Flavor dependent azimuthal cosine modulations in SIDIS unpolarized cross section

Francesca Giordano November 17th, 2010, Urbana, Champaign, IL

Semi Inclusive Deep Inelastic Scattering Francesca Giordano

$\frac{d^3\sigma}{dxdydz} = \frac{\alpha^2}{xyQ^2} \left(1 + \frac{\gamma^2}{2x}\right) \{A(y)F_{UU,T} + B(y)F_{UU,L}\}$

- Q^2 Negative squared
 - 4-momentum transfer to the target
- V Fractional energy of the virtual photon
- X Bjorken scaling variable
- Z Fractional energy transfer to the produced hadron

target polarization $F_{\underline{X}} \stackrel{\text{tr}}{=} F_{XY,Z}(x, y, z)$ virtual photon polarization polarization

Semi Inclusive Deep Inelastic Scattering

$$egin{aligned} &rac{d^5\sigma}{dxdydzd\phi_hdP_{h\perp}^2} &= rac{lpha^2}{xyQ^2}ig(1+rac{\gamma^2}{2x}ig)\{A(y)F_{UU,T}+B(y)F_{UU,L}+C(y)\cos\phi_hF_{UU}^{\cos\phi_h}+B(y)\cos2\phi_hF_{UU}^{\cos2\phi_h}\}\ &+C(y)\cos\phi_hF_{UU}^{\cos\phi_h}+B(y)\cos2\phi_hF_{UU}^{\cos2\phi_h}\} \end{aligned}$$

Q

4-momentum transfer to the target

- Fractional energy of the virtual photon y
- Bjorken scaling variable х
- Fractional energy transfer to the \mathbf{Z} produced hadron

polarization

$$F_{XY,Z} = F_{XY,Z}(x, y, z, P_{h\perp})$$

beam ∇ ∇
polarization
polarization

Semi Inclusive Deep Inelastic Scattering

$$\left\langle \cos n\phi_h \right\rangle = \frac{\int \cos n\phi_h \frac{d^5\sigma}{dxdydzd\phi_h dP_{h\perp}^2} d\phi_h}{\int \frac{d^5\sigma}{dxdydzd\phi_h dP_{h\perp}^2} d\phi_h}$$

$$\frac{d^{5}\sigma}{dxdydzd\phi_{h}dP_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}} \left(1 + \frac{\gamma^{2}}{2x}\right) \left\{A(y)F_{UU,T} + B(y)F_{UU,L}\right.$$
$$+C(y)\cos\phi_{h}F_{UU}^{\cos\phi_{h}} + B(y)\cos 2\phi_{h}F_{UU}^{\cos 2\phi_{h}}\right\}$$

 $Q^2\,$ Negative squared

4-momentum transfer to the target

- **Y** Fractional energy of the virtual photon
- X Bjorken scaling variable
- Z Fractional energy transfer to the produced hadron

target polarization $F_{XY,Z} = F_{XY,Z}(x, y, z, P_{h\perp})$ beam ∇ ∇ polarization polarization

Semi Inclusive Deep Inelastic Scattering

$$\left\langle \cos n\phi_{h}\right\rangle = \frac{\int \cos n\phi_{h} \frac{d^{5}\sigma}{dxdydzd\phi_{h}dP_{h\perp}^{2}} d\phi_{h}}{\int \frac{d^{5}\sigma}{dxdydzd\phi_{h}dP_{h\perp}^{2}} d\phi_{h}}$$
$$\left\langle \cos \phi_{h}\right\rangle \approx \frac{C(y)}{2A(y)} \frac{F_{UU}^{\cos\phi_{h}}}{F_{UU,T}}$$
$$\left\langle \cos 2\phi_{h}\right\rangle \approx \frac{B(y)}{2A(y)} \frac{F_{UU}^{\cos 2\phi_{h}}}{F_{UU,T}}$$

$$\frac{d^{5}\sigma}{dxdydzd\phi_{h}dP_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}} \left(1 + \frac{\gamma^{2}}{2x}\right) \left\{A(y)F_{UU,T} + B(y)F_{UU,L}\right\}$$
$$+ C(y)\cos\phi_{h}F_{UU}^{\cos\phi_{h}} + B(y)\cos 2\phi_{h}F_{UU}^{\cos 2\phi_{h}}\right\}$$

 $Q^2\,$ Negative squared

4-momentum transfer to the target

- y Fractional energy of the virtual photon
- X Bjorken scaling variable
- Z Fractional energy transfer to the produced hadron

target
polarization

$$F_{XY,Z} = F_{XY,Z}(x, y, z, P_{h\perp})$$

beam \bigvee \bigvee virtual photon
polarization

Semi Inclusive Deep Inelastic Scattering

Transverse Momentum Dependent Functions (TMDs) Francesca Giordano

Transverse Momentum Dependent Functions (TMDs) Francesca Giordano

distribution functions

distribution functions

distribution functions

distribution functions

distribution functions

distribution functions

distribution functions

* kinematic effect (1978)

distribution functions

* kinematic effect (1978)

 $\langle \kappa_T^q \rangle \to \cos \phi_h^q \to \cos \phi_h^H$

distribution functions

* kinematic effect (1978)

$$\langle \kappa_T^q \rangle \to \cos \phi_h^q \to \cos \phi_h^H$$

* access to quark transverse momenta

distribution functions

* kinematic effect (1978)

$$\langle \kappa_T^q \rangle \to \cos \phi_h^q \to \cos \phi_h^H$$

* access to quark transverse momenta

Boer-Mulders effect $\propto C[-h_1^{\perp}H_1^{\perp}]$

distribution functions

* kinematic effect (1978)

$$\langle \kappa_T^q \rangle \to \cos \phi_h^q \to \cos \phi_h^H$$

access to quark transverse * momenta

Boer-Mulders effect $\propto C[-h_1^{\perp}H_1^{\perp}]$

Francesca Giordano

n

u

С

1

e

0

n

Transverse Momentum Dependent Functions (TMDs) Francesca Giordano

Transverse Momentum Dependent Functions (TMDs) Francesca Giordano

Transverse **M**omentum **D**ependent Functions (TMDs)

Transverse **M**omentum **D**ependent Functions (TMDs)

* kinematic effect (1978)

$$\langle \kappa_T^q \rangle \to \cos \phi_h^q \to \cos \phi_h^H$$

 access to quark transverse momenta

Boer-Mulders effect $|\propto C[-h_1^{\perp}H_1^{\perp}]$ *

chiral odd functions

* h_1^{\perp} naive Time reversal odd

* correlations between quark transverse spin & transverse momentum

access to spin-orbit correlations
access to quark spatial distributions

$$F_{UU}^{\cos 2\phi_h} \propto C[-rac{2(\hat{P}_{h\perp}\cdotec{\kappa}_T)(\hat{P}_{h\perp}\cdotec{p}_T)-ec{\kappa}_T\cdotec{p}_T}{MM_h}h_1^{\perp}H_1^{\perp}]$$

implicit sum over quark flavors

* kinematic effect (1978)

$$\langle \kappa_T^q \rangle \to \cos \phi_h^q \to \cos \phi_h^H$$

 access to quark transverse momenta

Boer-Mulders effect $\propto C[-h_1^{\perp}H_1^{\perp}]$ *

chiral odd functions

* h_1^{\perp} naive Time reversal odd

* correlations between quark transverse spin & transverse momentum

access to spin-orbit correlations
access to quark spatial distributions

$$F_{UU}^{\cos 2\phi_h} \propto C[-rac{2(\hat{P}_{h\perp}\cdotec{\kappa}_T)(\hat{P}_{h\perp}\cdotec{p}_T)-ec{\kappa}_T\cdotec{p}_T}{MM_h}h_1^{\perp}H_1^{\perp}]$$

implicit sum over quark flavors

Leading And Next-to-Leading Twist Terms Francesca Giordano

* kinematic effect (1978)

$$\langle \kappa_T^q \rangle \to \cos \phi_h^q \to \cos \phi_h^H$$

 access to quark transverse momenta

Boer-Mulders effect $\propto C[-h_1^{\perp}H_1^{\perp}]$ *

chiral odd functions

* h_1^{\perp} naive Time reversal odd

* correlations between quark transverse spin & transverse momentum

access to spin-orbit correlations
access to quark spatial distributions

$$\begin{split} F_{UU}^{\cos 2\phi_h} \propto C[-\frac{2(\hat{P}_{h\perp}\cdot\vec{\kappa}_T)(\hat{P}_{h\perp}\cdot\vec{p}_T)-\vec{\kappa}_T\cdot\vec{p}_T}{MM_h}h_1^{\perp}H_1^{\perp}] \\ F_{UU}^{\cos\phi_h} \propto \frac{2M}{Q}C[-\frac{\hat{P}_{h\perp}\cdot\vec{p}_T}{M_h}xh_1^{\perp}H_1^{\perp}-\frac{\hat{P}_{h\perp}\cdot\vec{\kappa}_T}{M}xf_1D_1+...] \\ \\ \text{implicit sum over quark flavors} \end{split}$$

* kinematic effect (1978)

$$\langle \kappa_T^q \rangle \to \cos \phi_h^q \to \cos \phi_h^H$$

 access to quark transverse momenta

Boer-Mulders effect $|\propto C[-h_1^{\perp}H_1^{\perp}]$ *

chiral odd functions

* h_1^{\perp} naive Time reversal odd

* correlations between quark transverse spin & transverse momentum

access to spin-orbit correlations
access to quark spatial distributions

$$\begin{split} F_{UU}^{\cos 2\phi_{h}} \propto C[-\frac{2(\hat{P}_{h\perp}\cdot\vec{\kappa}_{T})(\hat{P}_{h\perp}\cdot\vec{p}_{T})-\vec{\kappa}_{T}\cdot\vec{p}_{T}}{MM_{h}}h_{1}^{\perp}H_{1}^{\perp}] \\ F_{UU}^{\cos\phi_{h}} \propto \underbrace{\frac{2M}{Q}}_{Q}C[-\frac{\hat{P}_{h\perp}\cdot\vec{p}_{T}}{M_{h}}xh_{1}^{\perp}H_{1}^{\perp}-\frac{\hat{P}_{h\perp}\cdot\vec{\kappa}_{T}}{M}xf_{1}D_{1}+\ldots]_{\text{interaction dependent terms neglected}} \\ \\ \hline Leading And Next-to-Leading Twist Terms \end{split}$$

* kinematic effect (1978)

$$\langle \kappa_T^q \rangle \to \cos \phi_h^q \to \cos \phi_h^H$$

 access to quark transverse momenta

Boer-Mulders effect $\propto C[-h_1^{\perp}H_1^{\perp}]$ *

chiral odd functions

* h_1^{\perp} naive Time reversal odd

* correlations between quark transverse spin & transverse momentum

access to spin-orbit correlationsaccess to quark spatial distributions

$$F_{UU}^{\cos 2\phi_{h}} \propto C[-\frac{2(\hat{P}_{h\perp}\cdot\vec{\kappa}_{T})(\hat{P}_{h\perp}\cdot\vec{p}_{T})-\vec{\kappa}_{T}\cdot\vec{p}_{T}}{MM_{h}}h_{1}^{\perp}H_{1}^{\perp}] + \underbrace{\frac{M^{2}}{Q^{2}}}_{Q^{2}}C[\frac{\kappa_{T}^{2}}{M^{2}}f_{1}D_{1} + ...]$$

$$F_{UU}^{\cos\phi_{h}} \propto \underbrace{\frac{2M}{Q}}_{Q}C[-\frac{\hat{P}_{h\perp}\cdot\vec{p}_{T}}{M_{h}}xh_{1}^{\perp}H_{1}^{\perp} - \frac{\hat{P}_{h\perp}\cdot\vec{\kappa}_{T}}{M}xf_{1}D_{1} + ...]$$

$$\underbrace{\text{interaction dependent}}_{\text{terms neglected}}$$

$$I.eading And Next-to-Leading Twist Terms$$

$$d\sigma = d\sigma_{UU}^{0} + \cos 2\phi \, d\sigma_{UU}^{1} + \frac{1}{Q} \cos \phi \, d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q} \sin \phi \, d\sigma_{LU}^{3} + \mathbf{S}_{L} \left\{ \sin 2\phi \, d\sigma_{UL}^{4} + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^{5} + \lambda_{e} \left[d\sigma_{LL}^{6} + \frac{1}{Q} \cos \phi \, d\sigma_{LL}^{7} \right] \right\} + \mathbf{S}_{T} \left\{ \sin(\phi - \phi_{s}) \, d\sigma_{UT}^{8} + \sin(\phi + \phi_{s}) \, d\sigma_{UT}^{9} + \sin(3\phi - \phi_{s}) \, d\sigma_{UT}^{10} + \frac{1}{Q} \sin(2\phi - \phi_{s}) \, d\sigma_{UT}^{11} + \frac{1}{Q} \sin \phi_{s} d\sigma_{UT}^{12} + \frac{1}{Q} \sin(2\phi - \phi_{s}) \, d\sigma_{LT}^{13} + \frac{1}{Q} \cos\phi_{s} d\sigma_{LT}^{14} + \frac{1}{Q} \cos(2\phi - \phi_{s}) \, d\sigma_{LT}^{15} \right] \right\}$$

$$d\sigma = d\sigma_{UU}^{0} + \cos 2\phi \, d\sigma_{UU}^{1} + \frac{1}{Q} \cos \phi \, d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q} \sin \phi \, d\sigma_{LU}^{3} + \frac{1}{Q} \sin \phi \, d\sigma_{LU}^{3} + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^{4} + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^{5} + \lambda_{e} \left[d\sigma_{LL}^{6} + \frac{1}{Q} \cos \phi \, d\sigma_{LL}^{7} \right] \right\} + \frac{1}{Q} \sin(\phi - \phi_{S}) \, d\sigma_{UT}^{8} + \sin(\phi + \phi_{S}) \, d\sigma_{UT}^{9} + \sin(3\phi - \phi_{S}) \, d\sigma_{UT}^{10} + \frac{1}{Q} \sin(2\phi - \phi_{S}) \, d\sigma_{UT}^{11} + \frac{1}{Q} \sin \phi_{S} \, d\sigma_{UT}^{12} + \frac{1}{Q} \sin(\phi - \phi_{S}) \, d\sigma_{LT}^{13} + \frac{1}{Q} \cos(\phi - \phi_{S}) \, d\sigma_{LT}^{13} + \frac{1}{Q} \cos(\phi - \phi_{S}) \, d\sigma_{LT}^{13} + \frac{1}{Q} \cos(\phi - \phi_{S}) \, d\sigma_{LT}^{15} + \frac{1}{Q} \cos(\phi - \phi_{S}) \, d\sigma_{LT}^{15} + \frac{1}{Q} \cos(\phi - \phi_{S}) \, d\sigma_{LT}^{13} + \frac{1}{Q} \cos(\phi - \phi_{S}) \, d\sigma_{LT}^{15} + \frac{1}{Q} \cos(\phi - \phi_{S}) \, d\sigma_{LT}^{15}$$

$$d\sigma = d\sigma_{UU}^{0} + \cos 2\phi \, d\sigma_{UU}^{1} + \frac{1}{Q} \cos \phi \, d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q} \sin \phi \, d\sigma_{LU}^{3} + \frac{1}{Q} \sin \phi \, d\sigma_{LU}^{3} + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^{4} + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^{5} + \lambda_{e} \left[d\sigma_{LL}^{6} + \frac{1}{Q} \cos \phi \, d\sigma_{LL}^{7} \right] \right\} + \frac{1}{Q} \left[\sin(\phi - \phi_{S}) \, d\sigma_{UT}^{8} + \sin(\phi + \phi_{S}) \, d\sigma_{UT}^{9} + \sin(3\phi - \phi_{S}) \, d\sigma_{UT}^{10} + \frac{1}{Q} \sin(2\phi - \phi_{S}) \, d\sigma_{UT}^{11} + \frac{1}{Q} \sin \phi_{S} \, d\sigma_{UT}^{12} + \frac{1}{Q} \cos(\phi - \phi_{S}) \, d\sigma_{LT}^{13} + \frac{1}{Q} \cos\phi_{S} \, d\sigma_{LT}^{14} + \frac{1}{Q} \cos(2\phi - \phi_{S}) \, d\sigma_{LT}^{15} \right] \right\}$$

$$d\sigma = d\sigma_{UU}^{0} + \cos 2\phi \, d\sigma_{UU}^{1} + \frac{1}{Q} \cos \phi \, d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q} \sin \phi \, d\sigma_{LU}^{3} + \mathbf{S}_{L} \left\{ \sin 2\phi \, d\sigma_{UL}^{4} + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^{5} + \lambda_{e} \left[d\sigma_{LL}^{6} + \frac{1}{Q} \cos \phi \, d\sigma_{LL}^{7} \right] \right\} + \mathbf{S}_{I} \left\{ \frac{\sin(\phi - \phi_{S}) \, d\sigma_{UT}^{8}}{\cos(\phi - \phi_{S}) \, d\sigma_{UT}^{10}} + \sin(\phi + \phi_{S}) \, d\sigma_{UT}^{9} + \sin(3\phi - \phi_{S}) \, d\sigma_{UT}^{10} + \frac{1}{Q} \sin(2\phi - \phi_{S}) \, d\sigma_{UT}^{11} + \frac{1}{Q} \sin \phi_{S} d\sigma_{UT}^{12} + \frac{1}{Q} \cos(\phi - \phi_{S}) \, d\sigma_{LT}^{13} + \frac{1}{Q} \cos\phi_{S} d\sigma_{LT}^{14} + \frac{1}{Q} \cos(2\phi - \phi_{S}) \, d\sigma_{LT}^{15} \right\}$$

$$A_{UT} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}}$$

$$d\sigma = d\sigma_{UU}^{0} + \cos 2\phi \, d\sigma_{UU}^{1} + \frac{1}{Q} \cos \phi \, d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q} \sin \phi \, d\sigma_{LU}^{3} + \mathbf{S}_{L} \left\{ \sin 2\phi \, d\sigma_{UL}^{4} + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^{5} + \lambda_{e} \left[d\sigma_{LL}^{6} + \frac{1}{Q} \cos \phi \, d\sigma_{LL}^{7} \right] \right\} + \mathbf{S}_{T} \left\{ \sin(\phi - \phi_{s}) \, d\sigma_{UT}^{8} + \sin(\phi + \phi_{s}) \, d\sigma_{UT}^{9} + \sin(3\phi - \phi_{s}) \, d\sigma_{UT}^{10} + \frac{1}{Q} \sin(2\phi - \phi_{s}) \, d\sigma_{UT}^{11} + \frac{1}{Q} \sin \phi_{s} \, d\sigma_{UT}^{12} + \frac{1}{Q} \sin(2\phi - \phi_{s}) \, d\sigma_{LT}^{11} + \frac{1}{Q} \sin \phi_{s} \, d\sigma_{UT}^{12} + \lambda_{e} \left[\cos(\phi - \phi_{s}) \, d\sigma_{LT}^{13} + \frac{1}{Q} \cos \phi_{s} \, d\sigma_{LT}^{14} + \frac{1}{Q} \cos(2\phi - \phi_{s}) \, d\sigma_{LT}^{15} \right] \right\}$$

$$A_{UT} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} \longrightarrow \frac{d^{5}\sigma}{dxdydzd\phi_{h}dP_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}} \left(1 + \frac{\gamma^{2}}{2x}\right) \left\{A(y)F_{UU,T} + B(y)F_{UU,L} + C(y)\cos\phi_{h}F_{UU}^{\cos\phi_{h}} + B(y)\cos2\phi_{h}F_{UU}^{\cos2\phi_{h}}\right\}$$

$$d\sigma = d\sigma_{UU}^{0} + \cos 2\phi \, d\sigma_{UU}^{1} + \frac{1}{Q} \cos \phi \, d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q} \sin \phi \, d\sigma_{LU}^{3} + \mathbf{S}_{L} \left\{ \sin 2\phi \, d\sigma_{UL}^{4} + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^{5} + \lambda_{e} \left[d\sigma_{LL}^{6} + \frac{1}{Q} \cos \phi \, d\sigma_{LL}^{7} \right] \right\} + \mathbf{S}_{L} \left\{ \sin(\phi - \phi_{s}) \, d\sigma_{UT}^{8} + \sin(\phi + \phi_{s}) \, d\sigma_{UT}^{9} + \sin(3\phi - \phi_{s}) \, d\sigma_{UT}^{10} + \frac{1}{Q} \sin(2\phi - \phi_{s}) \, d\sigma_{UT}^{11} + \frac{1}{Q} \sin \phi_{s} d\sigma_{UT}^{12} + \frac{1}{Q} \sin(\phi - \phi_{s}) \, d\sigma_{UT}^{11} + \frac{1}{Q} \sin \phi_{s} d\sigma_{UT}^{12} + \frac{1}{Q} \cos(\phi - \phi_{s}) \, d\sigma_{LT}^{13} + \frac{1}{Q} \cos\phi_{s} d\sigma_{LT}^{14} + \frac{1}{Q} \cos(2\phi - \phi_{s}) \, d\sigma_{LT}^{15} \right] \right\}$$

$$A_{UT} = \frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}} \longrightarrow \frac{d^{5}\sigma}{dxdydzd\phi_{h}dP_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}} \left(1 + \frac{\gamma^{2}}{2x}\right) \{A(y)F_{UU,T} + B(y)F_{UU,L} + C(y)\cos\phi_{h}F_{UU}^{\cos\phi_{h}} + B(y)\cos2\phi_{h}F_{UU}^{\cos2\phi_{h}}\} + C(y)\cos\phi_{h}F_{UU}^{\cos\phi_{h}} + B(y)\cos2\phi_{h}F_{UU}^{\cos2\phi_{h}}\}$$
cancels large part of acceptance effects

$$d\sigma = d\sigma_{UU}^{0} + \cos 2\phi \, d\sigma_{UU}^{1} + \frac{1}{Q} \cos \phi \, d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q} \sin \phi \, d\sigma_{LU}^{3} + \frac{1}{Q} \sin \phi \, d\sigma_{LU}^{3} + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^{4} + \frac{1}{Q} \cos \phi \, d\sigma_{UL}^{7} \right]$$

$$+ S_{L} \left\{ \sin 2\phi \, d\sigma_{UL}^{4} + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^{5} + \lambda_{e} \left[d\sigma_{LL}^{6} + \frac{1}{Q} \cos \phi \, d\sigma_{LL}^{7} \right] \right\}$$

$$+ S_{L} \left\{ \sin(\phi - \phi_{S}) \, d\sigma_{UT}^{8} + \sin(\phi + \phi_{S}) \, d\sigma_{UT}^{9} + \sin(3\phi - \phi_{S}) \, d\sigma_{UT}^{10} + \frac{1}{Q} \sin(2\phi - \phi_{S}) \, d\sigma_{UT}^{11} + \frac{1}{Q} \sin \phi_{S} d\sigma_{UT}^{12} + \frac{1}{Q} \cos(2\phi - \phi_{S}) \, d\sigma_{LT}^{13} + \frac{1}{Q} \cos \phi_{S} d\sigma_{LT}^{14} + \frac{1}{Q} \cos(2\phi - \phi_{S}) \, d\sigma_{LT}^{15} \right] \right\}$$
For modulations of the unpolarized cross section it is

 $A_{UT} = \underbrace{\frac{d\sigma^{\uparrow} - d\sigma^{\downarrow}}{d\sigma^{\uparrow} + d\sigma^{\downarrow}}}_{\text{d}\sigma^{\uparrow} + d\sigma^{\downarrow}} \longrightarrow \underbrace{\frac{d^{5}\sigma}{dxdydzd\phi_{h}dP_{h\perp}^{2}}}_{\text{d}xdydzd\phi_{h}dP_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}} (1 + \frac{\gamma^{2}}{2x}) \{A(y)F_{UU,T} + B(y)F_{UU,L} + C(y)\cos\phi_{h}F_{UU}^{\cos\phi_{h}} + B(y)\cos2\phi_{h}F_{UU}^{\cos2\phi_{h}}\}$ cancels large part of acceptance effects

not possible to define an asymmetry!

$$d\sigma = d\sigma_{UU}^{0} + \cos 2\phi \, d\sigma_{UU}^{1} + \frac{1}{Q} \cos \phi \, d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q} \sin \phi \, d\sigma_{LU}^{3} + \mathbf{S}_{L} \left\{ \sin 2\phi \, d\sigma_{UL}^{4} + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^{5} + \lambda_{e} \left[d\sigma_{LL}^{6} + \frac{1}{Q} \cos \phi \, d\sigma_{LL}^{7} \right] \right\} + \mathbf{S}_{L} \left\{ \sin (\phi - \phi_{S}) \, d\sigma_{UT}^{8} + \sin(\phi + \phi_{S}) \, d\sigma_{UT}^{9} + \sin(3\phi - \phi_{S}) \, d\sigma_{UT}^{10} + \frac{1}{Q} \sin(2\phi - \phi_{S}) \, d\sigma_{UT}^{11} + \frac{1}{Q} \sin \phi_{S} d\sigma_{UT}^{12} + \frac{1}{Q} \sin(2\phi - \phi_{S}) \, d\sigma_{LT}^{13} + \frac{1}{Q} \cos\phi_{S} d\sigma_{LT}^{14} + \frac{1}{Q} \cos(2\phi - \phi_{S}) \, d\sigma_{LT}^{15} \right] \right\}$$

For modulations of the unpolarized cross section it is

not possible to define an asymmetry!

tracking detectors

tracking detectors

tracking detectors

$$w = (x, y, z, P_{h\perp})$$

$$w = (x, y, z, P_{h\perp})$$

$$\sigma_w^0 [1 + 2\langle \cos \phi_h \rangle_w + 2\langle \cos 2\phi_h \rangle_w]$$

 $w = (x, y, z, P_{h\perp})$ $\sigma_w^0 [1 + 2\langle \cos \phi_h \rangle_w + 2\langle \cos 2\phi_h \rangle_w]$

 $w = (x, y, z, P_{h\perp})$ $\sigma_w^0 [1 + 2\langle \cos \phi_h \rangle_w + 2\langle \cos 2\phi_h \rangle_w]$

$$w = (x, y, z, P_{h\perp})$$

$$n = \int L\sigma_w^0 [1 + 2\langle \cos \phi_h \rangle_w + 2\langle \cos 2\phi_h \rangle_w] \qquad dw$$

$$w = (x, y, z, P_{h\perp})$$

$$n = \int L\sigma_w^0 [1 + 2\langle \cos \phi_h \rangle_w + 2\langle \cos 2\phi_h \rangle_w] \epsilon_{w,\phi_h}^{acc} \epsilon_{w,\phi_h}^{rad} dw$$

$$w = (x, y, z, P_{h\perp})$$

$$n = \int L\sigma_w^0 [1 + 2\langle \cos \phi_h \rangle_w + 2\langle \cos 2\phi_h \rangle_w] \epsilon_{w,\phi_h}^{acc} \epsilon_{w,\phi_h}^{rad} dw$$

 $\boldsymbol{\mathcal{O}} = (x, y, z \boldsymbol{\phi}_h \perp \boldsymbol{\mathcal{E}} \quad \boldsymbol{\mathcal{O}} \boldsymbol{\phi} \boldsymbol{\mathcal{E}} \quad \boldsymbol{\mathcal{O}} \boldsymbol{\phi} \quad \boldsymbol{\mathcal{O}} \quad \boldsymbol{\mathcal{O}}$

Acceptance Correction Francesca Giordano

 $\mathbf{\mathcal{O}} = (x, y, z \mathbf{\mathbf{\phi}}_{h} + \mathbf{\mathcal{E}} \quad \mathbf{\mathcal{O}} \mathbf{\mathbf{\phi}} \quad \mathbf{\mathcal{E}} \quad \mathbf{\mathcal{O}} \mathbf{\mathbf{\phi}} \quad \mathbf{\mathcal{O}} \quad \mathbf{\mathcal{O}}$ $n = \int L\sigma_{w}^{0} [1 + 2\langle \cos \phi_{h} \rangle_{w} + 2\langle \cos 2\phi_{h} \rangle_{w}] \epsilon_{w,\phi_{h}}^{acc} \epsilon_{w,\phi_{h}}^{rad} dw$

$$\mathbf{O} = (x, y, z \mathbf{\phi}_h \perp \mathbf{\mathcal{E}} \quad \mathbf{O} \mathbf{\phi} \mathbf{\mathcal{E}} \quad \mathbf{O} \mathbf{\phi} \quad \mathbf{O} \quad \mathbf{O}$$
$$n = \int L\sigma_w^0 [1 + 2\langle \cos \phi_h \rangle_w + 2\langle \cos 2\phi_h \rangle_w] \epsilon_{w,\phi_h}^{acc} \epsilon_{w,\phi_h}^{rad} dw$$

$$\mathbf{O} = (x, y, z \mathbf{\phi}_h \perp \mathbf{\mathcal{E}} \quad \mathbf{O} \mathbf{\phi} \mathbf{\mathcal{E}} \quad \mathbf{O} \mathbf{\phi} \quad \mathbf{O} \quad \mathbf{O}$$
$$n = \int L\sigma_w^0 [1 + 2\langle \cos \phi_h \rangle_w + 2\langle \cos 2\phi_h \rangle_w] \epsilon_{w,\phi_h}^{acc} \epsilon_{w,\phi_h}^{rad} dw$$

$$\mathbf{O} = (x, y, z \mathbf{\phi}_h \perp \mathbf{\mathcal{E}} \quad \mathbf{O} \mathbf{\phi} \mathbf{\mathcal{E}} \quad \mathbf{O} \mathbf{\phi} \quad \mathbf{O} \quad \mathbf{O}$$
$$n = \int L\sigma_w^0 [1 + 2\langle \cos \phi_h \rangle_w + 2\langle \cos 2\phi_h \rangle_w] \epsilon_{w,\phi_h}^{acc} \epsilon_{w,\phi_h}^{rad} dw$$

$$\mathbf{O} = (x, y, z \mathbf{\phi}_h \perp \mathbf{\mathcal{E}} \quad \mathbf{O} \mathbf{\phi} \mathbf{\mathcal{E}} \quad \mathbf{O} \mathbf{\phi} \quad \mathbf{O} \quad \mathbf{O}$$
$$n = \int L\sigma_w^0 [1 + 2\langle \cos \phi_h \rangle_w + 2\langle \cos 2\phi_h \rangle_w] \epsilon_{w,\phi_h}^{acc} \epsilon_{w,\phi_h}^{rad} dw$$

$$\mathbf{O} = (x, y, z \mathbf{\phi}_h \perp \mathbf{\mathcal{E}} \quad \mathbf{O} \mathbf{\phi} \mathbf{\mathcal{E}} \quad \mathbf{O} \mathbf{\phi} \quad \mathbf{O} \quad \mathbf{O}$$
$$n = \int L \sigma_w^0 [1 + 2\langle \cos \phi_h \rangle_w + 2\langle \cos 2\phi_h \rangle_w] \epsilon_{w, \phi_h}^{acc} \epsilon_{w, \phi_h}^{rad} dw$$

$$\mathbf{\mathcal{O}} = (x, y, z \mathbf{\mathbf{\phi}}_{h} \perp \mathbf{\mathcal{E}} \quad \mathbf{\mathcal{O}} \mathbf{\mathbf{\phi}} \quad \mathbf{\mathcal{E}} \quad \mathbf{\mathcal{O}} \mathbf{\mathbf{\phi}} \quad \mathbf{\mathcal{O}} \quad \mathbf{\mathcal{O}}$$
$$n = \int L\sigma_{w}^{0} [1 + 2\langle \cos \phi_{h} \rangle_{w} + 2\langle \cos 2\phi_{h} \rangle_{w}] \epsilon_{w,\phi_{h}}^{acc} \epsilon_{w,\phi_{h}}^{rad} dw$$

$$\boldsymbol{\mathcal{O}} = (x, y, z \boldsymbol{\mathcal{O}}_{h} \perp \boldsymbol{\mathcal{E}} \quad \boldsymbol{\mathcal{O}} \boldsymbol{\mathcal{O}} \quad \boldsymbol{\mathcal{E}} \quad \boldsymbol{\mathcal{O}} \boldsymbol{\mathcal{O}} \quad \boldsymbol{\mathcal{O$$

 $\mathbf{\mathcal{O}} = (x, y, z \mathbf{\mathbf{\mathcal{O}}}_{h} \perp \mathbf{\mathcal{E}} \quad \mathbf{\mathcal{O}} \mathbf{\mathbf{\mathcal{O}}} \quad \mathbf{\mathcal{E}} \quad \mathbf{\mathcal{O}} \mathbf{\mathbf{\mathcal{O}}} \quad \mathbf{\mathcal{O}}$ $n = \int L \sigma_{w}^{0} [1 + 2\langle \cos \phi_{h} \rangle_{w} + 2\langle \cos 2\phi_{h} \rangle_{w}] \epsilon_{w,\phi_{h}}^{acc} \epsilon_{w,\phi_{h}}^{rad} dw$

$$w = (x, y, z, P_{h\perp})$$

$$n = \int L\sigma_w^0 [1 + 2\langle \cos \phi_h \rangle_w + 2\langle \cos 2\phi_h \rangle_w] \epsilon_{w,\phi_h}^{acc} \epsilon_{w,\phi_h}^{rad} dw$$

$\begin{array}{c} \text{4-dimensional} \ (w) \\ \text{unfolding} \end{array}$

Binning 900 kinematic bins x 12 ϕ_h -bins									
Variable		Bin limits						#	
х	0.023	0.042	0.078	0.145	0.27	0.6		5	
У	0.2	0.3	0.45	0.6	0.7	0.85		5	
Z	0.2	0.3	0.4	0.5	0.6	0.75	1	6	
$P_{h\perp}$	0.05	0.2	0.35	0.5	0.7	1	1.3	6	

Moment Extraction

$$w = (x, y, z, P_{h\perp})$$
$$n = \int L\sigma_w^0 [1 + 2\langle \cos \phi_h \rangle_w + 2\langle \cos 2\phi_h \rangle_w] \epsilon_{w,\phi_h}^{acc} \epsilon_{w,\phi_h}^{rad} dw$$

$$n_{born} = S^{-1}[n - B_0]$$

Binning 900 kinematic bins x 12 ϕ_h -bins									
Variable		Bin limits						#	
х	0.023	0.042	0.078	0.145	0.27	0.6		5	
У	0.2	0.3	0.45	0.6	0.7	0.85		5	
Z	0.2	0.3	0.4	0.5	0.6	0.75	1	6	
$P_{h\perp}$	0.05	0.2	0.35	0.5	0.7	1	1.3	6	

$$w = (x, y, z, P_{h\perp})$$
$$n = \int L\sigma_w^0 [1 + 2\langle \cos \phi_h \rangle_w + 2\langle \cos 2\phi_h \rangle_w] \epsilon_{w,\phi_h}^{acc} \epsilon_{w,\phi_h}^{rad} dw$$

$$n_{born} = S^{-1}[n - B_0]$$

describes the acceptance &
smearing between adjacent bins

Binning 900 kinematic bins x 12 ϕ_h -bins									
Variable		Bin limits							
х	0.023	0.042	0.078	0.145	0.27	0.6		5	
У	0.2	0.3	0.45	0.6	0.7	0.85		5	
Z	0.2	0.3	0.4	0.5	0.6	0.75	1	6	
$P_{h\perp}$	0.05	0.2	0.35	0.5	0.7	1	1.3	6	

$$w = (x, y, z, P_{h\perp})$$
$$n = \int L\sigma_w^0 [1 + 2\langle \cos \phi_h \rangle_w + 2\langle \cos 2\phi_h \rangle_w] \epsilon_{w,\phi_h}^{acc} \epsilon_{w,\phi_h}^{rad} dw$$

$$w = (x, y, z, P_{h\perp})$$
$$n = \int L\sigma_w^0 [1 + 2\langle \cos \phi_h \rangle_w + 2\langle \cos 2\phi_h \rangle_w] \epsilon_{w,\phi_h}^{acc} \epsilon_{w,\phi_h}^{rad} dw$$

Model independent only if fully differential ratio (4D binning) and only in the limit of infinitely small bins

$$n_{born} = S^{-1}[n - B_0]$$

4-dimensional (w)unfolding

$$w = (x, y, z, P_{h\perp})$$
$$n = \int L\sigma_w^0 [1 + 2\langle \cos \phi_h \rangle_w + 2\langle \cos 2\phi_h \rangle_w] \epsilon_{w,\phi_h}^{acc} \epsilon_{w,\phi_h}^{rad} dw$$

Model independent only if fully differential ratio (4D binning) and only in the limit of infinitely small bins

4-dimensional (w) unfolding

Binning 900 kinematic bins x 12 ϕ_h -bins									
Variable		Bin limits							
х	0.023	0.042	0.078	0.145	0.27	0.6		5	
У	0.2	0.3	0.45	0.6	0.7	0.85		5	
Z	0.2	0.3	0.4	0.5	0.6	0.75	1	6	
$P_{h\perp}$	0.05	0.2	0.35	0.5	0.7	1	1.3	6	

Moment Extraction

$$w = (x, y, z, P_{h\perp})$$
$$n = \int L\sigma_w^0 [1 + 2\langle \cos \phi_h \rangle_w + 2\langle \cos 2\phi_h \rangle_w] \epsilon_{w,\phi_h}^{acc} \epsilon_{w,\phi_h}^{rad} dw$$

Model independent only if fully differential ratio (4D binning) and only in the limit of infinitely small bins

4-dimensional (w) unfolding

Binning 900 kinematic bins x 12 ϕ_h -bins									
Variable		Bin limits							
х	0.023	0.042	0.078	0.145	0.27	0.6		5	
У	0.2	0.3	0.45	0.6	0.7	0.85		5	
Z	0.2	0.3	0.4	0.5	0.6	0.75	1	6	
$P_{h\perp}$	0.05	0.2	0.35	0.5	0.7	1	1.3	6	

 $A(1 + B\cos\phi_h + C\cos 2\phi_h)$

Moment Extraction

$$w = (x, y, z, P_{h\perp})$$

$$n = \int L\sigma_w^0 [1 + 2\langle \cos \phi_h \rangle_w + 2\langle \cos 2\phi_h \rangle_w] \epsilon_{w,\phi_h}^{acc} \epsilon_{w,\phi_h}^{rad} dw$$

$\begin{array}{c} \text{4-dimensional} \ (w) \\ \text{unfolding} \end{array}$

Binning 900 kinematic bins x 12 ϕ_h -bins									
Variable		Bin limits						#	
х	0.023	0.042	0.078	0.145	0.27	0.6		5	
У	0.2	0.3	0.45	0.6	0.7	0.85		5	
Z	0.2	0.3	0.4	0.5	0.6	0.75	1	6	
$P_{h\perp}$	0.05	0.2	0.35	0.5	0.7	1	1.3	6	

 $A(1 + B\cos\phi_h + C\cos 2\phi_h)$

Projection Versus The Single Variable Francesca Giordano

$$w = (x, y, z, P_{h\perp})$$

$$n = \int L\sigma_w^0 [1 + 2\langle \cos \phi_h \rangle_w + 2\langle \cos 2\phi_h \rangle_w] \epsilon_{w,\phi_h}^{acc} \epsilon_{w,\phi_h}^{rad} dw$$

4-dimensional (w) unfolding

Binning 900 kinematic bins x 12 ϕ_h -bins								
Variable		Bin limits						#
х	0.023	0.042	0.078	0.145	0.27	0.6		5
у	0.2	0.3	0.45	0.6	0.7	0.85		5
Z	0.2	0.3	0.4	0.5	0.6	0.75	1	6
$P_{h\perp}$	0.05	0.2	0.35	0.5	0.7	1	1.3	6

 $A(1 + B\cos\phi_h + C\cos 2\phi_h)$

Projection Versus The Single Variable Francesca Giordano

Model independent only if fully differential ratio (4D binning)

only in the limit of infinitely small bins

 $n_{born} = S^{-1}[n - B_0]$

 $n_{born} = S^{-1}[n - B_0]$

Model independent only if fully differential ratio (4D binning)

only in the limit of infinitely small bins

are the bins small enough?

✓Model independent only if fully differential ratio (4D binning)

$$n_{born} = S^{-1}[n - B_0]$$

only in the limit of infinitely small bins

are the bins small enough?

Different cross section models used for corrections

► Model independent only if fully differential ratio (4D binning) only in the limit of infinitely small bins

 $n_{born} = S^{-1}[n - B_0]$

are the bins small enough?

Different cross section models used for corrections

1. $\sigma_w^0|_{mc}$ Pythia

Model independent only if fully differential ratio (4D binning) only in the limit of infinitely small bins $n_{born} = S^{-1}[n - B_0]$ are the bins small enough?

Different cross section models used for corrections

1. $\sigma_w^0|_{mc}$ Pythia **2.** $\sigma_w^0|_{mc}M(\cos\phi_h, \cos 2\phi_h)$ Pythia + azimuthal modulations

$$\begin{split} P = & \Big[\Big(A_1 + A_2 x + A_3 y + A_4 z + A_5 P_{h\perp} + A_6 x^2 + A_7 y^2 + A_8 z^2 + A_9 P_{h\perp}^2 + \\ & A_{10} x \, y + A_{11} x \, z + A_{12} x \, P_{h\perp} + A_{13} y \, z + A_{14} y \, P_{h\perp} + A_{15} z \, P_{h\perp} + \\ & + A_{16} x^3 + A_{17} y^3 + A_{18} z^3 + A_{19} P_{h\perp}^3 \Big) \Big] cos\phi_h + \\ & \Big[\Big(A_{20} + A_{21} x + A_{22} y + A_{23} z + A_{24} P_{h\perp} + A_{25} x^2 + A_{26} y^2 + A_{27} z^2 + A_{28} P_{h\perp}^2 + \\ & A_{29} x \, y + A_{30} x \, z + A_{31} x \, P_{h\perp} + A_{32} y \, z + A_{33} y \, P_{h\perp} + A_{34} z \, P_{h\perp} + \\ & + A_{35} x^3 + A_{36} y^3 + A_{37} z^3 + A_{38} P_{h\perp}^3 \Big) \Big] cos2\phi_h \end{split}$$

Francesca Giordano

 $n_{born} = S^{-1}[n - B_0]$

Model independent only if fully differential ratio (4D binning)

only in the limit of infinitely small bins

are the bins small enough?

➢Model independent only if fully differential ratio (4D binning) only in the limit of infinitely small bins

 $n_{born} = S^{-1}[n - B_0]$

are the bins small enough?

Different cross section models used to build:

 $n_{born} = S^{-1}[n - B_0]$

Model independent only if fully differential ratio (4D binning)

only in the limit of infinitely small bins

are the bins small enough?

Different cross section models used to build: the smearing matrix:

Subsample corrected with flat MC
 Subsample corrected with MC that resemble data modulations

Systematic Checks Francesca Giordano

➢Model independent only if fully differential ratio (4D binning)

 $n_{born} = S^{-1}[n - B_0]$

are the bins small enough?

only in the limit of infinitely small bins

Different cross section models used to build:

culation of final systematics

c check	Calculation in 900 bins	ndependent or	nly if fully differential ratio (4D binning)
enge	Born - (Unfolded with Dpi- BB)	only in the	e limit of infinitely small bins
ence	Max (4d_LinearFit(0.5 * (year - avg)) are t	the bins small enough?
matrix	0.5*(Std - RewtPythiaXsec)		
	(Unfolded with Zero_flat – Unfolded Zero_Rew) Different cro	with ss section mod	els used to build:
ojection	0.5*(Std – GMC_transXsec)	r	
< 0.2 = 0.2 = 0.05 =	Flat-Zero Rew-Zero 10^{-1} 1 0.5 1 x y		 π⁺ Subsample corrected with flat background that resemble data modulations π Subsample corrected with flat background that resemble data modulations Subsample corrected with flat background that resemble data modulations

Systematic Checks

 Model dependence of unfolding procedure: different cross section models
 RICH efficiency& contamination

- MICH eniciency & containi
- **I** Binning effect
- **I** Unfolding method
- ☑ Time stability

 Model dependence of unfolding procedure: different cross section models

- **I** RICH efficiency& contamination
- **Ø** Binning effect
- **Unfolding method**
- 🗹 Time stability

Dipole Magnet misalignement on different charges tested
Beam/Detector misalignment effects tested
Effects due to target transverse/longitudinal magnets
Residual modulations related to acceptance
Effects at the edge of spectrometer
....

Pions, Hydrogen Francesca Giordano
Pions, Hydrogen Francesca Giordano

Pions, Hydrogen Francesca Giordano

Pions, Hydrogen Francesca Giordano

 $\propto C[-h_1^{\perp}H_1^{\perp} + \frac{\kappa_T^2}{Q^2}f_1D_1 +]$

Cahn expected flavor blind

Pions, Hydrogen Francesca Giordano

 $\propto C[-h_1^{\perp}H_1^{\perp} + \frac{\kappa_T^2}{Q^2}f_1D_1 + \ldots]$

Cahn expected flavor blind

different π^+/π^- amplitudes Boer-Mulders effect

Pions, Hydrogen Francesca Giordano

21

$$\propto C[-h_1^{\perp}H_1^{\perp} + \frac{\kappa_T^2}{Q^2}f_1D_1 + \dots]$$

Gamberg, Goldstein Phys. Rev. D77:094016, 2008

Zhang et al Phys. Rev. D78:034035, 2008

Barone et al Phys. Rev. D78:045022, 2008

Barone, Melis, Prokudin Phys. Rev. D81:114026, 2010

Cahn expected flavor blind

different π^+/π^- amplitudes \Rightarrow Boer-Mulders effect

Pions, Hydrogen Francesca Giordano

$$\propto C[-h_1^{\perp}H_1^{\perp} + \frac{\kappa_T^2}{Q^2}f_1D_1 +]$$

Gamberg, Goldstein Phys. Rev. D77:094016, 2008

Zhang et al Phys. Rev. D78:034035, 2008

Barone et al Phys. Rev. D78:045022, 2008

Pions, Hydrogen Francesca Giordano

Pions, Hydrogen Francesca Giordano

Pions, Hydrogen Francesca Giordano

Pions, Hydrogen Francesca Giordano

Boer-Mulders
$$\propto rac{2M}{Q} C [-h_1^{\perp} H_1^{\perp} - f_1 D_1 +]$$

Cahn expected flavor blind

different π^+/π^- amplitudes \Rightarrow Boer-Mulders effect

$$\propto \frac{2M}{Q} C \left[-h_1^{\perp} H_1^{\perp} - f_1 D_1 + \dots \right]$$

$$S2\phi_h\rangle_{target}^h = \frac{\sum_q e_q h_{1,q}^\perp(x) H_{1,q\to h}^\perp(z)}{\sum_q e_q f_{1,q}(x) D_{1,q}(z)}$$

$$\mathcal{T}^{\perp}$$

$$p_h \rangle_{target}^h = \frac{\sum_q e_q h_{1,q}^{\perp}(x) H_{1,q \to h}^{\perp}(z)}{\sum_q e_q f_{1,q}(x) D_{1,q}(z)}$$

Set 1: same sign for *u* and *d* quark $h_{1,u}^{\perp} > 0$ $h_{1,d}^{\perp} > 0$

$$\pi^+$$

$$\cos 2\phi_h \rangle_{target}^h = \frac{\sum_q e_q h_{1,q}^{\perp}(x) H_{1,q \to h}^{\perp}(z)}{\sum_q e_q f_{1,q}(x) D_{1,q}(z)}$$

Set 1:

same sign for *u* and *d* quark

$$h_{1,u}^{\perp} > 0 \quad h_{1,d}^{\perp} > 0$$

Set 2:

opposite sign for *u* and *d* quark $h_{1,u}^{\perp} > 0$ $h_{1,d}^{\perp} < 0$

Kaons, Hydrogen Francesca Giordano

Kaons, Hydrogen Francesca Giordano

 $\cos \phi_h$ kaons

Kaons, Hydrogen Francesca Giordano

 $\propto \frac{2M}{Q}C[-h_1^{\perp}H_1^{\perp} - f_1D_1 +]$

Kaons, Hydrogen Francesca Giordano

$$\propto C[-h_1^{\perp}H_1^{\perp} + \frac{\kappa_T^2}{Q^2}f_1D_1 +]$$

• Differences between π^+/π^- :

evidence of a non-zero Boer-Mulders function: confirms opposite sign for favored and unfavored <u>pion Collins</u> <u>fragmentation functions</u>

• Different behavior for K^+/K^- with respect to pions: large signals and same sign for $\cos 2\phi_h$ modulation: indication of same sign for favored/unfavored strange Collins fragmentation functions?

Similar results for deuterium & hydrogen data suggest a Boer-Mulders function with same sign for u and d quark

To date heres provides the most complete data set available!

