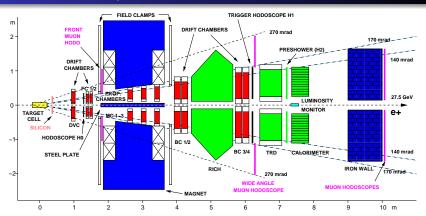
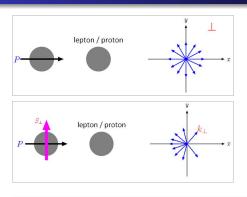
The Transverse Single Spin Asymmetry A_N in Inclusive Hadron Production $Ip^{\uparrow} \rightarrow hX$ at Hermes

Florian Sanftl


University of Regensburg

DPG-Meeting Bonn, March 2010

Overview

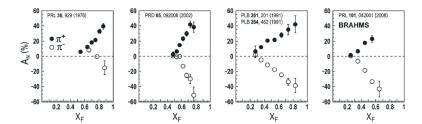

- 1 Hermes
 - The Spectrometer
- 2 Definition of A_N and Motivation
 - A_N in $pp^{\uparrow} \to \pi^{\pm} X$
 - ullet A_N in SIDIS $(Ip^{\uparrow}
 ightarrow I\pi^{\pm}X)$
 - Motivation for A_N in $Ip^{\uparrow} \to hX$
- 3 Inclusive Hadron Production (IH)
 - Effect on Kinematics
- Results and Discussion
 - One-Dimensional Extraction
 - Two-Dimensional Extraction
 - Summary and Outlook

Detector and Experimental Facts

- 27.5GeV positron/lepton beam of HERA
- \bullet atomic beam source transversely provides polarized hydrogen with polarizations above $\sim75\%$

But how is A_N defined?

 \Rightarrow Final state particle is azimuthal symmetric

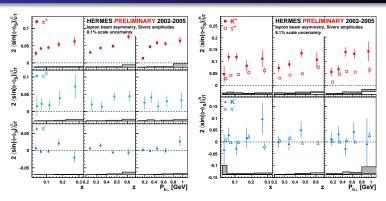

$$d\sigma \propto \vec{S}_{\perp} \cdot (\vec{P}_{Beam} \times \vec{P}_{h\perp})$$

 \Rightarrow Final state particle asymmetrically dis-

tributed in space

Experimental observable: A_N

- $A_N \equiv \frac{1}{|S_\perp|} \frac{\sigma^{\uparrow} \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} \equiv \frac{N_{\uparrow}(\phi) N_{\downarrow}(\phi)}{N_{\uparrow}(\phi) + N_{\downarrow}(\phi)}$ ("Left-Right-Asymmetries")
- advantage: systematic effects cancel by using a ratio of yields


Short History I: A_N in $pp^{\uparrow} \to \pi^{\pm} X$

Main observations

- corresponds to \sqrt{s} : 4.9 GeV (ANL), 6.6 GeV (BNL), 19.4 GeV (FNAL), 62.4 GeV (RHIC)
- significant A_N -signal (already at low $\mathbf{P}_{h\perp} \approx 0.5 \text{GeV!}$)
- mirror symmetric shapes of A_N dependent on particle charge
- How does this A_N look like in $ep^{\uparrow} \to \pi^{\pm}X$ -processes?

Short History II: A_N in $Ip^{\uparrow} \rightarrow I\pi^{\pm}X$

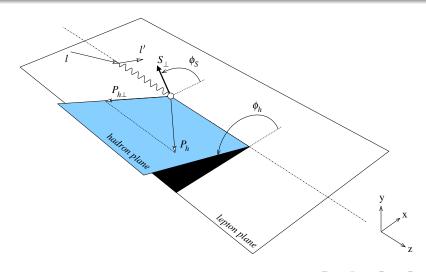
- π^+ : positive, π^- : consistent with zero
- first evidence for non-zero Sivers fct.: $f_{1T}^{\perp u}(x, p_T^2) < 0$
- angular momentum of u-quarks has to be $L_z^u > 0$

How can A_N be caused?

Parametrization of the Cross-Section: Factorization Theorem

ullet in SIDIS $(\mathit{Ip}^{\uparrow}
ightarrow \mathit{hX})$ A_N can be written as:

$$A_{N}(\phi,\phi_{S}) \propto \sin(\phi + \phi_{S}) \sum_{q,\bar{q}} e_{q}^{2} \Im \left[\frac{\vec{k}_{T} \cdot \vec{P}_{h\perp}}{m_{h}} \delta q(\mathbf{x}, p_{T}^{2}) H_{1}^{\perp}(z, k_{T}^{2}) \right]$$

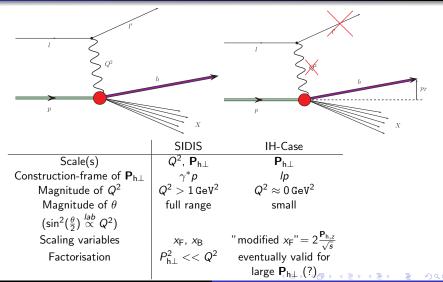

$$+ \sin(\phi - \phi_{S}) \sum_{q,\bar{q}} e_{q}^{2} \Im \left[\frac{\vec{p}_{T} \cdot \vec{P}_{h\perp}}{m_{N}} f_{1T}^{\perp q}(\mathbf{x}, p_{T}^{2}) D_{1}^{q}(z, k_{T}^{2}) \right]$$

with

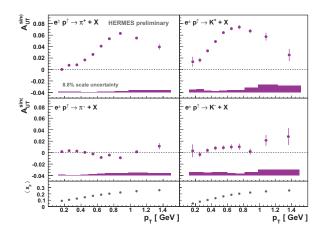
$$\mathbb{I}[\mathcal{W}\cdot\mathcal{D}\cdot\mathcal{F}] \equiv \int d^2\vec{p}_T \ d^2\vec{k}_T \ \delta\left(\vec{p}_T - \frac{\vec{P}_{h\perp}}{z} - \vec{k}_T\right) \ \mathcal{W}\cdot\mathbf{D}\cdot\mathbf{F}$$

- so far only proven for SIDIS-Xsec when $P_{h\perp}^2 << Q^2$ (**Two** scales!)
- alternatives necessary to prove the theorem
- Note: Introduction of Transverse Momentum Dependent Distribution Functions

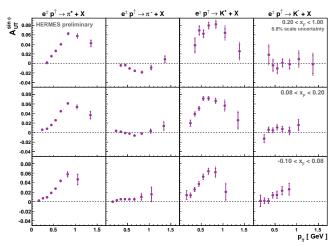
The Trento-Conventions



Why can be A_N in $Ip^{\uparrow} \rightarrow hX$ interesting?


Brain Storming

- Inclusive hadron production $lp^{\uparrow} \to hX$ is analogue of $pp^{\uparrow} \to hX$ process. Both have only one hard scale $P_{h\perp}$
- in $lp^{\uparrow} \rightarrow hX$ only one channel is present
- test for TMD-factorization formalism
- test for higher twist contributions to Sivers DF
- estimation of the magnitude of 'higher-twist-dilution'
- (eventual explanation for differences in COMPASS- and HERMES-results?!)


From SIDIS to Inclusive Hadrons (IH)

$A_N(P_{h\perp})$ in $Ip^\uparrow o hX$

$A_N(x_F, P_{h\perp})$ in $Ip^{\uparrow} \rightarrow hX$

Overview

Review

- Significant signal A_N for positively charged IH at HERMES
- sofar, most precise measurement of the inclusive analyzing power A_N at a DIS experiment
- Sivers- and Collins-Mechanism dominated by leading twist!?
- Higher twist effects do not seem to be negligible

Preview

- Extract A_N for neutral particles (check for Iso-Spin-Symmetry)
- Publish results ;-)