Determination of the Structure Function F₂ at

Dominik D. Gabbert DESY-Zeuthen / Universität Hamburg

29. Oktober 2008

Universität Hamburg

Probing the Structure of Nucleons

- Deep-inelastic scattering (DIS) plays major role in understanding of nucleon structure
- Lepton-nucleon scattering cleanest way to probe substructure of nucleon
- Exchange of virtual boson, breakup and hadronization in DIS regime

center-of-mass energy (e N)

$$s = (P+k)^2 = M^2 + 2ME$$

For given s, two kinematic variables completely describe the scattering process in the inclusive analysis, e.g.:

$$Q^2 = -q^2 = (k - k')^2 = 4EE' \sin^2 \frac{\theta}{2}$$
 photon virtuality

$$v = \frac{P \cdot q}{M} = E - E'$$
 photon energy (lab)

or
$$x = \frac{Q^2}{2 P \cdot q} = \frac{Q^2}{2 M v}$$
 Bjørken scaling variable

$$y = \frac{P \cdot q}{P \cdot k} = \frac{v}{E}$$
 inelasticity

Invariant mass of hadronic final state:

$$W^2 = (P+q)^2 = M^2 + 2M \nu - Q^2$$

Resolution of deep-inelastic scattering:

$$\lambda = \frac{1}{|\boldsymbol{q}|} = \frac{1}{\sqrt{v^2 + Q^2}} \approx \frac{2Mx}{Q^2}$$

Structure Functions of the Nucleon

Deep-inelastic scattering in the *one-photon* exchange approximation can be written as:

$$\frac{d^2\sigma}{d\Omega dE'} = \frac{\alpha_{em}^2}{2MQ^2} \frac{E'}{E} L_{\mu\nu} W^{\mu\nu}$$

Leptonic and hadronic tensors have symmetric (S) and anti-symmetric (A) contributions:

$$\frac{d^2\sigma}{d\Omega dE'} = \frac{\alpha_{em}^2}{2MQ^2} \frac{E'}{E} \left[L_{\mu\nu}^{(S)} W^{\mu\nu(S)} + L_{\mu\nu}^{(S)} W^{\mu\nu(S)} + L_{\mu\nu}^{(A)} W^{\mu\nu(A)} + L_{\mu\nu}^{(A)} W^{\mu\nu(A)} \right]$$

Leptonic tensor known from QED.

Hadronic tensor describes a-priori unknown hadronic structure,

parameterized by:

$W^{(A)}_{~\mu u}$	Observable in polarized scattering	$G_1, G_2 (\text{or } g_1, g_2)$
$W_{~\mu u}^{({ m S})}$	Observable in unpolarized scattering	$W_{1}, W_{2} \text{ (or } F_{1}, F_{2})$

Structure Functions of the Nucleon

Deep-inelastic scattering in the *one-photon* exchange approximation can be written as:

$$\frac{d^2\sigma}{d\Omega dE'} = \frac{\alpha_{em}^2}{2MQ^2} \frac{E'}{E} L_{\mu\nu} W^{\mu\nu}$$

Leptonic and hadronic tensors have symmetric (S) and anti-symmetric (A) contributions:

$$\frac{d^2\sigma}{d\Omega dE'} = \frac{\alpha_{em}^2}{2MQ^2} \frac{E'}{E} \left[L_{\mu\nu}^{(S)} W^{\mu\nu(S)} + L_{\mu\nu}^{(S)} W^{\mu\nu(S)} + L_{\mu\nu}^{(A)} W^{\mu\nu(A)} + L_{\mu\nu}^{(A)} W^{\mu\nu(A)} \right]$$

Leptonic tensor known from QED.

Hadronic tensor describes a-priori unknown hadronic structure,

parameterized by:

$$W_{\mu\nu}^{(A)}$$
 Observable in polarized scattering G_1, G_2 (or g_1, g_2) $W_{\mu\nu}^{(S)}$ Observable in unpolarized scattering W_1, W_2 (or F_1, F_2)

Consider unpolarized scattering in the following. Parameterize hadronic structure using $F_{_I}$ and $F_{_2}$ for which Bjørken predicted scaling:

$$F_1(x, Q^2) = MW_1(v, Q^2) \to F_1(x)$$
 $F_2(x, Q^2) = vW_2(v, Q^2) \to F_2(x)$

$$\frac{d^2\sigma}{dx\ dQ^2} = \frac{4\pi\alpha_{em}^2}{Q^4} [y^2 F_1(x, Q^2) + (1 - y - \frac{My}{2E}) \cdot F_2(x, Q^2)]$$

Structure Functions F₁, F₂

In naïve Quark-Parton-Model:

$$F_1 = \frac{1}{2} \sum_f e_f^2 [q(x) + \overline{q}(x)]$$

$$F_2 = x \sum_f e_f^2 [q(x) + \overline{q}(x)]$$

Callan-Gross relation

$$F_2 = 2x F_1$$

Longitudinal (σ_{\parallel}) and transverse (σ_{\perp}) virtual-photon contributions:

$$F_1 = \frac{MK}{4\pi\alpha_{em}}\sigma_T$$

$$F_1 = \frac{MK}{4\pi\alpha_{em}}\sigma_T \qquad F_2 = \frac{v K(\sigma_L + \sigma_T)}{4\pi\alpha_{em}(1 + Q^2/4M^2x^2)}$$

Virtual-photon flux
$$\Gamma = \frac{\alpha_{em}K}{2\pi^2Q^2} \frac{E'}{E} \frac{1}{1-\epsilon}$$
Hand convention:
$$\frac{d^2\sigma}{d\Omega dE'} = \Gamma[\sigma_T(x,Q^2) + \epsilon\sigma_L(x,Q^2)]$$

$$K = v - \frac{Q^2}{2M}$$
Define ratio R and re-parameterize cross section

Virtual-photon polarization parameter

$$\epsilon = \frac{4(1-y) - Q^2 / E^2}{4(1-y) + 2 y^2 + Q^2 / E^2}$$

Define ratio R and re-parameterize cross section

$$R = \frac{\sigma_L}{\sigma_T}$$

$$\frac{d^2\sigma}{dx\ dQ^2} = \frac{4\pi\alpha_{em}^2}{Q^4} \frac{F_2}{x} \times \left[1 - y - \frac{Q^2}{4E^2} + \frac{y^2 + Q^2/E^2}{2(1 + R(x, Q^2))} \right]$$

Kinematic Plane in x-Q²

Collider experiments

Fixed target experiments

Hermes

Why measuring *inclusive* DIS cross sections at Hermes?

World largest data set on deuteron

Hermes (1996-2005)

30 M proton + 28 M deuteron

~450 pb⁻¹

~460 pb⁻¹

e.g.: compared to NMC

3 M proton + 6 M deuteron

World data fits $\sigma^{p,d}$, σ^d/σ^p

Gottfried Sum

$$\int \frac{dx}{x} (F_2^p - F_2^n)$$

 d_v/u_v

The HERMES Spectrometer

Binning in x and Q²

kinematic region

- 0.006 < x < 0.9
- 0.1 < *y* < 0.85
- $0.2 \text{ GeV}^2 < Q^2 < 20 \text{ GeV}^2$
- $W^2 > 5 \text{ GeV}^2$
- $0.04 \, rad < \Theta < 0.22 \, rad$

binning

- 19 x bins
- up to 6 Q² bins
- Total: 81 bins

Extraction of cross sections

Luminosity

- Elastic reference process
- Interaction of beam with shell electrons
 - Electron Beam: Møller scattering

$$e^-e^- \rightarrow e^-e^-$$

- Positron Beam: Bhabha scattering $e^+e^- \rightarrow e^+e^-$, annihilation $e^+e^- \rightarrow \gamma \gamma$

- Coincidence rate R_{RI} in $\Delta t = 80$ ns time resolution window
- Luminosity "constants"
 C_{Lumi} convert coincidence rate into luminosity (pb⁻¹)
- Uncertainties of ~3% 8%. Acceptance of L. detector depends on e.g.
 - beam conditions
 - magnetic fields

$$\sigma_{DIS} = \frac{N_{DIS}}{\int \mathcal{L} \ dt}$$
 DIS yield

Particle identification

PID efficiency and contamination

Lepton sample identified by: $PID > PID_1$ with $PID_1 = 0$

high efficiencies and small contaminations at same time

Contamination of lepton sample

C = Fractional contribution of \mathcal{E} = Fraction of leptons hadrons in the lepton sample selected with PID>0

Efficiency lepton identification

$$\frac{\int_{PID_{l}} dPID N_{h}}{\int_{PID_{l}} dPID (N_{l} + N_{h})}$$

$$\frac{\int_{PID_{l}} dPID \ N_{l}}{\int dPID \ N_{l}}$$

Correction:

$$N_{cor} = N_{unc} \cdot \frac{1 - C(PID_l)}{\varepsilon (PID_l)}$$

Due to correlations between PID detectors, assign uncertainty of full size of correction

PID efficiency and contamination

Trigger efficiencies

- Trigger = combination of fast signals
- Select events of specific interest

DIS trigger (tr21) + H1 + H2 + Calorimeter H o d o s c o p e s
$$\varepsilon(\text{tr21}) = \varepsilon(\text{H0}) \cdot \varepsilon(\text{H1}) \cdot \varepsilon(\text{H2}) \cdot \varepsilon(\text{CA})$$

Trigger efficiencies for each year. Depend on time, momentum, angle.

- ε(H1), ε(H2), ε(CA) >99%
- ε(H0) ~ 97% low!
- Different in top, bot.

 H0 inefficiencies dominate trigger 21 inefficiency
 → contrib. to top-bot-asym.

$$w = \frac{1}{\epsilon}$$

Correction by counting each event with inverse of efficiencies

QED radiative effects

Feynman diagrams of processes contributing to radiative corrections:

initial state radiation

vacuum polarization

final state radiation

vertex correction

Migration matrix

Binning in *x*

Binning in $x-Q^2$

Diagonal elements on migration matrix, measured bin = Born level bin Migration into acceptance from outside n(i,0), i>0

Unfolding of kinematic bin migration

Tracking

No tracking

18

Bethe-Heitler Cross section

Bethe-Heitler: Radiation of real photons associated with elastic interaction of charged particle with the electromagnetic nuclear field

Due to photon radiation, the apparent kinematic variables of Bethe-Heitler events can be indistinguishable from DIS events. \rightarrow Background to DIS.

- Initial state radiation (ISR)
 photon radiation along
 incoming lepton (lost in the
 beam pipe)
- Final state radiation (FSR) photon radiation along outgoing lepton

QED Comptonphoton radiation at finite angles

$$(1 - y) \sin \theta_{e'} = y \sin \theta_{\gamma}$$

→ high probability to **hit detector frames**

Bethe-Heitler efficiencies

Bethe-Heitler efficiencies extracted from MC for proton and deuteron

Bethe-Heitler efficiencies are relevant for unfolding

Misalignment

- Ideal situation: Perfect alignment of beam and spectrometer
- In practice:
- Top and bottom parts of spectrometer displaced
- Beam position differs from nominal position
- Beam misalignment measured by beam monitors
- Analysis of tracks in the top and bottom halves provides information about misalignment of spectrometer

Misalignment of

Beam (1998, 2000)

Spectrometer

	e	e⁺
X-slope (mrad)	-0.014	-0.035
Y-slope (mrad)	-1.200	-0.420
X-offset (cm)	0.015	0.017
Y-offset (cm)	0.090	0.160

	top	bot
X-slope (mrad)	0.44	0.24
Y-slope (mrad)	-1.2	0.02
X-offset (cm)	-0.09	-0.11
Y-offset (cm)	-0.01	0.11

Misalignment

Simulation of misalignment in MC:

 $rac{\sigma_{ extit{misaligned}}}{\sigma_{ extit{aligned}}}(top)$

 $rac{\sigma_{ extit{misaligned}}(bot)}{\sigma_{ extit{aligned}}}$

- "Misalignment ratio": Effect of misalignment is in the order of 7%.
- No correction for misalignment but assignment of uncertainty:

Unfolding of the misalignment ratio to Born level

Systematic uncertainties on σ^p , σ^d

Which systematic uncertainties are assigned.

 δ_{PID} : PID misidentification typically ~ 1%

δ_{rad.}: Unc. of BH efficiencies due to misalignment ≤ 1%

 δ_{mis} : Misalignment effect on DIS events $\sim 7\%$

 δ_{nor} : Overall normalization unc.: Luminosity $\delta_{\text{nor}}^{\text{p}} = 6.4 \% \ \delta_{\text{nor}}^{\text{d}} = 6.6 \%$

Fit to world data of proton DIS cross-sections

Fit with the following features

- Based on the ALLM functional from for the γp cross section
 - Regge-motivated, phenomenological approach
 - allows very good description of measured regions
 - constructed so that photoproduction data at Q²=0 can be included

• Normalization uncertainties are considered by an accurate method involving a penalty term in χ^2 .

Fit uncertainties are determined.
 Covariance matrix provided for the first time.

• *Self-consistent* with respect to the use of $R = \frac{\sigma_L}{\sigma_T}$

- This fit includes newer data and covers 2821 data points. This is more than twice as much as used in ALLM97 (1356 data points).
- Fit results available in FORTRAN routine:
 http://www-hermes.desy.de/users/dgabbert/SIGMATOT_PARAM.tgz

Fit to world data of proton DIS cross-sections

The DIS cross-section in the 1-photon exchange approximation:

$$\frac{d^2\sigma}{dx dQ^2} = \frac{4\pi\alpha_{em}^2}{Q^4} \frac{F_2}{x} \times \left[1 - y - \frac{Q^2}{4E^2} + \frac{y^2 + Q^2/E^2}{2(1 + R(x, Q^2))} \right]$$

for all data sets

• F_2 can be related to the full cross-section $\sigma = \sigma_L + \sigma_T$

$$\sigma_{L+T}(\gamma p) = \frac{4\pi\alpha}{Q^2(1-x)} \frac{Q^2 + 4M^2 x^2}{Q^2} F_2(W^2, Q^2)$$

Consistent treatment of R

Fit to world data of proton DIS cross-sections

The DIS cross-section in the 1-photon exchange approximation:

$$\frac{d^2\sigma}{dx dQ^2} = \frac{4\pi\alpha_{em}^2}{Q^4} \frac{F_2}{x} \times \left[1 - y - \frac{Q^2}{4E^2} + \frac{y^2 + Q^2/E^2}{2(1 + R(x, Q^2))} \right]$$

for all data sets

• F_2 can be related to the full cross-section $\sigma = \sigma_L + \sigma_T$

$$\sigma_{L+T}(\gamma p) = \frac{4\pi\alpha}{Q^2(1-x)} \frac{Q^2 + 4M^2 x^2}{Q^2} F_2(W^2, Q^2)$$

Consistent treatment of R

X^2 - Minimization

X² - Minimization

$$X^{2} = \sum_{i}^{n_{max}} \frac{(\sigma_{i}^{\exp} - \sigma_{i}^{th})^{2}}{\delta_{i \text{ sta}}^{2} + \delta_{i \text{ sys}}^{2}}$$

General definition

X^2 - Minimization

X² - Minimization

$$X^{2} = \sum_{i}^{n_{max}} \frac{(\sigma_{i}^{exp} - \sigma_{i}^{th} / (1 + \mathbf{v_{k}} \delta_{k(i)}^{norm}))^{2}}{\delta_{i \, sta}^{2} + \delta_{i \, sys}^{2}} + \sum_{k} \mathbf{v_{k}^{2}}$$

$$data \, points \qquad data \, sets$$

- Introduce normalization parameters v_k considered to be normal distributed implemented by a penalty term.
- The normalization parameters v_k defined in order to perform a re-normalization according to normalization error $\delta_{k(i)}^{norm}$.
- The analytic solution of v_k for a fixed set of model parameters can be obtained from $d X^2 / d v_k = 0$, since v_k are independent.

Error propagation

Error propagation

$$V[\sigma_{L+T}(\mathbf{p}, x, Q^{2})] = \sum_{i,j} cov_{i,j}^{p} \frac{d \sigma_{L+T}(\mathbf{p}, x, Q^{2})}{dp_{i}} \frac{d \sigma_{L+T}(\mathbf{p}, x, Q^{2})}{dp_{j}}$$

V variance

p parameter vector

 $cov_{i,j}^p$ covariance matrix for \boldsymbol{p}

otal: $\chi/n = 0.9$

F₂ fit results (GD08)

Nr.	Exp	n	χ²/n	$oldsymbol{\delta}_k^{nor}$	ν_{k}
1.	SLAC-E49a	98	0.51	2.1	0.06
2.	SLAC-E49b	187	1.15	2.1	-0.28
3.	SLAC-E61	25	0.24	2.1	0.01
4.	SLAC-E87	94	0.68	2.1	0.07
5.	SLAC-E89a	72	1.06	2.1	1.31
6.	SLAC-E89b	98	1.01	2.1	0.17
7.	NMC 90 GeV	73	0.77	2.0	-0.37
8.	NMC 120 GeV	65	1.54	2.0	0.14
9.	NMC 200 GeV	75	1.13	2.0	-0.09
10.	NMC 280 GeV	79	0.94	2.0	-0.24
11.	E665	91	1.04	1.8	0.67
12.	BCDMS 100 GeV	58	1.13	3.0	-1.20
13.	BCDMS 120 GeV	62	0.73	3.0	0.03
14.	BCDMS 200 GeV	57	1.32	3.0	-1.09
15.	BCDMS 280 GeV	52	1.12	3.0	-1.03
16.	H1 94 a	37	0.35	3.9	0.05
17.	H1 94 b	156	0.63	1.5	1.13
18.	H1 SVX	44	0.49	3.0	-3.02
19.	ZEUS 94	188	1.15	2.0	1.66
20.	ZEUS BPC	34	0.40	2.4	-1.28
21.	ZEUS SVX	36	0.76	3.0	-1.00
24.	ZEUS 9697	242	0.75	2.0	0.09
25.	ZEUS 97	70	0.97	2.0	-2.23
26.	H1 99 00	147	1.01	1.5	-1.08
27.	H1 98 99	126	1.37	1.8	-1.38
28.	H1 94 97	130	0.79	1.5	-1.46
29.	H1 96 97 a	67	1.05	1.7	1.77
30.	H1 96 97 b	80	0.82	1.7	2.02
31.	this analysis, HERN	MES 81	0.40	6.4	0.67

$total: \chi/n = 0.9$

F₂ fit results (GD08)

Nr.	Exp	n	χ²/n	δ_k^{nor}	\mathbf{v}_{k}
1.	SLAC-E49a	98	0.51	2.1	0.06
2.	SLAC-E49b	187	1.15	2.1	-0.28
3.	SLAC-E61	25	0.24	2.1	0.01
4.	SLAC-E87	94	0.68	2.1	0.07
5.	SLAC-E89a	72	1.06	2.1	1.31
6.	SLAC-E89b	98	1.01	2.1	0.17
7.	NMC 90 GeV	73	0.77	2.0	-0.37
8.	NMC 120 GeV	65	1.54	2.0	0.14
9.	NMC 200 GeV	75	1.13	2.0	-0.09
10.	NMC 280 GeV	79	0.94	2.0	-0.24
11.	E665	91	1.04	1.8	0.67
12.	BCDMS 100 GeV	58	1.13	3.0	-1.20
13.	BCDMS 120 GeV	62	0.73	3.0	0.03
14.	BCDMS 200 GeV	57	1.32	3.0	-1.09
15.	BCDMS 280 GeV	52	1.12	3.0	-1.03
16.	H1 94 a	-			0.05
17.	H1 94 b		C I .		1.13
18.		/alue of χ²/n			-3.02
19.	ZEUS 9 conse	ervative assi	ignment of unce	ertainties:	1.66
20.	ZEUS B misali		erall normalizat		-1.28
21.	ZEU3 3	igilificiti, ov	Craii Hormanzat	.1011	-1.00
24.	ZEUS 9657	Z-T-Z	0.75	2.0	─ 0.09
25.	ZEUS 97	70	0.97	2.0	-2.23
26.	H1 99 00	147	\\1.01	1.5	-1.08
27.	H1 98 99	126	1.37	1.8	-1.38
28.	H1 94 97	130	1.79	1.5	-1.46
29.	H1 96 97 a	67	05	1.7	1.77
30.	H1 96 97 b	80	k /82	1.7	2.02
31.	this analysis, HERM	1ES 81	0.40	6.4	0.67

F₂ fit results (GD08)

Results on F₂^p

Results on F₂^p

Results on F₂

GD08

GD07

SMC

ALLM97

Results on F₂^d

Results on F₂^d

Results on F₂^d

Deuteron

Why measuring *inclusive* DIS cross sections at Hermes?

Basic nucleon structure from sum rules

Quark-Parton Model

Adler sum rule

$$\int dx/x (F_2^{\bar{\nu}p} - F_2^{\nu p}) = \int dx/x (F_2^{\bar{\nu}n} - F_2^{\nu p}) = 2 \int dx (u_{\nu} - d_{\nu}) = 2$$

Gross-Llewellyn Smith sum rule

$$\int dx \, (F_3^{\bar{\nu}p} + F_3^{\nu p}) = \int dx \, (F_3^{\bar{\nu}n} + F_3^{\nu p}) = 2 \int dx \, (u_{\nu} + d_{\nu}) = 6$$

Gottfried sum rule

. . . .

Sensitive to difference between u and d valence quarks

Sensitive to sum of u and d valence quarks

Basic nucleon structure from sum rules

Quark-Parton Model

Adler sum rule

$$\int dx/x (F_2^{\bar{\nu}p} - F_2^{\nu p}) = \int dx/x (F_2^{\bar{\nu}n} - F_2^{\nu p}) = 2 \int dx (u_{\nu} - d_{\nu}) = 2$$

Gross-Llewellyn Smith sum rule

$$\int dx \, (F_3^{\bar{\nu}p} + F_3^{\nu p}) = \int dx \, (F_3^{\bar{\nu}n} + F_3^{\nu p}) = 2 \int dx \, (u_\nu + d_\nu) = 6$$

Gottfried sum rule

$$\int dx / x (F_2^{e,\mu p} - F_2^{e,\mu n}) = \frac{1}{3} \int dx (u_v - d_v) + \frac{2}{3} \int dx (\bar{u} - \bar{d}) \stackrel{\frac{1}{2}}{=} \frac{1}{3}$$

Sensitive to difference between u and d valence quarks

Sensitive to sum of u and d valence quarks

- Gottfried sum rule (charged lepton scattering) → Sensitive to
 - Difference between u and d valence quarks
 - Sea quark flavor symmetry / asymmetry?

Sea quark asymmetry

Measurements, e.g:

DIS data: SLAC, BCDMS, NMC, HERMES

Drell-Yan data: E288, (E772), NA51, E866

E.g.: NMC(Q²=4 GeV²): $I_c(0.004,0.8) = 0.236 + -0.008$

Extrapolation: $I_{c}(0,1) = 0.258 + -0.017$

→ Significant violation of Gottfried sum rule

Sea flavor asymmetry $\overline{u} \neq \overline{d}$. $I_G(0,1) < 1/3$: excess of \overline{d} quarks over \overline{u} quarks.

d quark excess confirmed in Drell-Yan and semi-inclusive analysis:

The Gottfried Integral

$$I_{G}(x_{min}, x_{max}) = \int_{xmin}^{xmax} (F_{2}^{p}(x) - F_{2}^{n}(x)) dx / x = \int_{xmin}^{xmax} 2(F_{2}^{p} - F_{2}^{d}) dx / x$$

$$= \int_{xmin}^{xmax} 2 F_{2}^{p} (1 - \frac{F_{2}^{d}}{F_{2}^{p}}) dx / x$$

Fit to F₂^p

Fit to σ^d/σ^p

Evaluation of the **measured** Gottfried Integral:

GD 08

Fit to σ^d/σ^p

Evaluation of the leading twist (LT) Gottfried integral

CTEQ6L

Fit to σ^d/σ^p (LT)

Fits to σ^{d}/σ^{p}

Parameterization

$$\frac{\sigma^d}{\sigma^p} \simeq \frac{F_2^d}{F_2^p} \left(b_1(x) + b_2(x) \ln Q^2 \right) \left(1 + \frac{C^d(x) - C^p(x)}{Q^2} \right) \left(1 - \frac{1 - \epsilon}{(1 + \bar{R}(x))(1 + \epsilon \bar{R}(x))} \Delta R(x) \right)$$

 4-parameter Fit in each x bin based on world data from NMC, SLAC, BCDMS, HERMES

World data on σ^d/σ^p

4 Parameters from Fit of σ^d/σ^p to world data

Evaluation of the Gottfried integral

Extraction of d /u

Extraction of d_//u_/

raction of
$$d_v/u_v$$

$$\frac{F_2^d}{F_2^p} = \frac{1}{2}(1 + \frac{F_2^n}{F_2^p}) \simeq \frac{1}{2}(1 + \frac{4\frac{d_v}{u_v} + 1 + S_1}{4 + \frac{d_v}{u_v} + S_2}) \approx \frac{5}{2} \cdot \frac{1 + \frac{d_v}{u_v}}{4 + \frac{d_v}{u_v}}$$

$$S_{1} = \frac{2}{u_{v}}(u_{s} + 4d_{s} + s_{s})$$

$$S_{2} = \frac{2}{u_{v}}(4u_{s} + d_{s} + s_{s})$$

- S₁ and S₂ taken from CTEQ6L
- Impact of S, and S, negligible at x>0.35

Comparison of dv/uv with CTEQ6L (LO) result reveals compatibility.

Summary

- First measurement of F₂^p and F₂^d at Hermes.
- Fit of the proton DIS cross section based on the ALLM functional form
 - Larger data set, 2821 data points, incl. Hermes
 - Self-consistent with respect to R
 - Normalization uncertainties taken into account
 - Covariance matrix provided
- Fit of the cross section ratio σ^{d}/σ^{p}
 - Extraction of the Gottfried integral
 - Compatibility with the NMC result
 - Indicates violation of Gottfried sum rule
 - No indication for Q² dependence found