

towards a 3D imaging of hadrons: GPDs

a brief introduction (an experimentalists point of view)

- a personal selection of recent results
- models & data
- conclusion & perspectives

PKU-RBRC workshop on transverse spin physics, 北京 University, June30-July 04, 2008

nucleon studied for decades:

form factors location of partons in nucleon

parton distributions

longitudinal momentum fraction \boldsymbol{x}

generalised parton distributions (GPDs)

longitudinal momentum fraction x at transverse location $\mathsf{b}_{\!L}$

only known framework to gain information on 3D picture of hadrons

→ 3D structure of hadrons : nucleon tomography

nucleon tomography

[M. Burkardt, M. Diehl 2002]

FT(GPD) : momentum space \rightarrow impact parameter space:

probing partons with specified long. momentum @transverse position $\mathbf{b}_{\!\!\perp}$

why GPDs ?

→ 3D structure of hadrons : nucleon tomography

→ complementary to TMDs :

Wigner distribution: ("mother" function)

 $W_{p}^{u}(\vec{r},k)$

probability to find a quark **u** in a nucleon **P** with a certain polarisation in a position **r** and momentum **k**

→ phenomena of single-spin asymmetries

what do we know about GPDs ?

 E, \widetilde{E} : *nucleon helicity flip* \rightarrow don't appear in DIS \rightarrow new information !

what do we know about GPDs ?

nucleon spin:

$$s_{z}^{n} = \frac{1}{2} = \frac{1}{2} \sum_{q} \Delta q + L_{z}^{q} + \Delta G + L_{z}^{g} = J_{q} + J_{g}$$

$$\uparrow \qquad \uparrow \qquad \Rightarrow 30\% \qquad \approx zero$$

[X. Ji, 1997]

$$J_{q,g} = \lim_{t \to 0} \frac{1}{2} \int_{-1}^{1} x dx \left[H^{q,g}(x,\xi,t) + E^{q,g}(x,\xi,t) \right]$$

proton helicity flipped but quark helicity conserved

how to access GPDs ?

how to access GPDs ?

 ρ^+

J/ψ

u–d

g

→ meson provide info on quark flavours VM: quark and gluon GPDs appear at same order α_s

accessing GPDs: caveats

- $H(x,\xi,t)$ but only ξ and t accessible experimentally
- x is mute variable (integrated over):

→ apart from cross-over trajectory (ξ =x) GPDs not directly accessible: deconvolution needed ! (model dependent)

→ GPD moments cannot be directly revealed, extrapolations $t \rightarrow 0$ are model dependent

the ideal experiment for measuring hard exclusive processes

the ideal experiment for measuring hard exclusive processes

high+variable beam energy

- \rightarrow hard regime
- \rightarrow wide kinematic range

- \rightarrow small cross sections
- \rightarrow measure in 3 kinematic variables simultanously

complete event reconstruction

 \rightarrow ensure exclusivity

... doesn't exist (yet)...

the menu

reminder: for meson production factorisation only for σ_L (σ_T suppressed by 1/Q²)

UM production @small x

W & *t* dependences: probe transition from soft \rightarrow hard regime

UM production @small x

W & *t* dependences: probe transition from soft \rightarrow hard regime

VM production: small \rightarrow high x

• NLO corrections to VM production are large: [M.Diehl, W.Kugler arXiv0708.1121]

ρ⁰ cross section @typical
 kinematics of compass /
 hermes / jlab12

VM production: small \rightarrow high x

• ...despite: LO GPD model (handbag fact.) [S.Goloskokov, P.Kroll arXiv0711.4736]

VM production: small \rightarrow high x

• ...despite: LO GPD model (handbag fact.) [S.Goloskokov, P.Kroll arXiv0711.4736]

deeply virtual compton scattering DVCS $\rightarrow H, \widetilde{H}, E, \widetilde{E}$ most clean channel for interpretation in terms of GPDs

DVCS Bethe-Heitler e^{γ^*} γ^* $\gamma^$

@HERMES/JLab:

(full factorisation proof)

DVCS << Bethe-Heitler

 $\frac{d^{4}\sigma}{dx_{B} dQ^{2} d|t| d\phi} \propto |T_{DVCS} + T_{BH}|^{2} = |T_{DVCS}|^{2} + |T_{BH}|^{2} + \underbrace{T_{DVCS} T_{BH}^{*} + T_{DVCS}^{*} T_{BH}}_{I}$ $\rightarrow \text{ leads to non-zero azimuthal asymmetries:}$

 \rightarrow sin ϕ dependence indicates dominance of handbag contribution

call for high statistics

JLab: E1-DVCS beam-spin asymmetry

HERMES: combined analysis of charge & polarisation dependent data

→ separation of interference term + DVCS²

$$\sigma_{\mathrm{LU}}(\phi; P_{\mathrm{l}}, e_{\mathrm{l}}) = \sigma_{\mathrm{UU}}(\phi) \cdot \left\{1 + P_{\mathrm{l}}A_{\mathrm{LU}}^{\mathrm{DVCS}}(\phi) + e_{\mathrm{l}}P_{\mathrm{l}}A_{\mathrm{LU}}^{\mathcal{I}}(\phi) + e_{\mathrm{l}}A_{\mathrm{C}}(\phi)\right\}$$

$$\sum_{n=1}^{2} s_{n}^{\mathrm{I}} sin(n\phi) \qquad \sum_{n=0}^{3} c_{n}^{I} cos(n\phi)$$

HERMES: combined analysis of charge & polarisation dependent data

→ separation of interference term + DVCS²

HERMES: combined analysis of charge & polarisation dependent data

→ separation of interference term + DVCS²

a word about GPD models

VGG: [Vanderhaegen, Guichon, Guidal 1999]

- double distributions ; factorised or regge-inspired t-dependence
- D-term to restore full polynomiality
- skweness depending on free parameters b_{val} & b_{sea}
- includes tw-3 (WW approx)

dual: [Guzey, Teckentrup 2006]

- GPDs based on infinite sum of t channel resonances
- factorised or regge-inspired t-dependence
- tw-2 only

a word about GPD models

VGG: [Vanderhaegen, Guichon, Guidal 1999]

- double distributions ; fac
- D-term to restore full po
- skweness depending on
- includes tw-3 (WW appro

dual: [Guzey, Teckentrup 2006]

- GPDs based on infinite s
- factorised or regge-inspi
- tw-2 only

→ describes well A_c and A_{UT} data → fails for A_{LU} → A_c favour 'no D-term' ← contradicts

 χ QSM & lattice results

- \rightarrow describes well spin-asymmetries
- \rightarrow fails for unpol. cross sections (HallA)
- \rightarrow call for new, more sophisticated parametrisations of GPDs

... more models on the way: e.g. generalisation of Mellin transform technique

- observables sensitive to E:
- $(J_q \text{ input parameter in ansatz for E})$

$$J_q = \frac{1}{2} \int_{-1}^{1} x \, dx \, \left(H^q + E^q \right)$$

- DVCS A_{UT} : HERMES
- nDVCS A_{LU} : Hall A
- $\rho^{_0} \, \text{A}_{_{\text{UT}}}$: HERMES

 J_a input parameter in ansatz for E:

→ demonstrates model dependence of these analyses

→ data are free to be reused at any time with new models ☺

conclusions

GPDS contain a wealth of new information on hadron structure at parton level

ightarrow only known framework allowing a 3D imaging of hadrons ightarrow

... BUT they are intricate functions...

complementary to TMDs : relations GPDs $\leftarrow \rightarrow$ TMDs [M. Burkardt, M. Schlegel]

GPDs offer a way to measure transversity!

→see talk byG. Goldstein

increasing amount and precision of experimental data

large "flow" of new data expected soon (JLab, HERMES, COMPASS)

'standard' models/parametrisations of GPDs too simple

 \rightarrow models should describe large variety of different observables over wide kinematic range

prior to any conclusion about GPDs from data: call for new, more sophisticated parametrisations

perspectives for GPDs

@ new facilities:

- high beam energy (hard regime, wide kinematic range)
- very high luminosity (small xsections, multi-D analyses)
- complete event reconstruction (ensure exclusivity)
- \rightarrow exploration of new channels: WACS, time like DVCS, ...
- \rightarrow ideas for accessing GPDs @LHC, @GSI, ...

© new facilities:

- high beam energy (hard regime, wide kinematic range)
- very high luminosity (small xsections, multi-D analyses)
- complete event reconstruction (ensure exclusivity)
- \rightarrow exploration of new channels: WACS, time like DVCS, ...
- \rightarrow ideas for accessing GPDs @LHC, @GSI, ...

