#### Transversale Spinphänomene und ausgewählte HERMES Ergebnisse



Physikalisches Institut II, FAU Erlangen-Nürnberg

Die Spinstruktur des Nukleons:

Zusammensetzung des Nukleonenspin  $s_z^N$ :

$$\frac{s_z^N}{\hbar} = \frac{1}{2} = J_q + J_g = \frac{1}{2}\Delta\Sigma + L_z^q + \Delta G + L_z^g$$

#### **Beitrag der HERMES Kollaboration:**





Die tiefinelastische Streuung (DIS):

DIS ist der fundamentale elektroschwache Prozeß, um die Struktur des Nukleons zu untersuchen (transversale Ortsauflösung  $\sim \hbar/\sqrt{Q^2}$ ):



inklusive Messung: $lH \rightarrow l'X$ semi-inklusive Messung: $lH \rightarrow l'h_1 \dots h_n X$ exklusive Messung: $lH \rightarrow l'h_1 \dots h_n H'$ 

#### Polarisierte Streuexperimente:

• Experimente, in denen spin-polarisierte Leptonen an spin-polarisierten Hadronen streuen:



Helizitätserhaltung: Photon wechselwirkt nur mit Quarks mit entgegengesetztem Spin

• Bestimmung von Wirkungsquerschnittsasymmetrien:

$$A_{\parallel} = \frac{\sigma^{\overleftarrow{\leftarrow}} - \sigma^{\overrightarrow{\Rightarrow}}}{\sigma^{\overleftarrow{\leftarrow}} + \sigma^{\overrightarrow{\Rightarrow}}}$$

## Das HERMES Experiment:



#### Das HERMES Experiment:



#### Das (longitudinal oder transversal) polarisierte Target:

- Polarisiertes Gas-Target (H,D,He) im Inneren des Speicherrings,
- Mehrfachstreuung und Verdünnung der Polarisation durch unpolarisiertes Trägermaterial unterbunden
- hoher Polarisationsgrad ( $\langle P_z \rangle \approx 80\%$ )



## Das Vorwärtsspektrometer:



#### Das Vorwärtsspektrometer:



- große Impuls- und Winkelakzeptanz:  $\theta_{hor.} \leq 175 \, \text{mrad}$ ,  $40 \, \text{mrad} \leq \theta_{\text{vert.}} \leq 140 \, \text{mrad}$
- präzise Impulsbestimmung:  $\Delta p/p = 0.7 1.3\%$
- und Winkelauflösung:  $\Delta \theta \leqslant 0.6 \, \mathrm{mrad}$
- zuverlässige Unterscheidung von Leptonen und Hadronen

## Der Helizitätsbeitrag der Quarks:



DPG Frühjahrstagung im Fachverband "Hadronen und Kerne", 12. März 2007 – p.8/40

#### Strukturfunktionen:







#### Extraktion der Spinstrukturfunktion:

• Messung von  $A_{\parallel}$ :

$$\begin{aligned} A_{\parallel} &= \frac{1}{P_{\text{Strahl}}P_{\text{Target}}} \frac{N^{\overleftarrow{\leftarrow}} - N^{\overrightarrow{\Rightarrow}}}{N^{\overleftarrow{\leftarrow}} + N^{\overrightarrow{\Rightarrow}}} \\ A_{1} &\simeq \frac{A_{\parallel}}{D}, \qquad D = \frac{P_{\gamma^{*}}}{P_{\text{Strahl}}} \end{aligned}$$

• Bestimmung von  $g_1$ :

$$g_1 \simeq F_1 A_1$$
  
 $g_1^n = \frac{2g_1^d}{1 - \frac{3}{2}w_D} - g_1^p$ 

Phys. Rev. D 75 (2007) 012007 **Å** 1.2 HERMES (⟨Q<sup>2</sup>⟩< 1 GeV<sup>2</sup>)
 HERMES (⟨Q<sup>2</sup>⟩> 1 GeV<sup>2</sup>) **SMC** (low x - low  $Q^2$ ) 0.8 ★ SMC ♦ E 143 0.6 ⊕ E 155 0.4 0.2 \* \* \* \* \*\*\* \*\* v, −0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -0.1 10 10 10 10 **X**<sup>1</sup>

#### Die HERMES Messung von $xg_1$ :





#### Die HERMES Messung von $xg_1$ :



#### Bestimmung von $\Delta\Sigma$ :

- HERMES:  $0.352 \pm 0.025$ (aus Deuterondaten,  $\overline{\text{MS}}$ -Schema, NNLO-Analyse)
- EMC (1988):  $0.12 \pm 0.14$  (aus Protondaten)
- COMPASS:  $0.33 \pm 0.06$ (aus Deuterondaten, NLO-QCD Fit)

Rückschlüsse auf  $\Delta u$  und  $\Delta d$  (im Valenzquarkbereich) durch Isospinsymmetrie:

- $\Delta u^p$  (=  $\Delta d^n$ ) dominiert und ist positiv.
- $\Delta d^p$  (=  $\Delta u^n$ ) ist signifikant kleiner und negativ.

#### Die Gluonpolarisation:



#### Die Gluonpolarisation:



- Untersuchung von Ereignissen einzelner Hadronen mit hohem Transveralimpuls
- Bestimmung der Konkurrenzereignisse mit PYTHIA Monte Carlo



 $\frac{G}{2}(x,\mu^2) = 0.071 \pm 0.034^{\text{(stat)}} \pm 0.010^{\text{(sys-exp)}} + 0.127_{-0.105}^{-0.127}$  (sys-models)

#### Transversale Spinphänomene:



(mit freundlicher Genehmigung von Alessandro Bacchetta (DESY-Theoriegruppe))

## Die Transversity-Verteilung $\delta q$ :

- vollständige Beschreibung von Impuls und Spin der Quarks im Inneren des Nukleons in Verbindung mit q(x) und  $\Delta q(x)$  (im führendem Twist)
- experimentell unbestimmt
- Helizitätsumkehr:  $N^{\Uparrow}q^{\downarrow} \rightarrow N^{\Downarrow}q^{\uparrow}$
- Wahrscheinlichkeitsinterpretation:



- $\circ$  für nicht-relativistische Quarks:  $\delta q(x) = \Delta q(x)$ ,
- aber Quarks im Inneren des Nukleons sind relativistisch
- keine Transversity-Verteilung der Gluonen im Nukleon

#### Messung der Transversity-Verteilung:

Chiralitätseigenschaften:

- Transversity-Verteilung mißt Helizitätsumkehr
- chiral ungerade Quarkverteilungsfunktion:



nicht meßbar in inklusiver DIS

- meßbar in Verbindung mit chiral-ungeraden Partner
- Messung bei HERMES: semi-inklusive Messung an einem transversal polarisierten Wasserstoff-Target (Deuterium-Target bei COMPASS)

#### Azimutale Einzel-Spin-Asymmetrien:

• Kinematik an einem transversal polarisierten Target:



- Azimutale Einzel-Spin-Asymmetrie (SSA):
  - azimutale Asymmetrie in der Impulsverteilung der erzeugten Hadronen in transversaler Richtung zum Nukleonspin
  - $^\circ\,$  nichtverschwindender transversaler Hadronimpuls  $P_{
    m h\perp}$  bedingt durch intrinsische transversale Impulse  $p_{\perp}$  und  $k_{\perp}$

Collins- und Siversmechanismus

#### Der Collins-Mechanismus:

- Collins-Fragmentationsfunktion  $H_1^{\perp q}$
- chiral-ungerader Partner für die Transversity-Verteilung
- Korrelation zwischen der transversalen Polarisation des fragmentierenden Quarks und des transversalen Impulses  $P_{h\perp}$  des entstandenen Hadrons



#### Der Sivers-Mechanismus:

- nicht verschwindende **Siversverteilung**  $f_{1T}^{\perp}$  involviert nicht verschwindende Streuamplitude der Form  $N^{\uparrow}q^{\uparrow} \rightarrow N^{\Downarrow}q^{\uparrow}$
- Bahndrehimpuls der Quarks: unterschiedliches x für unterschiedlichen Modellparameter  $b_{\perp}$



#### • Wechselwirkung im Endzustand:

Links-Rechts-Asymmetrie einer Verteilungsfunktion

⇒ Links-Rechts-Asymmetrie der Impulsverteilung

Die Collins- and Siversamplituden:

Einzel-Spin-Asymmetrie  $A_{UT}^{h}$  für den Hadronentyp h, unpolarisierten Leptonenstrahl (U) und transversal polarisiertes Target (T):



#### Die Extraktion der Collins- und Siversamplituden:

• Messung von Asymmetrien:

$$A_{\mathsf{UT}}^{h}\left(\phi,\phi_{S}\right) = \frac{1}{\langle P_{z}\rangle} \cdot \frac{N_{h}^{\uparrow}\left(\phi,\phi_{S}\right) - N_{h}^{\Downarrow}\left(\phi,\phi_{S}\right)}{N_{h}^{\uparrow}\left(\phi,\phi_{S}\right) + N_{h}^{\Downarrow}\left(\phi,\phi_{S}\right)}$$

 $\langle P_z \rangle = 0.754 \pm 0.050$ 

• Extraktion mit **zweidimensionalen** Fit:

$$A^{h}_{\mathsf{UT}}(\phi, \phi_{S}) = 2 \cdot \frac{\langle \sin(\phi + \phi_{S}) \rangle^{h}_{\mathsf{UT}}}{\operatorname{Siversamplitude}} \cdot \frac{\sin(\phi + \phi_{S}) + \frac{\operatorname{Siversamplitude}}{2 \cdot \langle \sin(\phi - \phi_{S}) \rangle^{h}_{\mathsf{UT}}} \cdot \frac{\sin(\phi - \phi_{S}) + 2 \cdot \langle \sin(2\phi - \phi_{S}) \rangle^{h}_{\mathsf{UT}} \cdot \sin(2\phi - \phi_{S}) + 2 \cdot \langle \sin(\phi_{S}) \rangle^{h}_{\mathsf{UT}} \cdot \sin(\phi_{S}) + 2 \cdot \langle \sin(\phi_{S}) \rangle^{h}_{\mathsf{UT}} \cdot \sin(\phi_{S}) + c$$

#### Wasserstoff-Target:



#### Die Collinsamplitude für geladene Pionen:



Resultate der Collinsamplitude: $\delta q\left(x
ight)\otimes H_{1}^{\perp q}\left(z
ight)$ aus den 2002–2004 Daten:

- positive Amplitude für  $\pi^+$
- negative Amplitude für  $\pi^-$
- Collinsamplitude für  $\pi^-$ vom Betrag **unerwarteterweise** größer als diejenige für  $\pi^+$

• 
$$H_1^{\perp,\mathrm{unfav}}\left(z
ight) pprox - H_1^{\perp,\mathrm{fav}}\left(z
ight)$$
?

 zur Extraktion Transversity-Verteilung werden Informationen über die Collins Fragmentationsfunktion benötigt (BELLE)

#### Die Collinsamplitude für geladene Kaonen:



**Resultate der Collinsamplitude:** 

 $\delta q\left(x
ight)\otimes H_{1}^{\perp q}\left(z
ight)$ aus den 2002–2004 Daten:

- keine signifikanten (von Null verschiedenen)
   Collinsamplituden für geladene Kaonen
- $K^+$ -Collinsamplitude innerhalb der Fehler konsistent mit der für  $\pi^+$

#### Die Siversamplitude für geladene Pionen:



## Resultate der Siversamplitude:

 $f_{1T}^{\perp q}\left(x
ight)\otimes D_{1}^{q}\left(z
ight).$ 

#### aus den 2002-2004 Daten:

- signifikant positive Siversamplitude für  $\pi^+$
- impliziert nicht verschwindenden Bahndrehimpuls L<sup>q</sup><sub>z</sub>
- Siversamplitude für π<sup>-</sup> konsistent mit Null.
- Extraktion der Siversfunktion on aus Kenntnis der spinunabhängigen Fragmentationfunktion  $D_1^q(z)$

#### Die Siversamplitude für geladene Kaonen:



#### **Resultate der Siversamplitude:**

 $f_{1T}^{\perp\left( 1/2
ight) q}\left( x
ight) \otimes D_{1}^{\perp q}\left( z
ight) .$ 

#### aus den 2002–2004 Daten:

- signifikant positive
   Siversamplitude f
   ür K<sup>+</sup>
- impliziert nicht verschwindenden Bahndrehimpuls L<sup>q</sup><sub>z</sub>
- Siversamplitude für
   K<sup>-</sup> konsistent mit Null.
- Siversamplitude für K<sup>+</sup>in einigen Bereichengrößer als diejenige der π<sup>+</sup>⇒ Beitrag der Seequarks zum Siversmechanismus könnte bedeutend sein

#### Generalisierte Partonverteilungen:



#### Der Bahndrehimpulsbeitrag:

• Die Spinstruktur des Nukleons:

$$\frac{s_z^N}{\hbar} = \underbrace{\frac{1}{2}\Delta\Sigma + L_z^q}_{J_q} + \underbrace{\Delta G + L_z^g}_{J_g}$$

- $\Delta\Sigma$ : wohlbestimmt in inklusiven und semi-inklusiven Messungen
- $\Delta G$ : erste Hinweise von COMPASS und HERMES
- $L_z^q, L_z^g$ : unbekannt
- Ji Summenregel:

$$J_{q,g} = \lim_{t \to 0} \frac{1}{2} \int_{-1}^{1} dx \, x \left( H_{q,g} \left( x, \xi, t \right) + E_{q,g} \left( x, \xi, t \right) \right)$$

• ermöglicht Rückschlüsse auf Bahndrehimpulsbeiträge  $L_z^{q,g}$ 

#### Parametrisierungen der Nukleonenstruktur:



Formfaktoren (FF)

Partonverteilungen (PDF)

**Generalisierte Partonverteilungen** (GPD)



#### Messung der GPD in DVCS:

 Endzustand der tiefvirtuellen Comptonstreuung (DVCS, a) und des Bethe-Heitler-Prozesses (BH, b) nicht unterscheidbar:



• Streuamplitude des Prozesses  $ep \rightarrow e'p'\gamma$ :

$$d\sigma \left(ep \to e'p'\gamma\right) \propto \underbrace{\left|\mathcal{T}_{\mathsf{BH}}\right|^{2}}_{\text{dominierend}} + \underbrace{\left|\mathcal{T}_{\mathsf{DVCS}}\right|^{2}}_{\text{unterdrückt}} + \underbrace{\mathcal{T}_{\mathsf{BH}}\mathcal{T}_{\mathsf{DVCS}}^{*} + \mathcal{T}_{\mathsf{BH}}^{*}\mathcal{T}_{\mathsf{DVCS}}}_{\text{Interferenzterm }\mathcal{I}}$$

- $T_{\text{DBH}}$  berechenbar in QED
- $T_{DVCS}$  parametrisierbar durch Faltungen von GPD
- indirekte Messung von GPD durch Interferenzterm  ${\mathcal I}$

Azimutale Asymmetrien in DVCS:

• Transversale Target-Spin Asymmetrie  $A_{UT}^{\sin(\phi-\phi_S)\cos\phi}$ :

 $d\sigma (\phi, \phi_S) - d\sigma (\phi, \phi_S + \pi) \propto \operatorname{Im} [F_2 H - F_1 E] \sin (\phi - \phi_S) \cos \phi$  $+ \operatorname{Im} \left[ F_2 \tilde{H} - F_1 \xi \tilde{E} \right] \cos (\phi - \phi_S) \sin \phi$ 



- GPD E hängt vom Gesamtdrehimpuls  $J_q$  ab
- $A_{\mathsf{UT}}^{\sin{(\phi-\phi_S)}\cos{\phi}}$  ist sensitiv auf  $J_q$

## Azimutale Asymmetrien in DVCS:

• Transversale Target-Spin Asymmetrie  $A_{UT}^{\sin(\phi-\phi_S)\cos\phi}$ :



- $A_{UT}^{\sin(\phi-\phi_S)\cos\phi}$  ist sensitiv zum Gesamtdrehimpuls  $J_u$
- nur ein geringer Einfluß von anderen GPD Modellparametern
- (modellabhängige) Extraktion von  $J_u = L_z^u + \frac{1}{2}\Delta u$  möglich
- $L_z^u < 0, L_z^d > 0$

## Das Recoil-Projekt:





## Exklusive

# Vektormesonenereignisse

#### Exklusive Ereignisse im semi-inklusiven Datensatz:





# Extraktion der Transversityverteilung

#### Modellabhängige Extraktion von M. Anselmino u.a.:





# Konkurrenzereignisse

#### Vergleich des Wirkungsquerschnitt:

Vergleich des Wirkungsquerschnitts zwischen Daten und der HERMES Pythia Monte Carlo Simulation





# Teilchenidentifikation

#### Unterscheidung von Leptonen und Hadronen:



#### **Preshower-Hodoskop**



Kombination der einzelnen Detektorsignale:



#### Ring Image Čerenkov (RICH)-Detektor:



DPG Frühjahrstagung im Fachverband "Hadronen und Kerne", 12. März 2007 – p.40/40

Schematischer Aufbau des RICH:



Schematischer Aufbau des RICH:



Brechungsindizes *n* der beiden Raditormaterialien:

Aerogel: n = 1.03

C<sub>4</sub>F<sub>10</sub>: 
$$n = 1.0014$$

Čerenkovöffnungswinkel:  $\theta = \arccos \frac{1}{\beta n}$ 





Ein  $\pi K$ -Ereignis im RICH