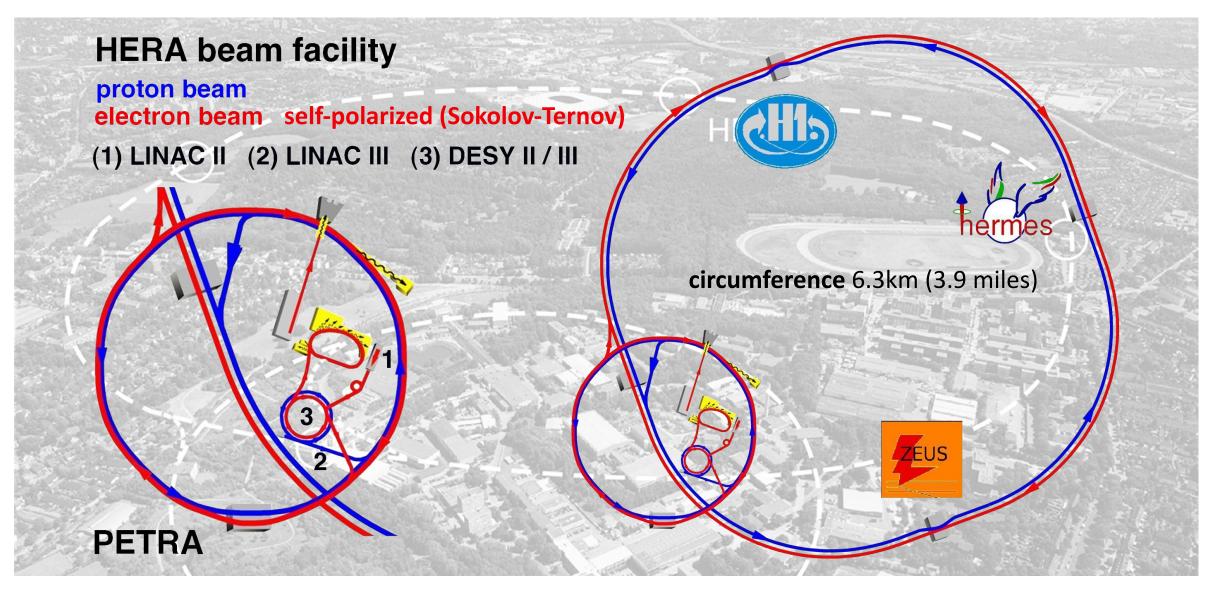
Pioneering TMD measurements at the HERMES experiment

Member of HERMES collaboration and its TMD Working Group

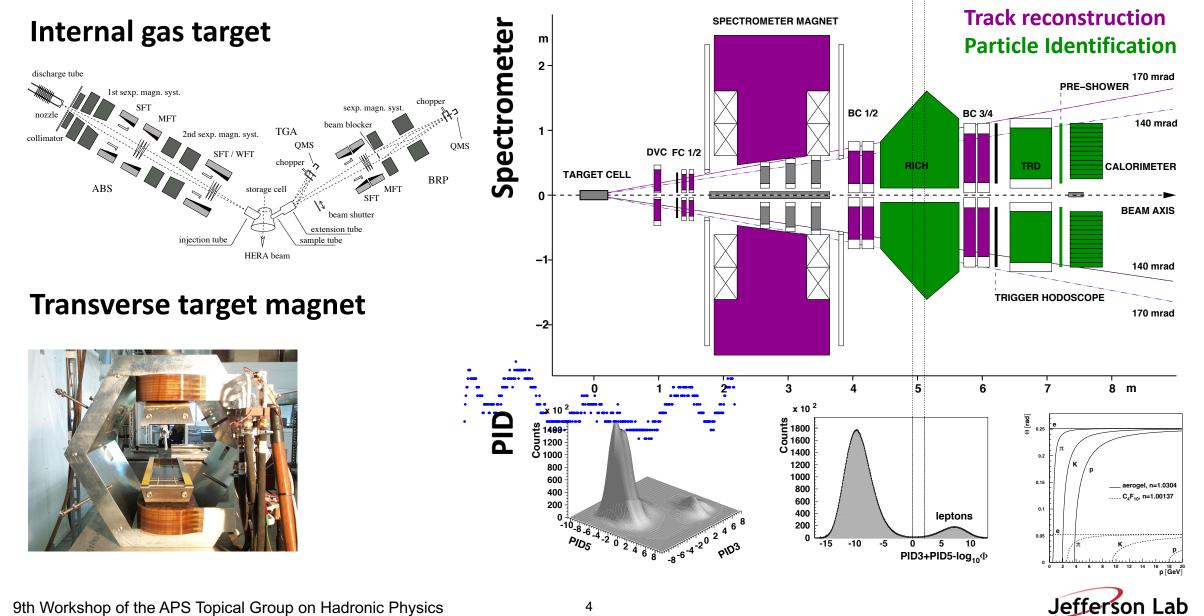
EIC Center at Jefferson Lab Markus Diefenthaler

A reminiscence on the HERMES experiment

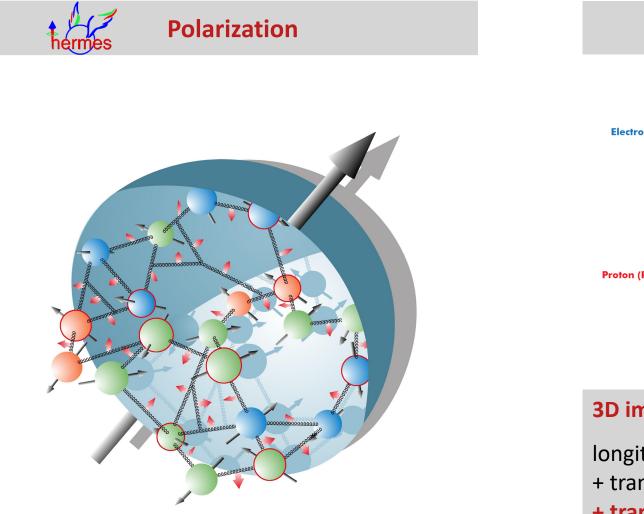

HERMES EXPERIMENT A Personal Story **Richard Milner Erhard Steffens** Sworld Scientific

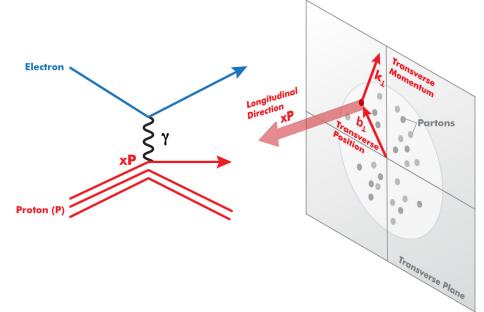
This book describes the story of how a collaboration of several hundred physicists from Europe and North America formed in 1988 to design, construct, install, commission and operate, for the years 1995-2007 the technically innovative HERMES experiment at the DESY laboratory in Hamburg, Germany to **study the spin structure** of the fundamental structure of matter.

The book describes the HERMES scientific results, their **considerable impact**, how HERMES shaped an entire generation of young people into scientific leaders, and ends with a description of the twenty-first century picture of the proton that has subsequently been developed.



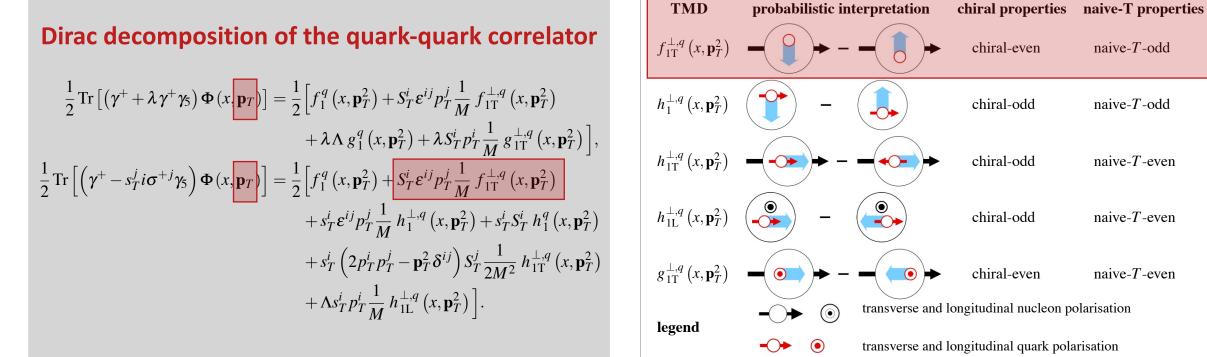
The first Electron-lon Collider: HERA (1992 – 2007)



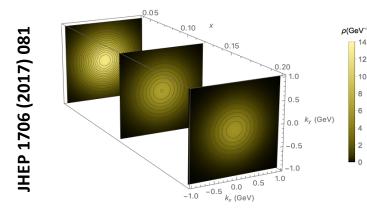

HERMES experiment

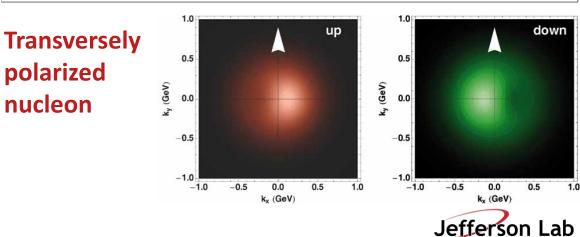
Polarized DIS measurements

Novel QCD phenomena


3D imaging in space and momentum

longitudinal structure (PDF)
+ transverse position Information (GPDs)
+ transverse momentum information (TMDs)


order of a few hundred MeV



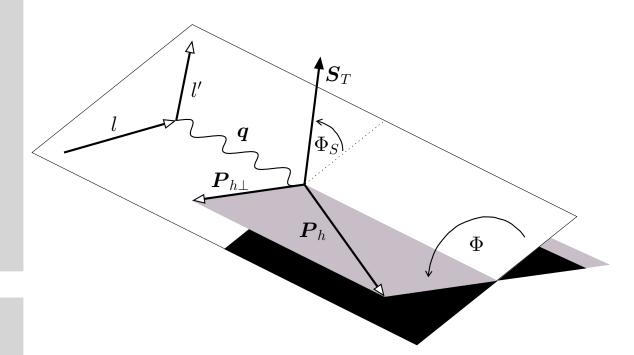
Nucleon structure and transverse-momentum dependent PDFs

Unpolarized nucleon

SSA in SIDIS measurements at HERMES

SSA in QCD

• spin-orbit correlations


S · ($\mathbf{p}_1 \times \mathbf{p}_2$) **E704** $\vec{S}_{\text{beam}} \cdot (\vec{p}_{\text{beam}} \times \vec{p}_{\pi})$

- Brodsky, Hwang, Schmidt [BHS02] caused by the interference of scattering amplitudes with different complex phases coupling to the same final state
- **Transverse SSA** related to the interference of scattering amplitudes with different hadron helicities:
 - [KPR78] suppressed in hard scattering processes
 - **[BHS02]** caused by initial- or final-state interactions

• **naive-***T***-odd** function with the property to induce SSA

TSSA at HERMES

- two naive-*T*-odd functions at leading twist:
 - Sivers TMD: Sivers effect $\mathbf{S}_N \cdot (\mathbf{q} \times \mathbf{P}_h)$
 - Collins FF: Collins effect $\mathbf{s}_q \cdot (\mathbf{p}_q \times \mathbf{P}_h)$

Signals for TMD PDFs and TMD FFs

Differential cross section

 $\frac{d\sigma^h}{dxdyd\phi_Sdzd\phi\,d\mathbf{P}_{h\perp}^2} =$

Cross section decomposition in terms of structure functions

 $\begin{bmatrix} F_{\rm UU,T} + \varepsilon F_{\rm UU,L} \\ + \sqrt{2\varepsilon (1+\varepsilon)} \cos (\phi) F_{\rm UU}^{\cos(\phi)} + \varepsilon \cos (2\phi) F_{\rm UU}^{\cos(2\phi)} \end{bmatrix}$

Sivers effect

 $\frac{\alpha^2}{xyQ^2}\frac{y^2}{2(1-\varepsilon)}\left(1+\frac{\gamma^2}{2x}\right)$

$$+ S_T$$

$$\left[\sin\left(\phi-\phi_{S}\right)\left(F_{\mathrm{UT,T}}^{\sin\left(\phi-\phi_{S}\right)}+\varepsilon F_{\mathrm{UT,L}}^{\sin\left(\phi-\phi_{S}\right)}\right)\right]$$

Collins effect

$$+\varepsilon\sin(\phi+\phi_{S})F_{\mathrm{UT}}^{\sin(\phi+\phi_{S})}+\varepsilon\sin(3\phi-\phi_{S})F_{\mathrm{UT}}^{\sin(3\phi-\phi_{S})}$$
$$+\sqrt{2\varepsilon(1+\varepsilon)}\sin(\phi_{S})F_{\mathrm{UT}}^{\sin(\phi_{S})}$$
$$+\sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi-\phi_{S})F_{\mathrm{UT}}^{\sin(2\phi-\phi_{S})}]$$

Factorized results in terms of TMD PDFs and TMD FFs

at tree-level and twist-2 and twist-3 accuracy

Assuming one-photon exchange, current fragmentation only, TMD factorization hold, small transverse momenta, Gaussian Ansatz valid

Sivers TMD and spin-independent FF

$$F_{\text{UT,T}}^{\sin(\phi-\phi_S)} = \mathscr{C}\left[-\frac{\mathbf{\hat{h}}\cdot\mathbf{p}_T}{M}f_{1\text{T}}^{\perp}D_1\right]$$

Transversity PDF and Collins FF

$$F_{\mathrm{UT}}^{\sin{(\phi+\phi_S)}} = \mathscr{C}\left[-rac{\mathbf{\hat{h}}\cdot\mathbf{k}_T}{M_h}h_1H_1^{\perp}
ight]$$

First measurement of SSA for SIDIS with transverse target polarization

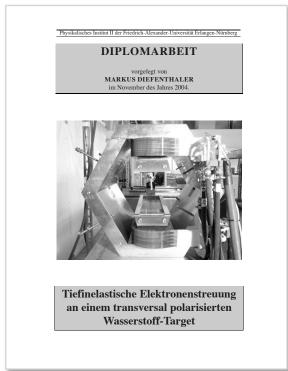
PRL 94, 012002 (2005) PHYSICAL REVIEW LETTERS

Single-Spin Asymmetries in Semi-Inclusive Deep-Inelastic Scattering on a Transversely Polarized Hydrogen Target

week ending 4 JANUARY 2005

A. Amperian.¹⁴ N. Akogow,¹⁶ Z. Akogow,¹⁶ M. Amarian.^{16,10} A. Andras, ¹⁶ E. C. Aschennuzz,¹⁶ W. Auguszyuki,²⁷
 R. Norskin,²⁶ A. Averistan,²⁶ E. Aschenson,¹⁶ A. Bortson,¹⁶ A. Borowhati,¹⁵ X. Berkmann,¹⁵ S. Belostoki,¹⁶
 R. Binchi,¹² H. P. Biok,^{20,12} H. Bortcher,¹ A. Borrison,¹⁵ A. Borystank,¹⁵ M. Borowhati,¹⁵ X. Berlin,¹⁷ V. Brygalow,²⁷
 G. P. Capitani,¹² H. Capitalpreji,¹¹ L. Chen,⁴ G. Gillou,¹¹ M. Consillario,¹¹ J. P. Dajazz,¹⁷ B. D. Loo,¹⁸ M. Borowhati,¹⁵ A. Broil, ¹⁷ V. Brygalow,²⁷
 G. Davando,¹ E. De Sancita,¹² E. Devistai,¹⁹ P. D. Nezza,¹⁰ M. Doren,¹⁴ M. Elsenfried,¹⁴ A. Elaboui-Mouly,²⁵
 G. Elabakian,¹⁸ F. E. Billighaus,¹¹ U. Elsenbeindi,¹¹ R. Fallor,¹² A. Broin,¹⁷ A. Dechechenko,¹² I. F. Beschin,²³ K. Borolov,²¹ G. Grabbaldi,¹⁴ E. Garibaldi,¹⁴ K. Garrow,¹⁷ G. Garribot,¹³ Y. Gharbyan,¹⁰ O. Geleeniouk,¹²
 I. M. Graege,¹² C. Laighlatz,¹⁵ L. Honda,¹⁵ M. Hunger,²⁵ D. Hacet,¹⁵ W. J. Burston,¹⁴ A. Linkee,¹⁵ W. H. Besenfried,¹⁴ J. Haroshin,¹⁴ P. Honsen,¹⁵ D. Hacet,¹⁵ M. H. Besenfried,¹⁴ A. Linkee,¹⁵ W. H. J. Linkee,¹⁵ W. H. J. Linkee,¹⁵ W. H. J. Bartson,¹⁵ G. Laisya,¹⁴ A. Linkee,¹⁵ W. H. J. Linkee,¹⁵ W. H. Markin,¹⁶ Y. A. Kathi,¹⁷ Y. Markin,¹⁷ Y. Markin,¹⁷ Y. Markin,¹⁷ Y. Markin,¹⁷ Y. Markin,¹⁶ Y. Markin,¹⁶ Y. Markin,¹⁶ M. J. Linkee,¹⁶ W. H. Markin,¹⁶ X. K. M. Kathin,¹⁷ Y. S. Markin,¹⁶ Y. Markin,¹⁷ Y. Markin,¹⁷ Y. Markin,¹⁷ Y. Markin,¹⁷ Y. Markin,¹⁷ Y. Markin,¹⁷ Y. Markin

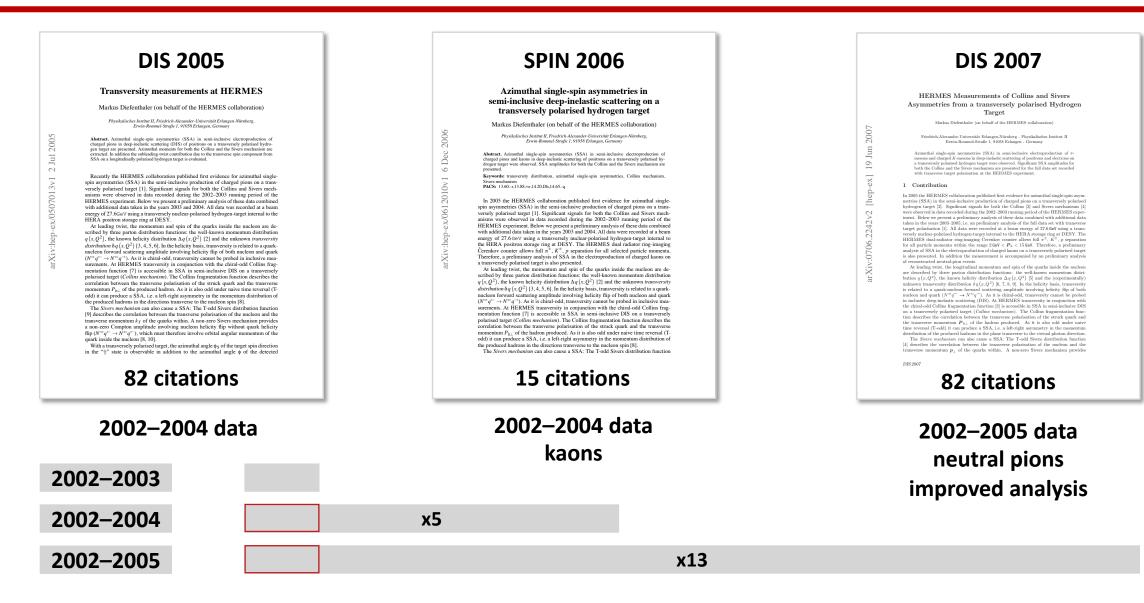
(The HERMES Collaboration)


¹ Department of Physics, University of Alberta, Edmonton, Alberta T6G 211, Canada
² Physics Division, Aryonne National Luboratory, Aryonne, Illinois 60439-4843, USA
³ Istituto Nazionale di Fisica Nucleare. Sezione di Bari, 70124 Bari, Italy
⁴ School of Physics, Peking University, Beijing 100871, China
⁵ Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
⁶ Nuclear Physics Laboratory, University of Colorado, Boulder, Colorado 80309-0446, USA
7DESY, 22603 Hambury, Germany
⁸ DESY, 15738 Zeuthen, Germany
⁹ Joint Institute for Nuclear Research, 141980 Dubna, Russia
¹⁰ Physikalisches Institut, Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
11 Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara and Dipartimento di Fisica, Università di Ferrara, 44100 Ferrara, Italy
¹² Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, 00044 Frascati, Italy
13 Department of Subatomic and Radiation Physics, University of Gent, 9000 Gent, Belgium
¹⁴ Physikalisches Institut, Universität Gießen, 35392 Gießen, Germany
¹⁵ Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom
¹⁶ Department of Physics, University of Illinois, Urbana, Illinois 61801-3080, USA
¹⁷ Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
¹⁸ Randall Laboratory of Physics, University of Michigan, Ann Arbor, Michigan 48109-1120, USA
¹⁰ Lebedev Physical Institute, 117924 Moscow, Russia
²⁰ Nationaal Instituut voor Kernfysica en Hoge-Energiefysica (NIKHEF), 1009 DB Amsterdam, The Netherlands
²¹ Petersburg Nuclear Physics Institute, St. Petersburg, Gatchina, 188350 Russia
²² Institute for High Energy Physics, Protvino, Moscow region, 142281 Russia
²³ Institut f ür Theoretische Physik, Universit ät Regensburg, 93040 Regensburg, Germany
²⁴ Istituto Nazionale di Fisica Nucleare, Sezione Roma 1, Gruppo Sanità and Physics Laboratory, Istituto Superiore di Sanità,
00161 Roma, Italy
²⁵ Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
²⁶ TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
0031-9007/05/94(1)/01207726 citations The American Physical Society

HERMES Collaboration

worked on paper based on 2002-2003 data

MD

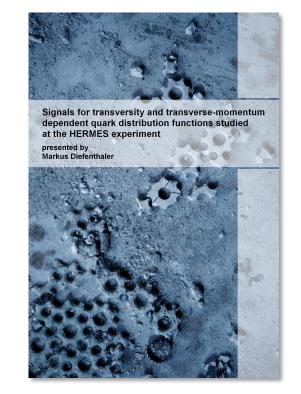

- in parallel first look at 2002-2004 data
- analysis documented in diploma thesis

HERMES data on SIDIS off transversely polarized hydrogen target

Updated and extended analysis

Completed SSA analysis and first DSA analysis

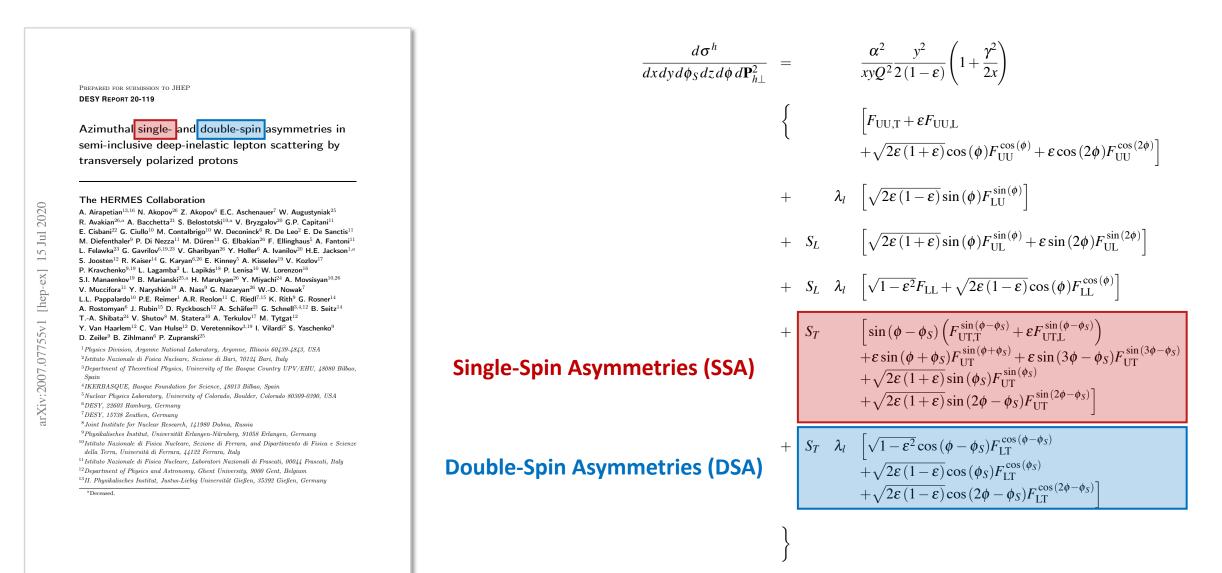
2009


PHYSICAL REVIEW LETTERS week ending 9 OCTOBER 2009 PRL 103, 152002 (2009) Observation of the Naive-T-Odd Sivers Effect in Deep-Inelastic Scattering A. Airapetian.^{12,15} N. Akopov.²⁶ Z. Akopov.²⁶ E. C. Aschenauer,⁶ W. Augustyniak.²⁵ A. Avetissian.²⁶ E. Avetissan,⁵ A. Bachetta,⁵ B. Ball.¹⁷ N. Bianchi,¹⁰ H. P. Blok,^{17,24} H. Bötcher,⁴ C. Boomono,⁷ A. Borissov,⁵ V. Bryzgalov,¹⁷ J. Burns,¹³ M. Capiluppi,⁵ G. C. apitani,¹⁸ H. De Loco,²¹ G. Ciullo,¹⁹ M. Canilloppi,⁵ G. C. apitani,¹⁸ K. De Loco,²¹ G. Ciullo,¹⁸ M. Canilloppi,⁵¹ G. Ciullo,¹⁸ M. Capiluppi,⁵¹ S. D. Ciullo,¹⁸ M. Capiluppi,⁵¹ S. Ciullo,¹⁸ M. Capiluppi,⁵¹ S. D. Ciullo,¹⁸ M. Capiluppi,⁵¹ S. Ciullo,¹⁸ M. Capiluppi,⁵¹ S. Ciullo,¹⁸ M. Capiluppi,⁵¹ S. D. Ciullo,¹⁸ M. Capiluppi,⁵¹ S. Ciullo,¹⁸ M. Capiluppi,⁵¹ S. Ciullo,¹⁸ M. Capiluppi,⁵¹ S. Ciullo,¹⁸ M. Capilupi,⁵¹ S. Ciullo,¹⁸ M. Capiluppi,⁵¹ S. Ciullo,¹⁸ M. Capil L. De Nardo, 155 E. De Sanctis,¹⁰ M. Diefenthaler,¹⁴⁴ P. Di Nezza,¹⁰ J. Dreschler,¹⁷ M. Diren,¹² M. Ehrenfriel,¹² G. Elbakian,²⁶ F. Ellinghaus,⁴ U. Elschenbroich,¹¹ R. Fabbri,⁶ A. Fantoni,¹⁰ L. Felawka,²² S. Frullani,²¹ D. Gabbert,⁴ G. Gapienko,¹⁹ V. Gapienko,¹⁹ F. Garibaldi,²¹ V. Gharibyan,²⁶ F. Ginvano,^{5,9} S. Glinka,¹⁵ C. Hadjidaki,¹⁶ M. Hartig, D. Hasch,¹⁰ G. Hill,¹³ A. Hillenbrand,⁶ M. Hock,¹³ Y. Holler,⁵ I. Hristova,⁶ Y. Imazu,²³ A. Ivanilov,¹⁹ H. E. Jackson,¹ D. Hasch," G. Hill, "A. Hillenbrand," M. Hock, "Y. Holler," L. Hristova, "Y. Imnza," A. Youniov, "H. E. Jackson," H. S., Ju'i, J. Sonett,⁴¹⁴ R. Kaissi, "J. Terri,¹¹³ E. Kumori, "A. Kisseler," W. Nocotow, "V. Kozoftov, "P. Kavchendo," L. Lagamba," R. Lamb, "L. Lapika," II. Lehmann,¹³ P. Lenisa," L. A. Linder-Levy, "A. López Ruiz," W. Jerezron, " X.-G. Lu, "A. K. Lu," B.-Q. Ma, "D. Mahon," N. C. R. Makins," S. I. Manenkov, "L. Manfer," Y. Maya, "B. Marinarki," A. Marinez, "M. Marray, "D. Mahon," M. C. Marray, "M. Marray, "M. Marray, "L. Manfer," M. Marray, "M. Marray, "L. Manfer," M. Marray, "M. Marray, A. Mussgiller,^{5,5} E. Nappi,² Y. Naryshkin,¹⁸ A. Nass,⁶ M. Negodav,⁶ W.-D. Nowak,⁶ L. L. Pappalardo,⁷ R. Perez-Benito,¹² P. E. Reimer,¹ A. R. Reolon,¹⁰ C. Riedl,⁶ K. Rith,⁸ G. Rosner,¹³ A. Rostomyan,⁵ J. Rubin,¹⁴ D. Ryckbosch,¹¹ Y. Salomatin,¹⁹ F. Sanfl,²⁰ A. Schäfer,²⁰ G. Schnell,^{6,11} K. P. Schiller,⁶ B. Seitz,¹³ T. A. Shibata,²³ V. Shutov,⁷ M. Stancari,⁹ M. Statera,⁹ J. J. M. Steijger,¹⁷ H. Stenzel,¹² J. Stewart,⁶ F. Stinzing,⁸ S. Taroian,²⁶ A. Terkulov,¹⁴ D. Zeiler,8 B. Zihlmann,5 and P. Zupranski25 (HERMES Collaboration) ¹Physics Division, Argonne National Laboratory, Argonne, Illinois 60439-4843, USA vice Division, Argonne National Laborator, Argonne, Illinoi 60459-8453, USA Tantuna Nicionale H Flucia Nucleari, Sciensi etti Mari, 2012 Bari, Italy et Physics Laboratory, University of Colorado, Buolder, Colorado 80309-0390, USA DiSX: 22634 Bandburg, Germany "DiSX: 15738 Zeathene, Germany "Joint mitting for Nuclear Research, 141980 Dabasa, Rasxia ⁴Nuclear Physics Labor ¹DSSS: 1578 Zeuben, Grenny ¹Nathanie fer Nickeler Assenzi, 141900 Disko, Rasia ¹Provlaticiscus fer Konsteiner, Karlow Bern, Karlow Karlow, Karlow Ka Azimuthal single-spin asymmetries of leptoproduced pions and charged kaons were measured on a remaining angle-phi asymmetries of reproportion point and stanged main were momentum-dependent transversely polarized hydrogen target. Evidence for a naive-T-odd, transverse-momentum-dependent parton distribution function is deduced from nonvanishing Sivers effects for π^+ , π^0 , and K^{\pm} , as well as in the difference of the π^+ and π^- cross sections. © 2009 The American Physical Society 0031-9007/09/103(15)/152002(5) 152002-1

362 citations

2010

2010


Published SSA analysis and first DSA analysis

Final SSA and DSA analysis

New

86 pages, 47 figures, 185 references

PREPARED FOR SUBMISSION TO JHEF DESY REPORT 20-119

Azimuthal single- and double-spin asymmetries in semi-inclusive deep-inelastic lepton scattering by transversely polarized protons

The HERMES Collaboration A. Airapetian^{13,16} N. Akopov²⁶ Z. Akopov⁶ E.C. Aschenauer⁷ W. Augustyniak²⁵ R. Avakian^{26,a} A. Bacchetta²¹ S. Belostotski^{19,a} V. Bryzgalov²⁰ G.P. Capitani¹¹ E. Cisbani²² G. Ciullo¹⁰ M. Contalbrigo¹⁰ W. Deconinck⁶ R. De Leo² E. De Sanctis¹¹ M. Diefenthaler⁹ P. Di Nezza¹¹ M. Düren¹³ G. Elbakian²⁶ F. Ellinghaus⁵ A. Fantoni¹¹ L. Felawka²³ G. Gavrilov^{6,19,23} V. Gharibyan²⁶ Y. Holler⁶ A. Ivanilov²⁰ H.E. Jackson^{1,a} S. Joosten¹² R. Kaiser¹⁴ G. Karyan^{6,26} E. Kinney⁵ A. Kisselev¹⁹ V. Kozlov¹⁷ P. Kravchenko^{9,19} L. Lagamba² L. Lapikás¹⁸ P. Lenisa¹⁰ W. Lorenzon¹⁶ S.I. Manaenkov¹⁹ B. Marianski^{25,a} H. Marukyan²⁶ Y. Miyachi²⁴ A. Movsisyan^{10,26} V. Muccifora¹¹ Y. Narvshkin¹⁹ A. Nass⁹ G. Nazarvan²⁶ W.-D. Nowak⁷ L.L. Pappalardo¹⁰ P.E. Reimer¹ A.R. Reolon¹¹ C. Riedl^{7,15} K. Rith⁹ G. Rosner¹⁴ A. Rostomyan⁶ J. Rubin¹⁵ D. Ryckbosch¹² A. Schäfer²¹ G. Schnell^{3,4,12} B. Seitz¹⁴ T.-A. Shibata²⁴ V. Shutov⁸ M. Statera¹⁰ A. Terkulov¹⁷ M. Tytgat¹² Y. Van Haarlem¹² C. Van Hulse¹² D. Veretennikov^{3,19} I. Vilardi² S. Yaschenko D. Zeiler⁹ B. Zihlmann⁶ P. Zupranski²⁵ ¹Physics Division, Argonne National Laboratory, Argonne, Illinois 60439-4843, USA ²Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70124 Bari, Italy ³Department of Theoretical Physics, University of the Basque Country UPV/EHU, 48080 Bilbao, Snain ⁴IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain ⁵Nuclear Physics Laboratory, University of Colorado, Boulder, Colorado 80309-0390, USA ⁶DESY, 22603 Hamburg, Germany ⁷DESY, 15738 Zeuthen, Germany ⁸Joint Institute for Nuclear Research, 141980 Dubna, Russia ⁹Physikalisches Institut, Universität Erlangen-Nürnberg, 91058 Erlangen, Germany ¹⁰Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, and Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, 44122 Ferrara, Italy ¹¹Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, 00044 Frascati, Italy

- ¹²Department of Physics and Astronomy, Ghent University, 9000 Gent, Belgium
- ¹³ II. Physikalisches Institut, Justus-Liebig Universität Gießen, 35392 Gießen, Germany
- ^aDeceased.

Supplemental material 118 pages, 23 figures, 118 tables

10 type of asymmetries

- 6 SSA
- 4 DSA

7 hadron types

- π⁺, π⁰, π⁻

3D projections and **optimized 1D projections**

- x 0.023 < x < 0.6 (before x < 0.4)
- 0.2 < *z* < 1.2 (before *z* < 0.7) Ζ
- $P_{h\perp}$ •

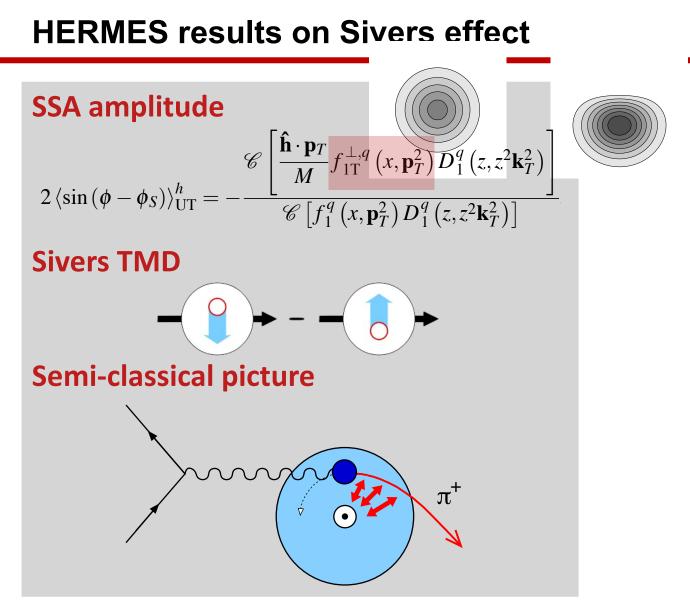
2 types of extractions

14

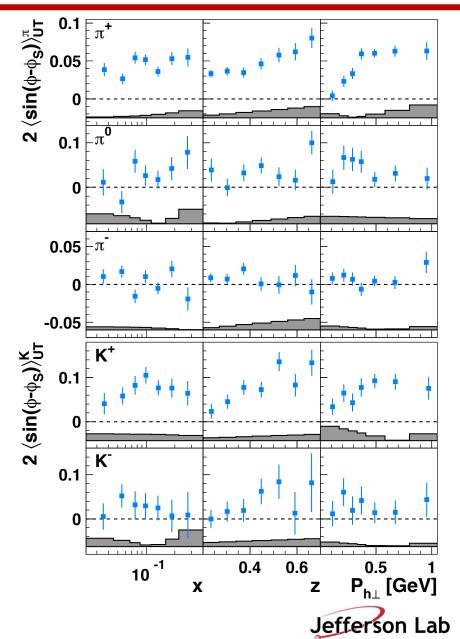
- **Cross-Section Asymmetries (CSA)** entire Fourier amplitude of each cross-section contribution
- **Structure-Function Asymmetries (SFA)** pure ratios of structure functions, including correction for ε -dependent kinematic prefactors

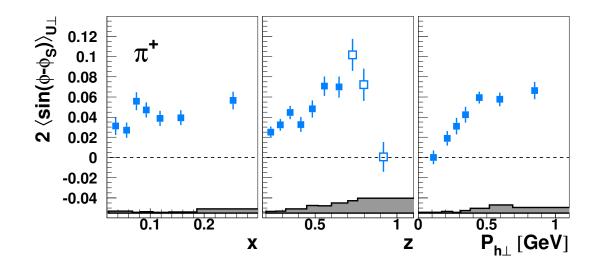
- K+, K⁻
- protons and antiprotons

Azimuthal modulation		Significant non-vanishing Fourier amplitude						
		π^+	π^-	K^+	K^{-}	p	π^0	\bar{p}
$\sin\left(\phi\!+\!\phi_S\right)$	[Collins]	\checkmark	\checkmark	\checkmark		\checkmark		
$\sin(\phi - \phi_S)$	[Sivers]	\checkmark		\checkmark	\checkmark	\checkmark	(\checkmark)	\checkmark
$ \begin{array}{c} \sin\left(3\phi - \phi_S\right) \\ \sin\left(\phi_S\right) \\ \sin\left(2\phi - \phi_S\right) \\ \sin\left(2\phi + \phi_S\right) \\ \end{array} $	-	(√)		\checkmark	\checkmark			(√)
$\begin{array}{c} \cos\left(\phi - \phi_{S}\right) \\ \cos\left(\phi + \phi_{S}\right) \\ \cos\left(\phi_{S}\right) \\ \cos\left(2\phi - \phi_{S}\right) \end{array}$	[Worm-gear]	✓	(√)	(√)				

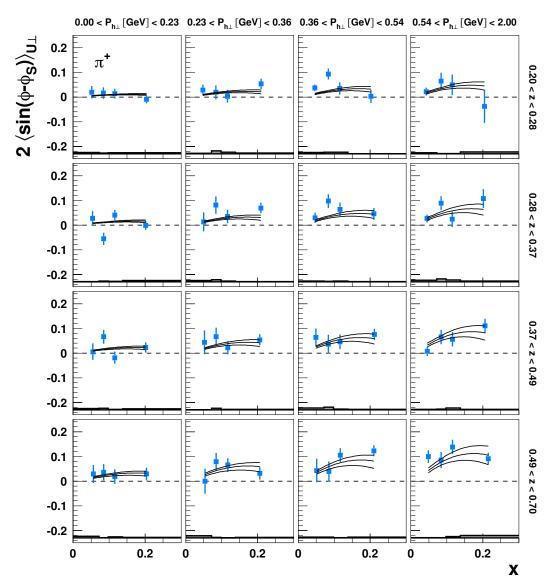

 \checkmark := incompatible with NULL hypothesis at 95% CL

(\checkmark) := incompatible with NULL hypothesis at 90% CL

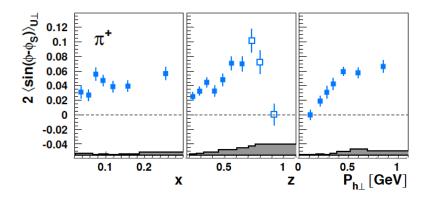




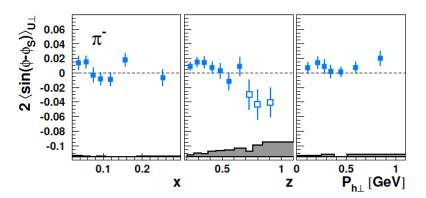
PRL103 (2009) 152002

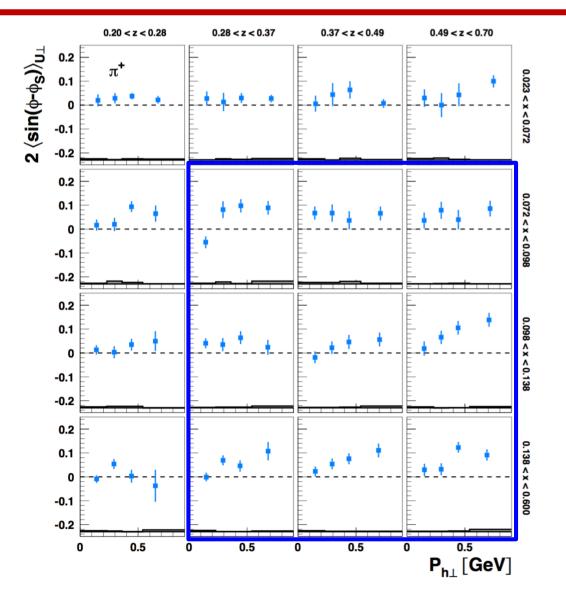


Multi-dimensional analysis

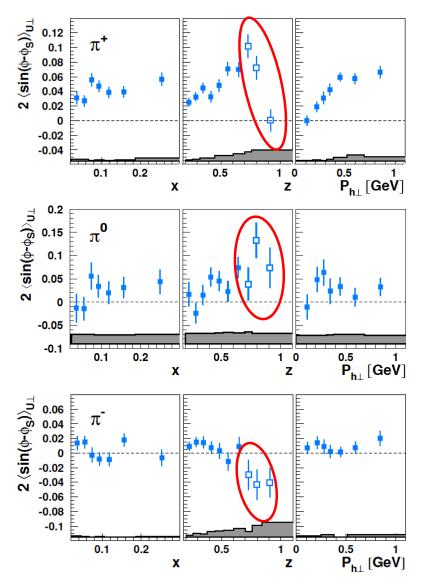

Goal: Fully differential approach with small binsizes (similar to this analysis):

- minimizes the dominant contributions to the systematic uncertainty, and therefore maximizes the attainable experimental precision
- maximize information for QCD analysis

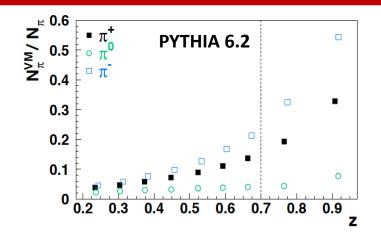



Sivers amplitudes for charged pions

- large positive amplitude \rightarrow clear evidence of non-zero $f_{1T}^{\perp,u}$
- signal rises with x, z and $P_{h\perp}$ in SIDIS region (0.2 < z < 0.7)
- More informative 3D projections confirm and further detail the rise of the amplitude at large x, z and $P_{h\perp}$

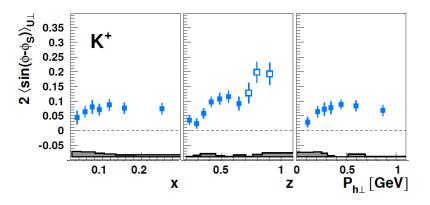


Vanishing due to the cancellation of the opposite Sivers effect for *u* and *d* quarks

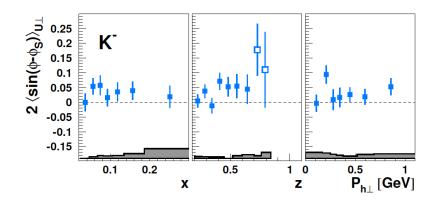


Sivers amplitudes for pions

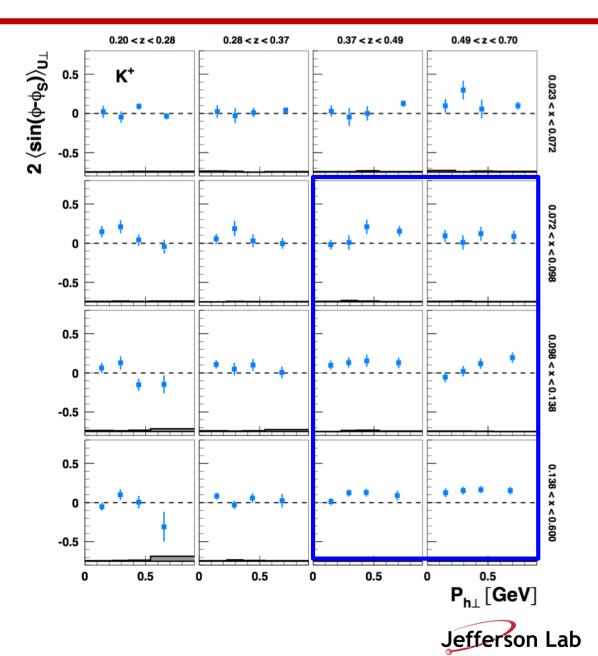
- Sudden drop at large-z (> 0.7) reveals a change of mechanism in this semi-exclusive region
- Contributions from decays of exclusively produced ρ^0 into $\pi^+\pi^-$ are large in this region!



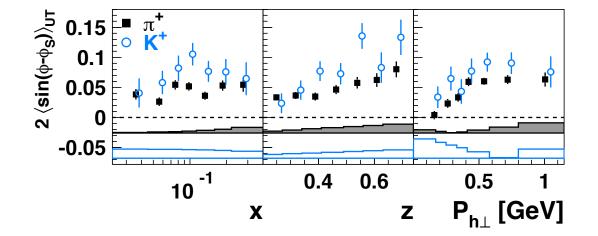
- intermediate size between those of π^+ and π^- reflects isospin symmetry at the amplitude level
- π^0 amplitude is much less susceptible to VM decays and no sudden change is observed at large $z \rightarrow$ observed positive signal cannot be attributed solely to contributions from VM
- An alternative (concurrent?) explanation: at large z, favored fragmentation $(d \rightarrow \pi^{-})$ prevails over the disfavored one $(u \rightarrow \pi^{-}) \rightarrow$ no cancellation and a non-zero amplitude opposite to that of π^{+} is observed.

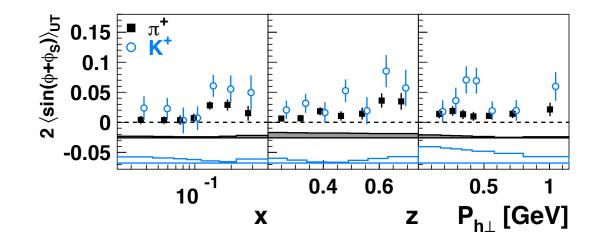


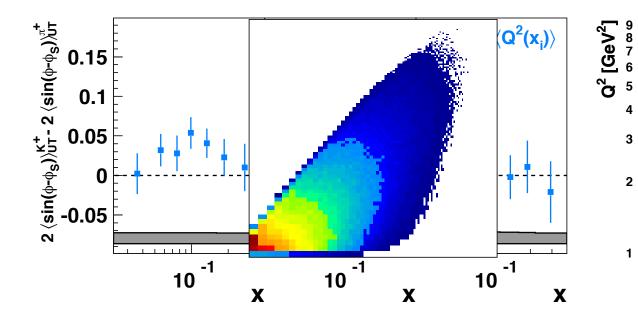
9th Workshop of the APS Topical Group on Hadronic Physics

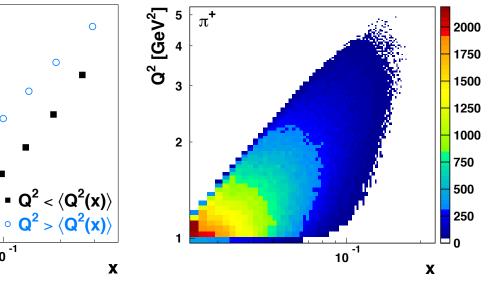

Sivers amplitudes for charged kaons

Large positive amplitude, similar kinematic dep. of π^+

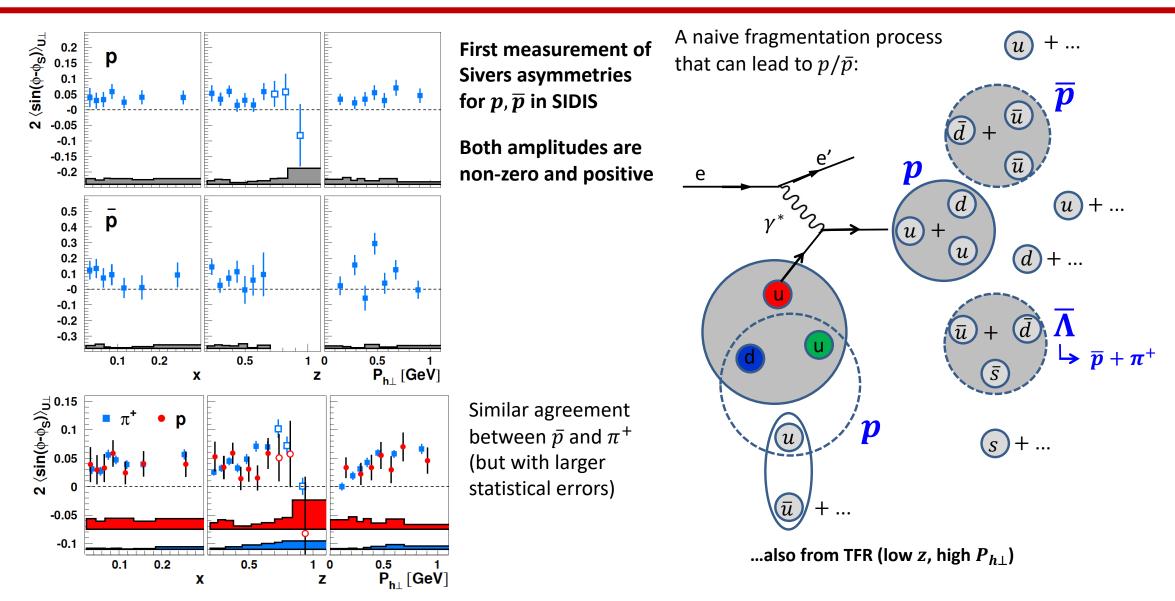



Positive amplitude, different than $\pi^ K^-$ is a pure sea object with no valence quarks in common with target proton


u-quark dominance and the role of higher twist


PRL103 (2009) 152002

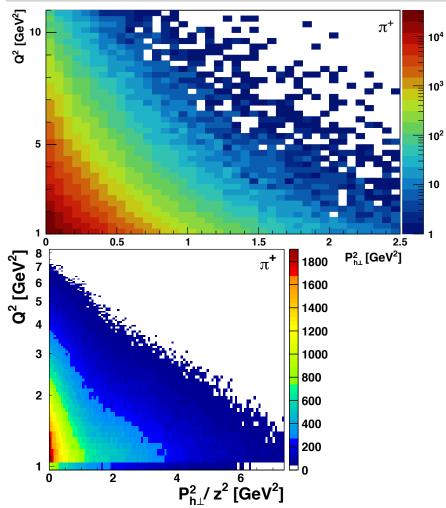
10⁻¹



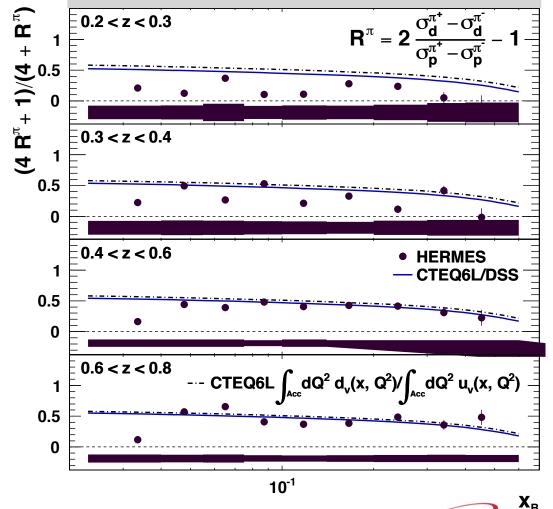
9th Workshop of the APS Topical Group on Hadronic Physics

, π**+**

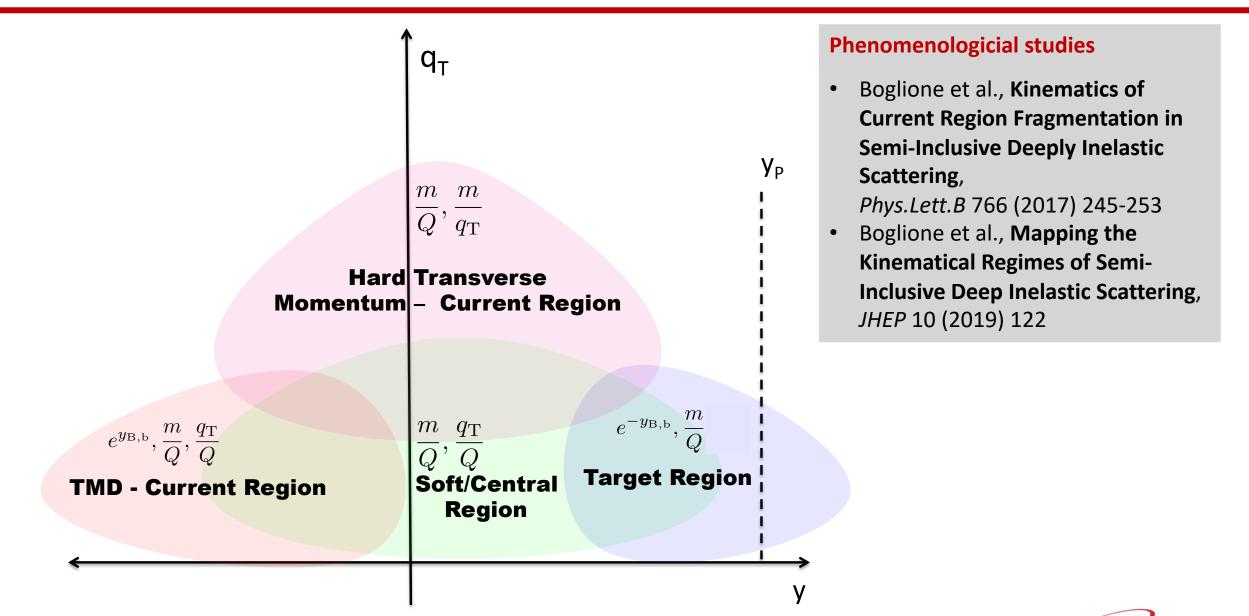
Sivers amplitudes for protons



Factorization scales and breaking

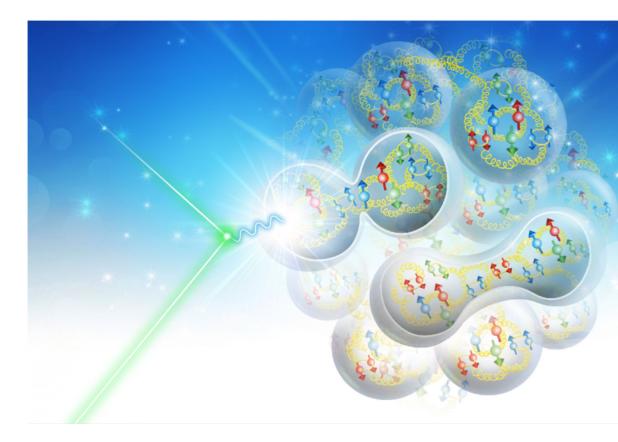

TMD factorization

partonic scale << hard-scattering scale



HERMES multiplicities from

unpolarized SIDIS sample


Exploring SIDIS regions

mdiefent@jlab.org

TMDs Imaging quarks and gluons within the nucleon.

- HERMES Pioneering TMD measurements at the first Electron-Ion Collider.
- JHEP 12 (2020) 010 Compendium on TMD analysis:
 - Final HERMES analysis on SSA and DSA in SIDIS off transversely polarized proton target.
 - HERMES results for pions, charged kaons, and now protons have revealed first information about TMDs for valence and sea quarks.
 - New HERMES results in 3D binning maximize information for QCD analysis.
 - Detailed description of the HERMES analysis to guide future measurements (204 pages, 70 figures, 118 tables).
- The 12 GeV Science Program at Jefferson Lab Precision TMD studies for valence quarks.
- **Electron-Ion Collider Precision** TMD studies for sea quarks and gluons.

