Boer-Mulders function. Thus we simply take

h⊥
1 to be proportional to the Sivers function f⊥

1T ,

h⊥q
1 (x, k2T ) = λq f

⊥q
1T (x, k2T ) , (14)

with a coefficient λq to be fitted to the data. Various theoretical arguments (based on the impact-parameter picture
[22], on large-Nc arguments [24], and on model calculations [10–12]) suggest that that the u and d components of h⊥

1 ,
at variance with f⊥

1T , should have the same sign and in particular be both negative (which means that λd should be
negative). This is indeed what we find in our analysis. Moreover, the impact-parameter approach [22] combined with
lattice results [23] predicts a u component of h⊥

1 larger in magnitude than the corresponding component of f⊥
1T , and

the d components of h⊥
1 and f⊥

1T with approximately the same magnitude (and opposite sign).
We parametrize the Boer–Mulders function using the Ansatz (14) and taking the Sivers function from a fit to

single–spin asymmetry data [37]. Thus we set

h⊥q
1 (x, k2T ) = λq f

⊥q
1T (x, k2T ) = λq ρq(x) η(kT ) f

q
1 (x,k

2
T ) , (15)

where

ρq(x) = Aq x
aq (1− x)bq

(aq + bq)(aq+bq)

a
aq
q b

bq
q

, (16)

η(kT ) =
√
2e

MP

M1
e−k2

T /M2
1 · (17)

Here MP is the proton mass, Aq, aq, bq and M1 are parameters determined in [37] (see Table I). Being a quark spin
asymmetry, f⊥

1T must satisfy a positivity bound, which is automatically fulfilled by the parametrization of Ref. [37].

Notice that the Sivers function parametrization, as defined in Ref. [37], is: ∆Nfq(x, k⊥) = −2 k⊥

MP
f⊥q
1T (x, k⊥).

Concerning the antiquark Boer-Mulders distributions, the SIDIS (at least, the present ones) are not able to constrain
them. Thus we simply take the Boer-Mulders antiquark distributions to be equal in magnitude to the corresponding
Sivers distributions and both negative. Note that the Drell-Yan measurements of the cos 2φ asymmetry [38, 39] would
in principle give information about the antiquark sector [40, 41], but most of the present data seem to be explainable
in terms of perturbative QCD [42, 43].
Let us now turn to the fragmentation functions. We distinguish their favored and unfavored components, according

to the following general relations

Dπ+/u = Dπ+/d̄ = Dπ−/d = Dπ−/ū ≡ Dfav (18)

Dπ+/d = Dπ+/ū = Dπ−/u = Dπ−/d̄ = Dπ±/s = Dπ±/s̄ ≡ Dunf , (19)

The pT –dependent unpolarized fragmentation D1(z, p2T ) is assumed to have the form

D1(z, p
2
T ) = D1(z)

e−p2
T /〈p2

T 〉

π〈p2T 〉
, (20)

again with a Gaussian behavior in pT . The integrated fragmentation function D1(z) is taken from the the DSS fit
[44].

3

×
∫

d2kT

∫

d2pT δ2(PT − zkT − pT )

×
2 (kT · h)2 − k2T

Q2
fa
1 (x, k

2
T )D

a
1 (z, p

2
T ) cos 2φ . (5)

Notice that the Cahn term is only a part of the total, still unknown, twist-4 contribution.
The asymmetry determined experimentally is defined as

Acos 2φ ≡ 2 〈cos 2φ〉 = 2

∫

dσ cos 2φ
∫

dσ
. (6)

The integrations are performed over the measured ranges of x, y, z, with a lower cutoff Pmin
T on PT , which represents

the minimum value of PT of the detected charged particles.
Using the expressions above, the numerator and the denominator of (6) are given by

∫

dσ cos 2φ =
4πα2

ems

Q4

∫ ∫ ∫ ∫

∑

a

e2a x(1 − y) {A[fa
1 , D

a
1 ] +

1

2
B[h⊥a

1 , H⊥a
1 ]} , (7)

∫

dσ =
2πα2

ems

Q4

∫ ∫ ∫ ∫

∑

a

e2a x[1 + (1− y)2] C[fa
1 , D

a
1 ] , (8)

where
∫ ∫ ∫ ∫

≡
∫ Pmax

T

Pmin
T

dPT PT

∫ x2

x1

dx

∫ y2

y1

dy

∫ z2

z1

dz (9)

and (χ is the angle between PT and kT )

A[fa
1 , D

a
1 ] ≡

∫

d2kT

∫

d2pT δ2(PT − zkT − pT )

×
2 (kT · h)2 − k2T

Q2
fa
1 (x, k

2
T )D

a
1(z, p

2
T ) cos 2φ

=

∫ ∞

0
dkT kT

∫ 2π

0
dχ

2 k2T cos2 χ− k2T
Q2

× fa
1 (x, k

2
T )D

a
1 (z, |PT − zkT |2) , (10)

B[h⊥a
1 , H⊥a

1 ] ≡
∫

d2kT

∫

d2pT δ2(PT − zkT − pT )

×
2h · kT h · pT − kT · pT

zMNMh
h⊥a
1 (x, k2T )H

⊥a
1 (z, p2T )

=

∫ ∞

0
dkT kT

∫ 2π

0
dχ

k2T + (PT /z) kT cosχ− 2 k2T cos2 χ

MMh

× h⊥a
1 (x, k2T )H

⊥a
1 (z, |PT − zkT |2) , (11)

C[fa
1 , D

a
1 ] ≡

∫

d2kT

∫

d2pT δ2(PT − zkT − pT ) f
a
1 (x, k

2
T )D

a
1(z, p

2
T )

=

∫ ∞

0
dkT kT

∫ 2π

0
dχ fa

1 (x, k
2
T )D

a
1 (z, |PT − zkT |2) . (12)

III. PARAMETRIZATIONS OF DISTRIBUTION AND FRAGMENTATION FUNCTIONS

To calculate the azimuthal asymmetries we need first of all the kT -dependent unpolarized distribution functions,
which we assume to have a Gaussian behavior in kT :

f q
1 (x, k

2
T ) = f q

1 (x)
e−k2

T /〈k2
T 〉

π〈k2T 〉
. (13)
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Au = −0.35 Ad = 0.90 As = 0.24

Aū = −0.04 Ad̄ = 0.40 As̄ = −1

αu = 0.73 αd = 1.08 αsea = 0.79

β = 3.46 M2

1 = 0.34 (GeV/c)2

TABLE I: Parameters of the Sivers function used in Eqs. (16,17)

The Gaussian dependence of the transverse-momentum distribution functions is supported by a recent lattice study
[35]. The integrated unpolarized distribution functions f q

1 are taken from the GRV98 fit [36].
The available data on 〈cos 2φ〉 do not allow a full extraction of the Boer-Mulders function. Thus we simply take

h⊥
1 to be proportional to the Sivers function f⊥

1T ,

h⊥q
1 (x, k2T ) = λq f

⊥q
1T (x, k2T ) , (14)

with a coefficient λq to be fitted to the data. Various theoretical arguments (based on the impact-parameter picture
[22], on large-Nc arguments [24], and on model calculations [10–12]) suggest that that the u and d components of h⊥

1 ,
at variance with f⊥

1T , should have the same sign and in particular be both negative (which means that λd should be
negative). This is indeed what we find in our analysis. Moreover, the impact-parameter approach [22] combined with
lattice results [23] predicts a u component of h⊥

1 larger in magnitude than the corresponding component of f⊥
1T , and

the d components of h⊥
1 and f⊥

1T with approximately the same magnitude (and opposite sign).
We parametrize the Boer–Mulders function using the Ansatz (14) and taking the Sivers function from a fit to

single–spin asymmetry data [37]. Thus we set

h⊥q
1 (x, k2T ) = λq f

⊥q
1T (x, k2T ) = λq ρq(x) η(kT ) f

q
1 (x,k

2
T ) , (15)

where

ρq(x) = Aq x
aq (1− x)bq

(aq + bq)(aq+bq)

a
aq
q b

bq
q

, (16)

η(kT ) =
√
2e

MP

M1
e−k2

T /M2
1 · (17)

Here MP is the proton mass, Aq, aq, bq and M1 are parameters determined in [37] (see Table I). Being a quark spin
asymmetry, f⊥

1T must satisfy a positivity bound, which is automatically fulfilled by the parametrization of Ref. [37].

Notice that the Sivers function parametrization, as defined in Ref. [37], is: ∆Nfq(x, k⊥) = −2 k⊥

MP
f⊥q
1T (x, k⊥).

Concerning the antiquark Boer-Mulders distributions, the SIDIS (at least, the present ones) are not able to constrain
them. Thus we simply take the Boer-Mulders antiquark distributions to be equal in magnitude to the corresponding
Sivers distributions and both negative. Note that the Drell-Yan measurements of the cos 2φ asymmetry [38, 39] would
in principle give information about the antiquark sector [40, 41], but most of the present data seem to be explainable
in terms of perturbative QCD [42, 43].
Let us now turn to the fragmentation functions. We distinguish their favored and unfavored components, according

to the following general relations

Dπ+/u = Dπ+/d̄ = Dπ−/d = Dπ−/ū ≡ Dfav (18)

Dπ+/d = Dπ+/ū = Dπ−/u = Dπ−/d̄ = Dπ±/s = Dπ±/s̄ ≡ Dunf , (19)

The pT –dependent unpolarized fragmentation D1(z, p2T ) is assumed to have the form

D1(z, p
2
T ) = D1(z)

e−p2
T /〈p2

T 〉

π〈p2T 〉
, (20)

again with a Gaussian behavior in pT . The integrated fragmentation function D1(z) is taken from the the DSS fit
[44].
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TABLE I: Parameters of the Sivers function used in Eqs. (16,17)

The Gaussian dependence of the transverse-momentum distribution functions is supported by a recent lattice study
[35]. The integrated unpolarized distribution functions f q

1 are taken from the GRV98 fit [36].
The available data on 〈cos 2φ〉 do not allow a full extraction of the Boer-Mulders function. Thus we simply take

h⊥
1 to be proportional to the Sivers function f⊥

1T ,

h⊥q
1 (x, k2T ) = λq f

⊥q
1T (x, k2T ) , (14)

with a coefficient λq to be fitted to the data. Various theoretical arguments (based on the impact-parameter picture
[22], on large-Nc arguments [24], and on model calculations [10–12]) suggest that that the u and d components of h⊥

1 ,
at variance with f⊥

1T , should have the same sign and in particular be both negative (which means that λd should be
negative). This is indeed what we find in our analysis. Moreover, the impact-parameter approach [22] combined with
lattice results [23] predicts a u component of h⊥

1 larger in magnitude than the corresponding component of f⊥
1T , and

the d components of h⊥
1 and f⊥

1T with approximately the same magnitude (and opposite sign).
We parametrize the Boer–Mulders function using the Ansatz (14) and taking the Sivers function from a fit to

single–spin asymmetry data [37]. Thus we set

h⊥q
1 (x, k2T ) = λq f

⊥q
1T (x, k2T ) = λq ρq(x) η(kT ) f

q
1 (x,k

2
T ) , (15)

where

ρq(x) = Aq x
aq (1− x)bq

(aq + bq)(aq+bq)

a
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q b

bq
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, (16)

η(kT ) =
√
2e

MP
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e−k2
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1 · (17)

Here MP is the proton mass, Aq, aq, bq and M1 are parameters determined in [37] (see Table I). Being a quark spin
asymmetry, f⊥

1T must satisfy a positivity bound, which is automatically fulfilled by the parametrization of Ref. [37].

Notice that the Sivers function parametrization, as defined in Ref. [37], is: ∆Nfq(x, k⊥) = −2 k⊥

MP
f⊥q
1T (x, k⊥).

Concerning the antiquark Boer-Mulders distributions, the SIDIS (at least, the present ones) are not able to constrain
them. Thus we simply take the Boer-Mulders antiquark distributions to be equal in magnitude to the corresponding
Sivers distributions and both negative. Note that the Drell-Yan measurements of the cos 2φ asymmetry [38, 39] would
in principle give information about the antiquark sector [40, 41], but most of the present data seem to be explainable
in terms of perturbative QCD [42, 43].
Let us now turn to the fragmentation functions. We distinguish their favored and unfavored components, according

to the following general relations

Dπ+/u = Dπ+/d̄ = Dπ−/d = Dπ−/ū ≡ Dfav (18)

Dπ+/d = Dπ+/ū = Dπ−/u = Dπ−/d̄ = Dπ±/s = Dπ±/s̄ ≡ Dunf , (19)

The pT –dependent unpolarized fragmentation D1(z, p2T ) is assumed to have the form

D1(z, p
2
T ) = D1(z)

e−p2
T /〈p2

T 〉

π〈p2T 〉
, (20)

again with a Gaussian behavior in pT . The integrated fragmentation function D1(z) is taken from the the DSS fit
[44].
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Figure 8.7: Results of the toy model using parameter Set I (left) and Set II (right) from [62] for hydrogen

(red) and deuterium (blue) targets.

If ηH is taken as −1, which is a good approximaton to Hermes and Belle results, and η is set to 0.35,

which is reasonable for Hermes kinematics, then only the distribution functions remain to be calculated.

The unpolarized distribution functions f1 are taken from CTEQ6L [64] while the Boer-Mulders function is

calculated from f1 and the parameterization presented in the previous section. The results are shown in

Figure 8.7. Since the C factor is not evaluated the y-axis is in arbitrary units. The hydrogen results give

similar shapes as in [62], indicating that this calculation is a reasonable approximation of the full model in

[62]. The deuterium results are particularly interesting. For Set I, where the u and d quark Boer-Mulders

functions are of the same sign, the hydrogen and deuterium results are very similar. This is reminiscent of

the data where the two target give almost identical results. Set II on the other hand gives similar moments

for hydrogen and near-zero moments for both pion charges on a deuterium target. This is decidedly not

what is seen in the data. From this calculation it seems that the data strongly favor Set I, which is also in

agreement with other models.

Perhaps as important as this observation is the fact that both pion charges for both hydrogen and

deuterium targets are needed to clearly distinguish between models. This demonstrates the power of the

Hermes data set and also the need for a complete set of predictions from all models.

Overall, the measurments of cos φh and cos 2φh presented in this thesis are in agreement with theoretical

expectations and are well described by current models. The Boer-Mulders function is the same sign for u

and d quarks, indicating that they both have their spin and orbital motion aligned. Further constraints of

the models requires data of greater precision and kinematic range.
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Figure 8.7: Results of the toy model using parameter Set I (left) and Set II (right) from [62] for hydrogen

(red) and deuterium (blue) targets.

If ηH is taken as −1, which is a good approximaton to Hermes and Belle results, and η is set to 0.35,

which is reasonable for Hermes kinematics, then only the distribution functions remain to be calculated.

The unpolarized distribution functions f1 are taken from CTEQ6L [64] while the Boer-Mulders function is

calculated from f1 and the parameterization presented in the previous section. The results are shown in

Figure 8.7. Since the C factor is not evaluated the y-axis is in arbitrary units. The hydrogen results give

similar shapes as in [62], indicating that this calculation is a reasonable approximation of the full model in

[62]. The deuterium results are particularly interesting. For Set I, where the u and d quark Boer-Mulders

functions are of the same sign, the hydrogen and deuterium results are very similar. This is reminiscent of

the data where the two target give almost identical results. Set II on the other hand gives similar moments

for hydrogen and near-zero moments for both pion charges on a deuterium target. This is decidedly not

what is seen in the data. From this calculation it seems that the data strongly favor Set I, which is also in

agreement with other models.

Perhaps as important as this observation is the fact that both pion charges for both hydrogen and

deuterium targets are needed to clearly distinguish between models. This demonstrates the power of the

Hermes data set and also the need for a complete set of predictions from all models.

Overall, the measurments of cos φh and cos 2φh presented in this thesis are in agreement with theoretical

expectations and are well described by current models. The Boer-Mulders function is the same sign for u

and d quarks, indicating that they both have their spin and orbital motion aligned. Further constraints of

the models requires data of greater precision and kinematic range.
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Figure 8.7: Results of the toy model using parameter Set I (left) and Set II (right) from [62] for hydrogen

(red) and deuterium (blue) targets.

If ηH is taken as −1, which is a good approximaton to Hermes and Belle results, and η is set to 0.35,

which is reasonable for Hermes kinematics, then only the distribution functions remain to be calculated.

The unpolarized distribution functions f1 are taken from CTEQ6L [64] while the Boer-Mulders function is

calculated from f1 and the parameterization presented in the previous section. The results are shown in

Figure 8.7. Since the C factor is not evaluated the y-axis is in arbitrary units. The hydrogen results give

similar shapes as in [62], indicating that this calculation is a reasonable approximation of the full model in

[62]. The deuterium results are particularly interesting. For Set I, where the u and d quark Boer-Mulders

functions are of the same sign, the hydrogen and deuterium results are very similar. This is reminiscent of

the data where the two target give almost identical results. Set II on the other hand gives similar moments

for hydrogen and near-zero moments for both pion charges on a deuterium target. This is decidedly not

what is seen in the data. From this calculation it seems that the data strongly favor Set I, which is also in

agreement with other models.

Perhaps as important as this observation is the fact that both pion charges for both hydrogen and

deuterium targets are needed to clearly distinguish between models. This demonstrates the power of the

Hermes data set and also the need for a complete set of predictions from all models.

Overall, the measurments of cos φh and cos 2φh presented in this thesis are in agreement with theoretical

expectations and are well described by current models. The Boer-Mulders function is the same sign for u

and d quarks, indicating that they both have their spin and orbital motion aligned. Further constraints of

the models requires data of greater precision and kinematic range.
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Kaons, Deuterium
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Summary

Differences between                :
evidence of a non-zero Boer-Mulders function:                              
confirms opposite sign for favored and unfavored pion Collins 
fragmentation functions

π+/π−

Different behavior for                 with respect to pions:
large signals and same sign for                   modulation: indication of 
same sign for favored/unfavored strange Collins fragmentation 
functions? 

K+/K−

cos 2φh

31Francesca Giordano

Similar results for deuterium & hydrogen data 
suggest a Boer-Mulders function with same sign for u and d quark
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