

Target single- and double-spin asymmetries in DVCS off a longitudinal polarised hydrogen target at HERMES

David Mahon On behalf of the HERMES Collaboration

DIS 2010 - Florence, Italy

- Generalised Parton Distributions
- Deeply Virtual Compton Scattering
- Longitudinally-Polarised Target Asymmetries
- The HERMES Experiment @ DESY
- Data Selection and Extraction of Asymmetries
- Systematic Uncertainties
- Final Results and Theory Comparison

Generalised Parton Distributions

A multi-dimensional representation of the nucleon

The $e\vec{p} \rightarrow ep\gamma$ Interaction

The four-fold differential cross-section (neglecting transverse components) can be expressed as

$$\frac{\mathrm{d}\sigma}{\mathrm{d}x_{\mathrm{B}}\,\mathrm{d}Q^{2}\,\mathrm{d}|t|\,\mathrm{d}\phi} = \frac{x_{\mathrm{B}}\,e_{\ell}^{6}\,|\tau|^{2}}{32(2\pi)^{4}\,Q^{4}\,\sqrt{1+\epsilon^{2}}} \qquad \text{where} \quad \epsilon = 2x_{\mathrm{B}}\frac{M_{p}}{Q}$$

As the DVCS and BH processes have the same initial and final states, their scattering amplitudes interfere, *i.e.* \mathcal{I}

$$|\tau|^2 = |\tau_{\rm BH}|^2 + |\tau_{\rm DVCS}|^2 + \tau_{\rm BH}^* \tau_{\rm DVCS} + \tau_{\rm BH}^* \tau_{\rm DVCS}$$

Jniversity

of Glasgow

Nuclear Physics

The $e\vec{p} \rightarrow ep\gamma$ Interaction

The Fourier coefficients relate to combinations of **Compton Form Factors** (CFFs) which are convolutions of the corresponding GPD with a hard-scattering kernel.

The squared-BH terms are exactly calculable in terms of the Dirac and Pauli FFs and known kinematic conditions.

The single-spin target asymmetry is sensitive to the imaginary part of CFF ${\cal H}$

$$\begin{aligned} \mathcal{A}_{\rm LL}(\phi) &\equiv \frac{\left[\sigma^{\to\Rightarrow}(\phi) + \sigma^{\leftarrow\Leftarrow}(\phi)\right] - \left[\sigma^{\leftarrow\Rightarrow}(\phi) + \sigma^{\to\Leftarrow}(\phi)\right]}{\left[\sigma^{\to\Rightarrow}(\phi) + \sigma^{\leftarrow\Leftarrow}(\phi)\right] + \left[\sigma^{\leftarrow\Rightarrow}(\phi) + \sigma^{\to\leftarrow}(\phi)\right]} \\ &= \frac{K_{\rm BH}}{\mathcal{D}_{\rm unp}(\phi)} \sum_{n=0}^{1} c_{n,\rm LP}^{\rm BH} \cos(n\phi) + \frac{K_{\rm DVCS}}{\mathcal{D}_{\rm unp}(\phi)} \sum_{n=0}^{1} c_{n,\rm LP}^{\rm DVCS} \cos(n\phi) - \frac{e_{\ell}K_{\mathcal{I}}}{\mathcal{D}_{\rm unp}(\phi)\mathcal{P}(\phi)} \sum_{n=0}^{2} c_{n,\rm LP}^{\mathcal{I}} \cos(n\phi) \end{aligned}$$

The double-spin asymmetry is sensitive to the real part of CFF ${\cal H}$

The beam-helicity asymmetry has been extracted at HERMES from a larger superset of data. *JHEP* **11** (2009) 083

$$\mathcal{A}_{\rm LU}(\phi) \equiv \frac{\left[\sigma^{\to \Leftarrow}(\phi) + \sigma^{\to \Rightarrow}(\phi)\right] - \left[\sigma^{\leftarrow \Leftarrow}(\phi) + \sigma^{\leftarrow \Rightarrow}(\phi)\right]}{\left[\sigma^{\to \Leftarrow}(\phi) + \sigma^{\to \Rightarrow}(\phi)\right] + \left[\sigma^{\leftarrow \Leftarrow}(\phi) + \sigma^{\leftarrow \Rightarrow}(\phi)\right]} \quad \propto \Im m \mathcal{H}$$

The HERMES Experiment: The Long. Pol. Proton Data Set

- Situated on the HERA ring at DESY
- Fixed Gas Target Experiment
- Data taken in 1996 1997
- Long. pol. (~80%) Hydrogen gas
- 27.57GeV long. pol. (~50%) e^+ beam
- Luminosity ~50pb⁻¹

One positron, fully tracked through the spectrometer and one photon, identified as a single signal cluster with no track, must be detected with:

> $1 \text{ GeV}^2 \le Q^2 \le 10 \text{GeV}^2$, $0.03 \le x_B \le 0.35$, W > 3GeV, $v < 22GeV, -t < 0.7GeV^2$

Pre-Recoil 'exclusive' data sample is selected by constraining the missing mass:

 $-2.08 \text{ GeV}^2 \le M_X^2 \le 2.81 \text{ GeV}^2$

MC studies show that the final sample contains contributions from:

• DVCS/BH – 84%

- Resonance production 13%
- Semi-Inclusive M^0 production 3%
- Exclusive π^0 production < 1%

The resultant yield is written for each beam and target polarisation state as:

$$\begin{array}{c} & \text{Detection} \\ & \text{Efficiency} \\ \langle \mathcal{N}(P_{\ell}, P_{\mathrm{L}}, \phi) \rangle = L(P_{\ell}) \eta(\phi) \sigma_{\mathrm{UU}}(\phi) [1 + P_{\mathrm{L}} \mathcal{A}_{\mathrm{UL}}(\phi) + P_{\ell} P_{\mathrm{L}} \mathcal{A}_{\mathrm{LL}}(\phi)] \\ & \text{Time-integrated} \\ & \text{Unpolarised} \\ \text{Luminosity} \\ & \text{Cross Section} \end{array}$$

The asymmetries are simultaneously extracted using the Maximum Likelihood fitting formalism as:

$$-\ln \mathcal{L}_{\text{EML}}(\theta) = -\sum_{\mathbf{i}}^{N} \ln[1 + P_{\text{L}}\mathcal{A}_{\text{UL}}(\mathbf{x}_{\mathbf{i}}; \theta) + P_{\boldsymbol{\ell}}P_{\text{L}}\mathcal{A}_{\text{LL}}(\mathbf{x}_{\mathbf{i}}; \theta)] + \mathcal{N}(\theta)$$

where $\mathbf{x}_i \in \{\phi, -t, x_B, Q^2\}$ are variables for an event **i** and θ are the most likely set of asymmetry amplitudes.

The extracted asymmetry amplitudes are:

$$\mathcal{A}_{\mathrm{UL}}(\phi) \simeq A_{\mathrm{UL}}^{\cos(0\phi)} + \sum_{n=1}^{3} A_{\mathrm{UL}}^{\sin(n\phi)} \sin(n\phi) \qquad \mathcal{A}_{\mathrm{LL}}(\phi) \simeq \sum_{n=0}^{2} A_{\mathrm{LL}}^{\cos(n\phi)} \cos(n\phi).$$

These amplitudes relate to Fourier coefficients appearing in the expansion of $|\tau|^2$.

These asymmetry amplitudes relate to the Fourier coefficients which depend on \mathcal{C} -functions – functions of real or imaginary parts of CFFs

Asymmetry	Contributing Fourier-	Twist	CFF
Amplitude	$\operatorname{Coefficient}$	Level	Dependence
$A_{ m UL}^{\sin \phi}$	$s_{1,\mathrm{LP}}^{\mathcal{I}}$	2	$\Im m \mathcal{C}_{LP}^{\mathcal{I}}$
	$s_{1,\mathrm{LP}}^{\mathrm{DVCS}}$	3	$\Im m \mathcal{C}_{\mathrm{LP}}^{\mathrm{DVCS}}$
$A_{\mathrm{UL}}^{\sin(2\phi)}$	$s_{2,\mathrm{LP}}^\mathcal{I}$	3	$\Im m \mathcal{C}_{\mathrm{LP}}^{\mathcal{I}}$
	$s_{2,\mathrm{LP}}^{\mathrm{DVCS}}$	2	$\Im m \mathcal{C}^{\rm DVCS}_{\rm T,LP}$
$A_{ m UL}^{\sin(3\phi)}$	$s_{3,\mathrm{LP}}^\mathcal{I}$	2	$\Im m \mathcal{C}_{\mathrm{T,LP}}^{\mathcal{I}}$
$A_{ m LL}^{\cos(0\phi)}$	$c_{0,\mathrm{LP}}^{\mathcal{I}}$	2	$\Re e \mathcal{C}_{\mathrm{LP}}^{\mathcal{I}}$
	$c_{0,\mathrm{LP}}^{\mathrm{DVCS}}$	2	$\Re \mathrm{e} \mathcal{C}_{\mathrm{LP}}^{\mathrm{DVCS}}$
	$c_{0,\mathrm{LP}}^{\mathrm{BH}}$	-	-
$A_{ m LL}^{\cos \phi}$	$c_{1,\mathrm{LP}}^{\mathcal{I}}$	2	$\Re e \mathcal{C}_{\mathrm{LP}}^{\mathcal{I}}$
	$c_{1,\mathrm{LP}}^{\mathrm{DVCS}}$	3	$\Re \mathrm{e} \mathcal{C}_{\mathrm{LP}}^{\mathrm{DVCS}}$
	$c_{1,\mathrm{LP}}^{\mathrm{BH}}$	-	-
$A_{ m LL}^{\cos(2\phi)}$	$c_{2,\mathrm{LP}}^{\mathcal{I}}$	3	$\Re e \mathcal{C}_{\mathrm{LP}}^{\mathcal{I}}$

Unlike other HERMES analyses using both beam charges, the contributions from the interference and squared-DVCS terms cannot be disentangled.

Functions of gluon-helicity-flip CFFs suppressed by α_{s}/π

The leading-twist amplitudes $A_{\rm UL}^{\sin\phi}$ and $A_{\rm LL}^{\cos\phi}$ offer the best opportunity to access information on the real and imaginary parts of CFF $\widetilde{\mathcal{H}}$ via $\mathcal{C}_{\rm LP}^{\mathcal{I}}$ which is linear in CFFs:

$$\mathcal{C}_{\mathrm{LP}}^{\mathcal{I}} = \frac{x_{\mathrm{B}}}{2 - x_{\mathrm{B}}} (F_1 + F_2) \Big(\mathcal{H} + \frac{x_{\mathrm{B}}}{2} \mathcal{E} \Big) + F_1 \tilde{\mathcal{H}} - \frac{x_{\mathrm{B}}}{2 - x_{\mathrm{B}}} \Big(\frac{x_{\mathrm{B}}}{2} F_1 + \frac{t}{4M^2} F_2 \Big) \tilde{\mathcal{E}}$$

Several sources of systematic uncertainty affect the results shown:

- $\delta_{M_X^2}$ introduced by accounting for shifts in the mean of the M_X^2 distributions between data taking years
- $\delta_{\rm Bg}$ accounts for the effect of corrections made to the asymmetries to remove contributions from background processes
- δ_{4in1} correlated effects of detector smearing, misalignment and acceptance, and finite bin-width effects
- Scale uncertainties in the measurement of the beam and target polarisations of 3.4% and 4.2% respectively

Systematic Uncertainties: Background and M²_x Corrections

π^{0} Background Correction

• Semi-inclusive DIS background dominated by π^{0}

- Same data selection as for exclusive sample but with two photons required in the final state
- Corrected amplitudes determined as

University Nuclear Physics Group

$$A_{\text{corrected}} = \frac{1}{1 - f_{\text{sidis}} - f_{\text{excl}}} (A_{\text{measured}} - f_{\text{sidis}} A_{\text{sidis}} - f_{\text{excl}} A_{\text{excl}})$$

+ $\delta_{\rm Bg}$ is evaluated as half the magnitude of the correction in each bin

Missing-Mass Shift Correction

Shifts were discovered between data years.

New year-dependent regions were calculated

 $\delta_{M_{\chi}^2}$ = 1/4 of the effect the new year-dependent regions have on the extracted amplitudes

Correlated uncertainty from the effects of detector misalignment, smearing, acceptance and finite bin-widths in -t, x_B and Q^2 .

- Amplitudes 'generated' from 5 GPD parametrisations from the model in *Eur. Phys. J.* **C23** (2005) 455.
- Amplitudes 'reconstructed' from MC simulation using each model at the same average kinematics of each bin.
- Uncertainty from each model determined as

 $\delta_{4\text{-in-1}} = |A_{\text{generated}} - A_{\text{reconstructed}}|$

• Overall 4-in-1 uncertainty is determined as the RMS of all 5 models

Results of the Single-Spin Target Asymmetry

Results of the Double-Spin Asymmetry

- Two azimuthal asymmetries in the distribution of real photons from the $e\vec{p} \rightarrow ep_{\gamma}$ interaction were extracted arXiv:1004.0177
 - The single-spin asymmetry $\mathcal{A}_{\rm UL}$
 - The double-spin asymmetry $\, {\cal A}_{
 m LL} \,$
- These provide information of the imaginary and real parts of CFF $\widetilde{\mathcal{H}}$
- Non-zero $\sin\phi$ and and unexpectedly large $\sin(2\phi)$ amplitude were observed for the single-spin asymmetry
- Non-zero $\cos(0\phi)$ amplitudes observed for the double-spin
- It is foreseen these results will be used in future extractions of CFF $\widetilde{\mathcal{H}}$ leading to a better understanding of GPD \mathcal{H}

BACKUP SLIDES

- Results shown are compared with theoretical calculations from the GPV model implementation of Radyushkin's Double Distribution formalism from VGG (Vanderhaeghen, Guichon and Guidal) *Phys. Rev.* **D60** (1999) 094017
- Regge-inspired t-dependent ansatz used
- Predicts GPD information up to twist-3 level
- Width of theory bands arises from varying the skewness parameters between unity and infinity
- The 'D term' has not been included for these plots

