

highlights from HERMES -- the nucleon structure: spin & 3D imaging --

polarised deep-inelastic lepton-nucleon scattering

where is the spin of the nucleon ?

towards a 3D imaging

ICHEP 2012, Melbourne, Australia, 04 - 11 July, 2012

the mission

 $\Delta\Sigma = \Delta u_{y} + \Delta d_{y} + \Delta q_{s}$

first $\Delta\Sigma \approx 0.05$ spin puzzle EMC @CERN [1988] $\Delta\Sigma = 1$ QPM:

relativistic $\Delta\Sigma \approx 0.7$ QPM:

HERa MEasurment of Spin

$$\frac{1}{2} = J_q + J_g = \frac{1}{2}\Delta\Sigma + L_q + \Delta g + L_g$$

□ hunting the orbital angular momentum

→ towards a complete 3D description of the nucleon: beyond collinear approximation

$$\frac{1}{2} = J_q + J_g = \frac{1}{2}\Delta\Sigma + L_q + \Delta g + L_g$$

hunting the orbital angular momentum

→ towards a complete 3D description of the nucleon: beyond collinear approximation

Wigner 'mother' distribution

$$W^{\vec{s}}(x,k_{\perp},b_{\perp},\vec{S})$$

probability of finding a quark with certain spin projection, position and momentum

> [X. Ji, PRL 2003; A. Belitsky, X. Ji, F. Yuan, PRD 2004] [Meissner, Metz, Schlegel, JHEP 0908:056, 2009]

spin puzzle

(4-momentum)² of virtual photon

 $\lambda \sim 1/Q^2$

 $x = \frac{Q^2}{2P \cdot q}, \quad x \in [0,1] \quad \text{fraction of proton momentum}$ carried by the struck parton

pQCD factorisation:

 $\sigma_{DIS} \propto \sum_{f} \hat{\sigma}_{part} \otimes pdf(x)$

parametrise the structure of nucleon

pQCD factorisation:

parametrise theparametrise fragmentation ofstructure of nucleonparton in a hadron of type h

pQCD factorisation:

prerequisites

π,Κ

@HERA: 1995-2007

pure nuclear-polarised H & D <P_t> ≈80%

prerequisites

@HERA: 1995-2007

[rad] ⊖^C [rad]

0.2

0.15

0.1

π,κ

pure nuclear-polarised H & D <P_t> ≈80%

p

0.06

0.05

0.04

0.03

 \bigcirc

☆

inclusive DIS

polarised structure function:

$$\vec{g}_{1}(x) \propto \frac{1}{2} \sum_{q} e_{q}^{2} (\Delta q(x) + \Delta \overline{q}(x))$$

... flavour summed contribution of quarks to nucleon spin (...once integrated over all x...)

inclusive **DIS**

polarised structure function:

$$\sigma^{\ddagger} - \sigma^{\ddagger} \propto g_1(x)$$
$$g_1(x) \propto \frac{1}{2} \sum_q e_q^2 (\Delta q(x) + \Delta \overline{q}(x))$$

... flavour summed contribution of quarks to nucleon spin (...once integrated over all x...)

values from recent *NLO* analyses of world data:

$$\int dx \, g_1(x) \rightarrow \left[\Delta \Sigma = 0.2 \div 0.35\right]$$

what about the individual quark contributions & gluons ?

inclusive DIS & beyond ...

quark polarisations from flavour tagging

 $\Delta s(x) \approx 0$

in short:

 $\Delta u(x) > 0$ and large

 $\Delta d(x) < 0$ and smaller

→ first *direct* 5-flavour separation of polarised pdfs

π,Κ

the spin budget

□ contribution of quarks 25-35% :

□ gluon polarisation surprisingly small in measured range (0.05 < x_g < 0.2) significant contributions of gluons and/or sea quarks @low x ?

the spin budget

□ contribution of quarks 25-35% :

- **Given polarisation** surprisingly *small* in measured range ($0.05 < x_g < 0.2$) significant contributions of gluons and/or sea quarks @low x ?
 - what about the orbital angular momentum ?

```
→ new concepts: GPDs & TMDs
Generalised Parton Distributions
Transverse Momentum Dependent functions
```


Wigner 'mother' distribution

 $W^{\vec{s}}(x,k_{\perp},b_{\perp},\vec{S})$

cannot be measured... but its *projections* in coordinate or momentum space

 $W^{\vec{s}}(x,k_{\perp},b_{\perp},\vec{S})$

cannot be measured... but its *projections* in coordinate or momentum space

transverse coordinate space

GPDs [*generalised* parton distributions]

[transverse momentum dependent PDfs/FFs]

TMDs

exclusive reactions

fully differential semi-inclusive DIS

[... preferably with polarised beam and/or target ...]

transverse

momentum space

 $W^{\vec{s}}(x,k_{\perp},b_{\perp},\bar{S})$

cannot be measured... but its *projections* in coordinate or momentum space

transverse coordinate space

GPDs

transverse *momentum* space

TMDs

[generalised parton distributions]

[*transverse momentum dependent* PDfs/FFs]

model calculations for a transversely polarised nucleon

GPD E

[model calculation by M. Burkardt]

 $W^{\vec{s}}(x,k_{\perp},b_{\perp},\vec{S})$

cannot be measured... but its *projections* in coordinate or momentum space

transverse coordinate space

GPDs

↘ momentum space
TMDs

transverse

[generalised parton distributions]

[*transverse momentum dependent* PDfs/FFs]

model calculations for a transversely polarised nucleon

survive integration over intrinsic transverse momenta: *collinear approximation*

relation to OAM

GPDs

TMDs

require interference of nucleon wave fct.s with different units OAM

 \rightarrow spin-orbit correlation

relation to OAM

GPDs

TMDs

proton helicity flipped but quark helicity conserved

 $E^q \neq 0$ requires OAM

$$J^{q} = \Delta \Sigma + L^{q} = \frac{1}{2} \int x dx H^{q} + E^{q}$$

[X. Ji, PRL(1997)]

require interference of nucleon wave fct.s with different units OAM

 \rightarrow spin-orbit correlation

observables of TMD

most successfully probed in semi-inclusive DIS:

π,Κ

$$P_{hT} \cong k_{\perp} \cong \Lambda_{QCD} << Q^2$$

U

f₁

N

U

L

Т

L

 $h_1 \quad h_{1T}^{\perp}$

measure fully differential cross section:

$$\frac{d\sigma}{dx_B \, dy \, d\phi_S \, dz_h \, d\phi_h \, dP_{hT}^2} \propto \left\{ F_{UU,T} + \varepsilon \, \cos(2\phi_h \left(F_{UU}^{\cos 2\phi_h} \right) + S_{\parallel} \, \delta_\ell \, \sqrt{1 - \varepsilon^2} \, F_{LL} + S_{\parallel} \, \varepsilon \, \sin(2\phi_h) \, F_{UL}^{\sin(2\phi_h} + S_{\parallel} \, \lambda_\ell \, \sqrt{1 - \varepsilon^2} \, F_{LL} + |S_{\perp}| \left[\sin(\phi_h - \phi_S) \left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon \, \sin(\phi_h + \phi_S) \, F_{UT}^{\sin(\phi_h + \phi_S)} + \varepsilon \, \sin(3\phi_h - \phi_S) \, F_{UT}^{\sin(3\phi_h - \phi_S)} \right] \right\} \\ + \varepsilon \, \sin(3\phi_h - \phi_S) \, F_{UT}^{\cos(\phi_h - \phi_S)} + \dots \right\}.$$

observables of TMD

most successfully probed in semi-inclusive DIS:

π,Κ

$$P_{hT} \cong k_{\perp} \cong \Lambda_{QCD} \ll Q^2$$

measure fully differential cross section:

$$\frac{d\sigma}{dx_B \, dy \, d\phi_S \, dz_h \, d\phi_h \, dP_{hT}^2} \propto \left\{ F_{UU,T} + \varepsilon \cos(2\phi_h) \left(F_{UU}^{\cos 2\phi_h} + S_{\parallel} \lambda_\ell \sqrt{1 - \varepsilon^2} F_{LL} + S_{\parallel} \varepsilon \sin(2\phi_h) F_{UL}^{\sin 2\phi_h} + S_{\parallel} \lambda_\ell \sqrt{1 - \varepsilon^2} F_{LL} + |S_{\perp}| \left[\sin(\phi_h - \phi_S) F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon \sin(\phi_h + \phi_S) F_{UT}^{\sin(\phi_h + \phi_S)} + \varepsilon \sin(3\phi_h - \phi_S) F_{UT}^{\sin(3\phi_h - \phi_S)} \right] \right\}$$

$$+ |S_{\perp}| \lambda_e \sqrt{1 - \varepsilon^2} \cos(\phi_h - \phi_S) F_{LT}^{\cos(\phi_h - \phi_S)} + \dots \right\}.$$

$$F_{UT}^{\sin(\phi - \phi_S)} \prec \sum_q e_q^2 f_{1T}^{\perp q}(x, k_{\perp}) \otimes D_1^q(z, P_{\perp})$$
beam target polarisation

Sivers TMD

-- spin-orbit correlations & role of OAM --

➢ first clear evidence for signficant role of OAM and effects of spin-orbit correlations

cancellation of u and d quark contributions

Surprisingly large signal for K+ role of sea quarks ?

Boer-Mulders TMD

-- spin effects & spin-orbit correlations even in the unpolarised proton --

fully differential 5D information available, here only projections shown

[arXiv1204.4161, submitted to PRD]

observables of GPDs

golden channel : deeply virtual Compton scattering (DVCS)

isolate interference term:

- different beam charges: e⁺e⁻ only @HERA
- polarisation observables: $\Delta \sigma_{\text{UT}}(\phi, \phi_S, ...)$ beam target U, L U, L, T

Unpolarised, Longitudinally, Transversely polarised

observables of GPDs

golden channel : deeply virtual Compton scattering (DVCS)

isolate interference term:

- different beam charges: e⁺e⁻ only @HERA
- polarisation observables: $\Delta \sigma_{\text{UT}}(\phi, \phi_{\text{S}}, ...)$

beam target U, L U, L, T

$\Delta\sigma_{\rm c},\Delta\sigma_{\rm LU}$	$\rightarrow H_p, E_n$
$\Delta\sigma_{\text{UL}}$	\rightarrow H, \tilde{H}
$\Delta \sigma_{ m UT}$	<i>→ H</i> , <i>E</i>

@kinematics of current fixed target exp.

observables of GPDs

golden channel : deeply virtual Compton scattering (DVCS)

isolate interference term:

 \rightarrow explore azimuthal dependence of cross section, *e.g.*:

$$\Delta \sigma_{XY} \propto \sum_{n=1}^{3} c_{\text{unp},n}^{\text{I}} \cos(n\phi) + \lambda \sum_{n=1}^{2} s_{\text{unp},n}^{\text{I}} \sin(n\phi)$$

... coefficients related to GPDs

unique data set

→charge asymmetry *Re (H)*

- →beam-spin asymmetry Im (H)
- → transverse target spin asymmetry Im (H-E)
- → transverse-target double-spin
 Re (H-E)
- → longitudinal target spin asymm. Im (\tilde{H})
- → longitudinal-target double-spin $Re(\widetilde{H})$

GPD E & OAM

 $J^{q} = \Delta \Sigma + L^{q} = \frac{1}{2} \int x dx \ H^{q} + E^{q}$

@kinematics of current fixed target exp.

GPD E & OAM

$$J^{q} = \Delta \Sigma + L^{q} = \frac{1}{2} \int x dx \ H^{q} - E^{q}$$

summary

□ 2nd generation *polarised* DIS experiment @HERA: polarised e^{+/-} beam & novel target technology of storage cell with pure nuclear-polarised H or D

mission: exploring the nucleon structure *beyond* fully inclusive DIS

many *pioneering* measurements:

 \rightarrow first direct 5-flavour extraction of helicity distributions

 \rightarrow quest for the orbital angular momentum:

summary

□ 2nd generation *polarised* DIS experiment @HERA: polarised e^{+/-} beam & novel target technology of storage cell with pure nuclear-polarised H or D

mission: exploring the nucleon structure *beyond* fully inclusive DIS

many *pioneering* measurements:

→ first direct 5-flavour extraction of helicity distributions
 → quest for the orbital angular momentum:

exploring novel distributions: **GPD**s & **TMD**s, wich go beyond the collinear approximation \rightarrow nucleon tomography

> from first signals of GPDs & TMDs to the most complete data set measured so far

Δq and ΔG from NLO QCD fits

@Next-to-Leading Order in α_s :

$$g_1^{\text{NLO}}(\mathbf{x}, \mathbf{Q}^2) = g_1^{\text{LO}} + \frac{1}{2} \left\langle e^2 \right\rangle \sum_{\mathbf{q}} e_{\mathbf{q}}^2 \left[\Delta q(\mathbf{x}, \mathbf{Q}^2) \otimes C_{\mathbf{q}} + \Delta g(\mathbf{x}, \mathbf{Q}^2) \otimes C_{\mathbf{g}} \right]$$

 $\Delta f(\mathbf{x})$... to be measured (parametrised) !

 $\Delta f(\mathbf{x}, \mathbf{Q}^2)$... fully calculable in QCD ! (splitting functions)

> → different Q^2 evolution for different quark flavour and for gluons

$$\chi^{2} = \sum_{\text{data}} \frac{(g_{1}^{\text{meas}} - g_{1}^{\text{calc}})^{2}}{\sigma_{\text{stat}}^{2}}$$

 \rightarrow requires g_1 data in wide kinematic range in x and Q^2

polarised pdfs: ∆q

(π,Κ)

results driven by inclusive and semi -inclusive DIS

polarised pdfs: ΔG

results driven by inclusive DIS & pp-scattering data

polarised pdfs: $\Delta q \& \Delta G$

global analysis of polarised DIS & pp-scattering data

contributions to nucleon spin:

Q ² =10GeV ²		$\Delta f \equiv \int_{x_{\min}}^{1} dx$	$\Delta f(x)$	
	$x_{\min} = 0$		= 0.001	= 2
	best fit	$\Delta \chi^2 = 1$	$\Delta \chi^2 / \chi^2 = 2\%$	ne
$\Delta u + \Delta \bar{u}$	0.813	$0.793 \ ^{+0.011}_{-0.012}$	$0.793 \begin{array}{c} +0.028 \\ -0.034 \end{array}$	@s
$\Delta d + \Delta \bar{d}$	-0.458	$-0.416 \begin{array}{c} +0.011 \\ -0.009 \end{array}$	$-0.416 \begin{array}{c} +0.035 \\ -0.025 \end{array}$	
$\Delta \bar{u}$	0.036	$0.028 \begin{array}{c} +0.021 \\ -0.020 \end{array}$	$0.028 {}^{+0.059}_{-0.059}$	
$\Delta \bar{d}$	-0.115	$-0.089 \begin{array}{c} +0.029 \\ -0.029 \end{array}$	$-0.089 \ ^{+0.090}_{-0.080}$	
$\Delta \bar{s}$	-0.057	-0.006 $+0.010$ -0.012	-0.006 + 0.028 - 0.031	
Δg	-0.084	$0.013 \begin{array}{c} +0.106 \\ -0.120 \end{array}$	$0.013 \begin{array}{c} +0.702 \\ -0.314 \end{array}$	um
$\Delta\Sigma$	0.242	$0.366 \ ^{+0.015}_{-0.018}$	$0.366 \begin{array}{c} +0.042 \\ -0.062 \end{array}$	

▲s receives large
 negative contribution
 @small x

• Δg : hughe uncert. below $x \approx 0.01$ \rightarrow 1st moment *undetermined*

[DSSV, PRL101(2008), PRD(2009)]

call for new facilities: high energy polarised ep collider needed !

the quest for the orbital angular momentum

hunting the OAM

-- nDVCS : beam-spin cross section difference --

hunting the OAM

-- model dependent [VGG(1999)] constrain of J_u vs J_d --

hunting the OAM

GPD model tuned to VM [GK (2008)]

J^u	J^d	J^s	J^g
0.250	0.020	0.015	0.214
0.276	0.046	0.041	0.132
0.225	-0.005	-0.011	0.286
0.209	0.013	0.015	0.257
0.230	0.024	0.015	0.228
0.234	0.028	0.019	0.214

variants for GPD *E*

TMD models:

$[\rightarrow A. Bachetta]$

model dependent relation:

$$f_{1T}^{\perp(0)a}(x;Q_L^2) = -L(x) E^a(x,0,0;Q_L^2)$$

 $J^{u} = 0.266 \pm 0.002^{+0.009}_{-0.014},$ $J^{d} = -0.012 \pm 0.003^{+0.024}_{-0.006}$