THE SPIN NUCLEON STRUCTURE INVESTIGATION AT HERMES: RECENT HIGHLIGHTS.

Contalbrigo Marco INFN Ferrara

Baryons2013 Conference June 25th, 2013 Glasgow

The Spin Degree of Freedom

Spin degrees of freedom can explain otherwise surprising phenomena and bring new insights into nuclear matter structure

Fundamental: do not neglect it !!

Open Issues: Test Field for QCD

Proton spin budget: role of partonic orbital motion?

 $\Delta \Sigma = 0.33 \pm 0.03$ from DIS $\Delta G \sim 0.1 \text{ at } 0.02 < x < 0.3$ from DIS $\frac{1}{2} = \frac{1}{2} \sum_{f} (q_{f}^{+} - q_{f}^{-}) + L_{q} + \Delta G + L_{g}$

Open Issues: Test Field for QCD

Proton spin budget: role of partonic orbital motion?

Single spin asymmetries: BIG (?!) although suppressed as m_q/Q² in pQCD

The Real Experience: 3D !

Quantum Phase-space Distributions of Quarks

 $W_{p}^{q}(x,k_{T},r)$ "Mother" Wigner distributions

Probability to find a quark q in a nucleon P with a certain polarization in a position r & momentum k

Quantum Phase-space Distributions of Quarks

The HERMES Experiment

Electron and Hadron ID Valence and sea 27.6 GeV e+/e- HERA beam ž **DESY-Hamburg:** (GeV2 6 0.25 0 0.2 Aerogel n=1.03 EIC SSEdMOD 1032 0.15 HERMES Resonance region 1034 0.1 JLab C_4F_{10} n=1.0014 0.05 1031 1035 10 -2 10 -1 P [GeV] XR

SIDIS FOR TRANSVERSE MOMENTUM DEPENDENCE

The SIDIS Case

quark polarisation N/q U Т **SIDIS cross section** (transversely pol. target): h_1^{\perp} \bullet - \circ f_1 • U Number **Boer-Mulders** Density TMD factorization for P_h<<Q h_{1L}^{\perp} $g_1 \longrightarrow - \infty$ Helicity Worm-gear $f \otimes D = \int_{a} e_{q}^{2} d^{2} p_{T} d^{2} k_{T} \dots w(k_{T}, p_{T}) f^{q}(x, k_{T}^{2}) D^{q}(z, p_{T}^{2})$ $f_{IT}^{\perp} \stackrel{\circ}{\bullet} - \underbrace{\circ}_{IT} \stackrel{\circ}{\bullet} - \underbrace{\circ}_{IT} \stackrel{h_{I}}{\bullet} - \underbrace{\circ}_{Transversity}$ Involved phenomenology due to the h_{IT}^{\perp} $\widehat{\rho}$ - $\widehat{\sigma}$ **Sivers** Worm-gear convolution over transverse momentum $h_1 \otimes H_1^\perp$ Pretzelosity $\frac{d^{\circ}\sigma}{dx \, dy \, dz \, d\phi_{S} d\phi \, dP_{h\perp}^{2}} \overset{Leading}{\propto} S_{T} \left\{ \sin(\phi - \phi_{S}) F_{UT,T}^{\sin(\phi - \phi_{S})} \right\}$ e'(E') e(E) $h_{1T}^{\perp} \otimes H_1^{\perp}$ $f_{1T}^{\perp} \otimes D_1$ FF σ $+S_T \left\{ \varepsilon \sin(\phi + \phi_S) F_{UT}^{\sin(\phi + \phi_S)} + \varepsilon \sin(3\phi - \phi_S) F_{UT}^{\sin(3\phi - \phi_S)} \right\}$ X P-DF $g_{1T}^{\perp} \otimes D_1$ $+S_T \lambda_e \left\{ \sqrt{1-\varepsilon^2} \cos(\phi - \phi_S) F_{LT}^{\cos(\phi - \phi_S)} \right\} + \dots$ $\sigma^{eq \rightarrow eq} \times FF$

nucleon polarisation

N/q	U	L	Т
U	∫ ₁ ⊙ Number Density		h_l^{\perp} \bullet - \bullet Boer-Mulders
L		g₁ ↔- ↔ Helicity	h [⊥] _{1L}
т	f_{IT}^{\perp} • • • • • • • • • • • • • • • • • • •	g⊥ _{1T}	$\begin{array}{c} h_1 & \bullet & \bullet \\ \hline \textbf{Transversity} \\ h_{1T}^{\perp} & \bullet & \bullet \\ \hline \textbf{Pretzelosity} \end{array}$

quark polarisation

Number density and helicity:

Focusing here in transverse momentum dependence

Transversity:

Survives transverse momentum integration (missing leading-twist collinear piece)

Differs from helicity due to relativistic effects and no mix with gluons in the spin-1/2 nucleon

quark polarisation

Number density and helicity:

Focusing here in transverse momentum dependence

Transversity:

Survives transverse momentum integration (missing leading-twist collinear piece)

Differs from helicity due to relativistic effects and no mix with gluons in the spin-1/2 nucleon

Off-diagonal elements:

Interference between wave functions with different angular momenta: contains information about parton orbital angular motion and spin-orbit effects

Testing QCD at the amplitude level

T-odd elements:

- sign change between DY and SIDIS
 - universality of TMDs

Strict prediction from TMDs + QCD !

quark polarisation

Number density and helicity:

Focusing here in transverse momentum dependence

Transversity:

Survives transverse momentum integration (missing leading-twist collinear piece)

Differs from helicity due to relativistic effects and no mix with gluons in the spin-1/2 nucleon

quark polarisation

Off-diagonal elements:

Interference between wave functions with different angular momenta: contains information about parton orbital angular motion and spin-orbit effects

Testing QCD at the amplitude level

T-odd elements:

- sign change between DY and SIDIS
 - universality of TMDs

Strict prediction from TMDs + QCD !

First TMD Evidences

 $\sigma_{UT}^{\sin(\phi+\phi_S)}$ $\propto h_1 \otimes H_1^{\perp}$

SIDIS: ep→e'hX

 $\sigma_{UT}^{\sin(\phi-\phi_S)} \propto f_{1T}^{\perp} \otimes D_1$

2005: First evidence from HERMES measuring SIDIS on proton

Parton Number Density

Contalbrigo M.

Baryons2013, 25th June 2013, Glasgow

NUMBER DENSITY

Parton Number Density

Parton Number Density

Contalbrigo M.

Baryons2013, 25th June 2013, Glasgow

The Hadron Multiplicities

LO interpretation:

$$M_N^h = \frac{1}{N_N^{DIS}(Q^2)} \frac{dN_N^h(z,Q^2)}{dz} = \frac{\sum_q e_q^2 \int dx \ f_{1q}(x,Q^2) D_{1q}^h(z,Q^2)}{\sum_q e_q^2 \int dx \ f_{1q}(x,Q^2)}$$

SIDIS data constrain fragmentation at low c.m. energy and bring enhanced flavor sensitivity

Proton-deuteron asymmetry:

$$A_{d-p}^{h} = \frac{M_d^{h} - M_p^{h}}{M_d^{h} + M_p^{h}}$$

Reflects different flavor content Correlated systematics cancels

 $f_1 \cdot D_1$

The P_h -unintegrated Multiplicities $f_1 \otimes D_1$

Disentanglement of z and $P_{h \perp}$: access to the transverse intrinsic quark k_T and fragmentation p_T .

i.e. from gaussian anstaz

$$\langle P_{h\perp}^2 \rangle = z^2 \langle k_T^2 \rangle + \langle p_T^2 \rangle$$

TMD Evolution

 $f_1 \otimes D_1$

Parton Polarization

TRANSVERSITY

(THE COLLINEAR MISSING PIECE)

The Collins Amplitude

 $h_1 \otimes H_1^\perp$

The Collins Amplitude

Baryons2013, 25th June 2013, Glasgow

 $h_1 \otimes H_1^\perp$

Spin-Orbit Effects

(THE TMD CHALLENGE)

The Sivers Amplitude @ HERMES

Pion electro-production on proton:

- ↔ Clear singal for π^+ and for pion difference
- Isospin symmetry fulfilled

Peculiar kaon signals:

The Sivers Signals

 $f_{1T}^{\perp} \otimes D_1$

The Sivers Signals

Contalbrigo M.

 $f_{1T}^{\perp} \otimes D_1$

Inclusive Hadron SSA @ HERMES

Inclusive Hadron SSA @ HERMES

Contalbrigo M.

CAHN & BOER-MULDERS

Naïve-T-odd Chirally-odd Spin effect in unpolarized reactions

(THE NEGLECTED EFFECTS)

The Azimuthal Modulation

 $h_1^{\perp} \otimes H_1^{\perp}$

The Azimuthal Modulation

Contalbrigo M.

Baryons2013, 25th June 2013, Glasgow

 $h_1^{\perp} \otimes H_1^{\perp}$

Unpolarized Cross-section

 $\cos\phi$ large and negative !

Increasing with z and P_h

Large difference in hadron charge !

$$\sigma_{UU}^{\cos(\phi)} \propto \left[f_1 \otimes D_1 + h_1^{\perp} \otimes H_1^{\perp} + \dots \right] / Q$$

Larger in magnitude for π +

Unpolarized Cross-section

cos2 non-zero !

$$\sigma_{UU}^{\cos(2\phi)} \propto h_1^{\perp} \otimes H_1^{\perp} + [f_1 \otimes D_1 + \ldots]/Q^2$$

Difference in hadron charge !

Positive for π -

Negative for π +

Unpolarized Cross-section

Kaon Signals

$$\sigma_{UU}^{\cos(2\phi)} \propto h_1^{\perp} \otimes H_1^{\perp} + [f_1 \otimes D_1 + \dots]/Q^2$$

Unpolarized cross-section: any precision measurement should account for these effects

Exclusivity

Contalbrigo M.

and the second se

Baryons2013, 25th June 2013, Glasgow

EXCLUSIVE-DIS FOR TRANSVERSE POSITION DEPENDENCE

Generalized parton distributions

Encompass parton distributions and form factors

longitudinal momentum and transverse spatial position correlated information

Access OAM $L_q = J_q - \frac{1}{2}\Delta\Sigma$ via Ji sum rule

 $J_q = \lim_{t \to 0} \int_{A} dx \, x \Big[H_q(x,\xi,t) + E_q(x,\xi,t) \Big]$

- Sensitivity of different final states to different GPDs
- For spin-1/2 target 4 chiral-even
 leading-twist quark GPDs: H,E,H,E
- H, \widetilde{H} conserve nucleon helicity, E, \widetilde{E} involve nucleon helicity flip
- DVCS $(\gamma) \rightarrow H, E, \widetilde{H}, \widetilde{E}$
- Vector mesons $(\rho, \omega, \phi) \rightarrow H, E$
- Pseudoscalar mesons $(\pi, \eta) \rightarrow \widetilde{H}, \widetilde{E}$

The DVCS Landscape

The DVCS Landscape

The HERMES DVCS Legacy

The most complete DVCS asymmetry measurement set:

A. Airapetian et al, JHEP 11 (2009)

A. Airapetian et al, JHEP10 (2012) 042 A. Airapetian et al, JHEP 07 (2012) A. Airapetian et al, Nucl. Phys. B 829 (2010) 1-27

A. Airapetian et al, JHEP 06 (2008)

A. Airapetian et al, Phys. Lett. B 704 (2011)

A. Airapetian et al, JHEP 06 (2010) A. Airapetian et al, Nucl. Phys. B842 (2011)

DVCS on Proton @ HERMES

A. Airapetian et al, JHEP 07 (2012) 032

DVCS on Proton @ HERMES

A. Airapetian et al, JHEP 07 (2012) 032

Baryons2013, 25th June 2013, Glasgow

Pure DVCS @ HERMES

- No requirement for Recoil
- Charged recoil track in acceptance
- Kinematic fit probability > 1 %

Pure DVCS @ HERMES

Generalized parton distributions

Encompass parton distributions and form factors

longitudinal momentum and transverse spatial position correlated information

Access OAM $L_q = J_q - \frac{1}{2}\Delta\Sigma$ via Ji sum rule

 $J_q = \lim_{t \to 0} \int_{A} dx \, x \Big[H_q(x,\xi,t) + E_q(x,\xi,t) \Big]$

- Sensitivity of different final states to different GPDs
- For spin-1/2 target 4 chiral-even
 leading-twist quark GPDs: H,E,H,E
- H, \widetilde{H} conserve nucleon helicity, E, \widetilde{E} involve nucleon helicity flip
- DVCS $(\gamma) \rightarrow H, E, \widetilde{H}, \widetilde{E}$
- Vector mesons $(\rho, \omega, \phi) \rightarrow H, E$

Pseudoscalar mesons $(\pi, \eta) \rightarrow \widetilde{H}, \widetilde{E}$

Hard Exclusive ρ^0 Meson Production

Baryons2013, 25th June 2013, Glasgow

Hard Exclusive Meson Production

Baryons2013, 25th June 2013, Glasgow

Summary

- ✤ HERMES has been a precursor experiment for TMDs and GPDs
- Data-taking closed in 2007 but analysis still ongoing
- Many innovative results in both fields and recently
 - Hadron multiplicities on a pure H target (\rightarrow I. Lehman)
 - Full-differential analysis of SIDIS unpolarized asymmetries (\rightarrow L. Pappalardo)
 - DVCS with recoil detection $(\rightarrow I. Brodsky)$
- Several preliminary results close to be published
 - Beam spin asymmetry in the semi-inclusive kaon sector (\rightarrow V. Zagrebelnyy)
 - Inclusive hadron and Semi-inclusive di-hadron analysis on a transverse target (\rightarrow L. Pappalardo)
 - Complete decomposition of the transverse target asymmetries (\rightarrow L. Pappalardo)
 - Associated DVCS (\rightarrow M. Murray)
 - Exclusive vector-meson production (\rightarrow A. Movsisyan)

