Results on the spin structure of the nucleon from HERMES

Charlotte Van Hulse, University of the Basque Country

Universidad del País Vasco

Euskal Herriko Unibertsitatea

International Workshop on Quark-gluon Structure of the Nucleon November 8, 2012 – Tokyo Institute of Techonology

Outline

- studying the proton: deep-inelastic scattering
- structure functions and parton model
- HERMES experiment
- quark-helicity distribution from deep-inelastic scattering
- semi-inclusive deep-inelastic scattering
 - quark-helicity, gluon helicity distribution and transversity
 - transverse-momentum distribution functions: Sivers and Boer-Mulders
- orbital angular momentum: GPDs and DVCS

Deep-inelastic scattering cross section

$$\frac{d^2\sigma}{dx_B dQ^2} \propto L_{\mu\nu} W^{\mu\nu}$$

$$Q^{2} \equiv -q^{2} \stackrel{lab}{=} 4EE' \sin^{2}(\frac{\theta}{2})$$
$$Q^{2} \qquad 1$$

$$x_B \equiv \frac{4}{2Pq} = \frac{1}{1 + \frac{W^2 - M^2}{Q^2}}$$

Deep-inelastic scattering cross section

Deep-inelastic scattering cross section

$$\frac{d^2\sigma}{dx_B dQ^2} \propto L_{\mu\nu} W^{\mu\nu}$$

$$Q^{2} \equiv -q^{2} \stackrel{lab}{=} 4EE' \sin^{2}(\frac{\theta}{2})$$
$$x_{B} \equiv \frac{Q^{2}}{2Pq} = \frac{1}{1 + \frac{W^{2} - M^{2}}{Q^{2}}}$$

elastic scattering : $W = M \rightarrow x_B = 1$ inelastic scattering : $W > M \rightarrow 0 < x_B < 1$

 $L_{\mu\nu}$: calculable in QED

$$W_{\mu\nu} = \left(-g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{Q^2}\right)F_1 + \left(P_{\mu} + \frac{Pq}{Q^2}q_{\mu}\right)\left(P_{\nu} + \frac{Pq}{Q^2}q_{\nu}\right)\frac{F_2}{Pq} + i\epsilon_{\mu\nu\alpha\beta}q^{\alpha}\frac{M}{Pq}\left[S^{\beta}g_1 + \left(S^{\beta} - \frac{Sq}{Pq}P^{\beta}\right)g_2\right]$$

unpolarized structure functions $F_1 \, \text{and} \, F_2$

polarized structure functions g_1 and g_2 only contribute if both target and beam polarized

The parton model

proton in infinite-momentum frame neglect masses and transverse momenta of quarks

$$p = xP$$

$$^{2} = (p+q)^{2}$$

$$= p^{2} + 2pq - Q^{2}$$

$$0 = 0 + 2xPq - Q^{2}$$

$$x = \frac{Q^{2}}{2Pq} = x_{B}$$

p'

The parton model

proton spin(anti-)quark spin

$$F_1(x) = \frac{1}{2} \sum_q e_q^2 q(x) = \frac{1}{2} \sum_q e_q^2 \left(\stackrel{\Rightarrow}{\stackrel{\rightarrow}{q}} (x) + \stackrel{\Rightarrow}{\stackrel{\rightarrow}{q}} (x) \right)$$

 $F_2(x) = 2xF_1$

spin-independent parton distribution function (PDF)

$$q(x) = \bigcirc + \bigcirc +$$

$$g_1(x) = \frac{1}{2} \sum_q e_q^2 \Delta q(x) = \frac{1}{2} \sum_q e_q^2 \left(\stackrel{\Rightarrow}{\overrightarrow{q}} (x) - \stackrel{\Rightarrow}{\overleftarrow{q}} (x) \right)$$

 $g_2(x) = 0$

helicity parton distribution function (PDF)

$$\Delta q(x) = \bigcirc - \bigcirc - \bigcirc - \bigcirc$$

Spin-independent structure functions

scaling violation:

structure functions and PDFs depend on x_B and Q^2

Spin-independent structure functions

scaling violation:

structure functions and PDFs depend on x^B and Q^2

Spin-independent structure functions

scaling violation:

structure functions and PDFs depend on x^B and Q^2

measurement of

$$g_1(x) = \frac{1}{2} \sum_q e_q^2 \Delta q(x) = \frac{1}{2} \sum_q e_q^2 \left(\overset{\Rightarrow}{\overrightarrow{q}} (x) - \overset{\Rightarrow}{\overleftarrow{q}} (x) \right)$$
$$\Delta \Sigma = \int_0^1 dx_B \,\Delta u(x) + \Delta d(x) + \Delta s(x) + \Delta \overline{u}(x) + \Delta \overline{d}(x) + \Delta \overline{s}(x)$$

measurement of

$$g_1(x) = \frac{1}{2} \sum_q e_q^2 \Delta q(x) = \frac{1}{2} \sum_q e_q^2 \left(\stackrel{\Rightarrow}{\overrightarrow{q}} (x) - \stackrel{\Rightarrow}{\overleftarrow{q}} (x) \right)$$
$$\Delta \Sigma = \int_0^1 dx_B \,\Delta u(x) + \Delta d(x) + \Delta s(x) + \Delta \overline{u}(x) + \Delta \overline{d}(x) + \Delta \overline{s}(x)$$

first measurement: EMC, 1988

 $\Delta \Sigma = 0.14 \pm 0.09 \pm 0.21$

J. Ashman et al., Phys. Lett. B 206 (1988) 364; Nucl. Phys. B 328 (1989) 1

measurement of

$$g_1(x) = \frac{1}{2} \sum_{q} e_q^2 \Delta q(x) = \frac{1}{2} \sum_{q} e_q^2 \left(\overset{\Rightarrow}{\overrightarrow{q}} (x) - \overset{\Rightarrow}{\overleftarrow{q}} (x) \right)$$
$$\Delta \Sigma = \int_0^1 dx_B \,\Delta u(x) + \Delta d(x) + \Delta s(x) + \Delta \overline{u}(x) + \Delta \overline{d}(x) + \Delta \overline{s}(x)$$

first measurement: EMC, 1988

measurement of

$$g_1(x) = \frac{1}{2} \sum_{q} e_q^2 \Delta q(x) = \frac{1}{2} \sum_{q} e_q^2 \left(\stackrel{\Rightarrow}{\overrightarrow{q}} (x) - \stackrel{\Rightarrow}{\overleftarrow{q}} (x) \right)$$
$$\Delta \Sigma = \int_0^1 dx_B \,\Delta u(x) + \Delta d(x) + \Delta s(x) + \Delta \overline{u}(x) + \Delta \overline{d}(x) + \Delta \overline{s}(x)$$

first measurement: EMC, 1988

J. Ashman et al., Phys. Lett. B 206 (1988) 364; Nucl. Phys. B 328 (1989) 1

measurement of

$$g_1(x) = \frac{1}{2} \sum_q e_q^2 \Delta q(x) = \frac{1}{2} \sum_q e_q^2 \left(\vec{\bar{q}} (x) - \vec{\bar{q}} (x) \right)$$
$$\Delta \Sigma = \int_0^1 dx_B \,\Delta u(x) + \Delta d(x) + \Delta s(x) + \Delta \bar{u}(x) + \Delta \bar{d}(x) + \Delta \bar{s}(x)$$

first measurement: EMC, 1988

new experiments saw the light

J. Ashman et al., Phys. Lett. B 206 (1988) 364; Nucl. Phys. B 328 (1989) 1

g_1 from HERMES

x ¹

-1

10

Quark spin contribution from **HERMES** data

ún, $\Rightarrow \sigma$

(exp.)

(theor.)

$$A_{1} \simeq \frac{\overleftarrow{\sigma} - \overrightarrow{\sigma}}{\overleftarrow{\sigma} + \overleftarrow{\sigma}}$$

$$\simeq \frac{\sum_{q} e_{q}^{2} \Delta q(x_{B}, Q^{2})}{\sum_{q} e_{q}^{2} q(x_{B}, Q^{2})} \longrightarrow \Delta \Sigma = 0.330 \pm 0.025 \pm 0.011 \pm 0.028$$
(evol.)

nhoton snin

$$\simeq \frac{g_1(x_B, Q^2)}{F_1(x_B, Q^2)}$$

(evol

Quark spin contribution from **HERMES** data

photon spin proton spin

 $\Rightarrow \sigma$

Quark spin contribution from **HERMES** data

ín,

 \rightarrow

 \simeq

 \sim

nhoton spin

$$A_{1} \simeq \frac{\overleftarrow{\sigma} - \overrightarrow{\sigma}}{\overleftarrow{\sigma} + \overleftarrow{\sigma}}$$

$$\simeq \frac{\sum_{q} e_{q}^{2} \Delta q(x_{B}, Q^{2})}{\sum_{q} e_{q}^{2} q(x_{B}, Q^{2})}$$

$$\simeq \frac{g_{1}(x_{B}, Q^{2})}{F_{1}(x_{B}, Q^{2})}$$

$$\sum_{q} \frac{g_{1}(x_{B}, Q^{2})}{F_{1}(x_{B}, Q^{2})}$$

 $\Rightarrow \sigma$

Tagging the quark flavor

inclusive deep-inelastic scattering

$$Q^{2} \equiv -q^{2}$$

$$\nu \equiv \frac{Pq}{M} \stackrel{lab}{=} E - E'$$

$$y \equiv \frac{Pq}{Pk} \stackrel{lab}{=} \frac{\nu}{E}$$

$$W^{2} \equiv M^{2} + 2M\nu - Q^{2}$$

$$x_{B} \equiv \frac{Q^{2}}{2Pq}$$

Tagging the quark flavor

semi-inclusive deep-inelastic scattering

$$Q^{2} \equiv -q^{2}$$

$$\nu \equiv \frac{Pq}{M} \stackrel{lab}{=} E - E'$$

$$y \equiv \frac{Pq}{Pk} \stackrel{lab}{=} \frac{\nu}{E}$$

$$W^{2} \equiv M^{2} + 2M\nu - Q^{2}$$

$$x_{B} \equiv \frac{Q^{2}}{2Pq}$$

$$z \equiv \frac{PP_{h}}{Pq} \stackrel{lab}{=} \frac{E_{h}}{\nu}$$

$$P_{h\perp} = \frac{|\vec{q} \times \vec{P_{h}}|}{|\vec{q}|}$$

Tagging the quark flavor

semi-inclusive deep-inelastic scattering

$$\sigma^{ep \to eh} = \sum DF^{p \to q}(x_B, p_T^2, Q^2) \otimes \sigma^{eq \to eq} \otimes FF^{q \to h}(z, k_T^2, Q^2)$$

distribution function (DF): distribution of quarks in nucleon p_T : transverse momentum of struck quark

 \boldsymbol{q}

fragmentation function (FF): fragmentation of struck quark into final-state hadron k_T : transverse momentum of fragmenting quark35

Fragmentation

Π

of quark electric charge

Gluon helicity distribution

Gluon helicity distribution

Transversity

 $h_{1T}^q(x, p_T^2) =$

Transversity

$$h_{1T}^q(x, p_T^2) =$$

access through single-spin asymmetry on transversely polarized target

 $H_1^{\perp,q}(z, k_T^2)$: Collins fragmentation function fragmentation of a tranversely polarized quark into an unpolarized hadron

Collins fragmentation functions Artru model

polarisation component in lepton scattering plane reversed by photoabsorption:

string break, quark-antiquark pair with vacuum numbers:

orbital angular momentum creates transverse momentum:

X. Artru et al. , Z. Phys. C73 (1997) 527

courtesy from U. Elschenbroich 52

Collins amplitudes for pions

- π^{\pm} increasing with z
- positive for $\pi^{\scriptscriptstyle +}$
- large & negative for π^-

$$H_1^{\perp,fav} \approx -H_1^{\perp,unfav}$$

• isospin symmetry fulfilled

Collins amplitudes for pions

Collins amplitudes for kaons

- K⁺: increasing with z • positive for K⁺ & larger than for π^+ - role of s-quark - u-dominance ? $H_1^{\perp,u\to K^+} > H_1^{\perp,u\to\pi^+}$
- K⁻ ≈ 0, ≠ from π⁻
 K⁻ is pure sea object:
- sea-quark transversity expected to be small

Distribution functions leading twist

the eight leading-twist transverse-momenum-dependent parton distribution functions describing the DIS cross section for hadron production

only distribution functions that survive integration over transverse momentum

chiral odd: involve helicity flip of quark \rightarrow appear in pairs in cross section

chiral odd: involve helicity flip of quark → appear in pairs in cross section T-odd: appear in pairs in spin-independent x-section & double-spin asymmetries single in single-spin asymmetries

chiral odd: involve helicity flip of quark → appear in pairs in cross section T-odd: appear in pairs in spin-independent x-section & double-spin asymmetries single in single-spin asymmetries

Sivers distribution function $f_{1T}^{\perp q}(x, p_T^2) = \bigvee_{r}^{p_T} - \bigvee_{r}^{p_T}$

access through single-spin asymmetry on transversely polarized target

$$A_{UT} = \frac{1}{\langle |S_T| \rangle} \frac{N^{\uparrow}(\phi, \phi_S) - N^{\downarrow}(\phi, \phi_S)}{N^{\uparrow}(\phi, \phi_S) + N^{\downarrow}(\phi, \phi_S)}$$

$$\sim \sin(\phi - \phi_S) \sum_{q} e_q \mathcal{I}[\frac{\vec{k}_T \cdot \hat{P}_{h\perp}}{M_h} f_{1T}^{\perp, q}(x, k_T^2) D_1^q(z, p_T^2)]$$

- requires non-zero quark orbital angular momentum
- FSI Ieft-right (azimuthal) asymmetry in direction of outgoing hadron

Sivers amplitude for pions

Sivers amplitude for pions

Sivers amplitude for kaons

Spin-independent semi-inclusive non-collinear DIS cross section

$$\frac{d\sigma}{dxdydzdP_{h\perp}^2d\phi_h} = \frac{\alpha^2}{xyQ^2}(1+\frac{\gamma^2}{2x})\{A(y)F_{UU,T} + B(y)F_{UU,L} + C(y)\cos\phi_h F_{UU}^{\cos\phi_h} + B(y)\cos 2\phi_h F_{UU}^{\cos 2\phi_h}\}$$

Spin-independent semi-inclusive non-collinear DIS cross section

leading twist

sub-leading twist

Spin budget of proton

 $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + L^Q + J^g$

Spin budget of proton

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + L^Q + J^g$$

$$J^Q$$

$$J^q = \lim_{t \to 0} \frac{1}{2} \int_{-1}^{1} dx \, x \left[\frac{H^q + E^q}{1 + E^q} \right]$$
X. Ji, Phys. Rev. Lett. 78 (1997) 610

$$L^Q = \sum_q L^q = \sum_q (J^q - \Delta q)$$

- x=average longitudinal momentum fraction
- 2ξ=average longitudinal momentum transfer
- t= squared momentum transfer to nucleon

Four quark helicity-conserving GPDs at twist-2

$\mathrm{H}^q(x,\xi,t)$	$E^q(x,\xi,t)$	spin independent
$\widetilde{H}^q(x,\xi,t)$	$\widetilde{E}^q(x,\xi,t)$	spin dependent
proton helicity non-flip	proton helicity flip	

helicity-(in)dependent probability distribution of quarks as a function of their longitudinal fractional momentum and transverse position

M. Burkardt, Phys. Rev. D 62 (2000) 071503

pictures taken from A. Bacchetta and M. Contalbrigo, Il Nuovo Saggiatore 28 (2012) 1-2

distortion of quark probability distribution compared to unpolarized nucleon

M. Burkardt, Phys. Rev. D 66 (2002) 114005

helicity-(in)dependent probability distribution of quarks as a function of their longitudinal fractional momentum and transverse position

M. Burkardt, Phys. Rev. D 62 (2000) 071503

Deeply virtual Compton scattering

 $\xi \approx \frac{x_B}{2 - x_B}$

Exclusive lepto-production of real photons

exclusive deep-inelastic scattering

Exclusive lepto-production of real photons

exclusive deep-inelastic scattering

 $d\sigma \propto |\tau_{BH}|^2 + |\tau_{DVCS}|^2 + \tau_{BH} \tau^*_{DVCS} + \tau_{DVCS} \tau^*_{BH}$

- $|\tau_{BH}|$: calculable (form factors)
- $|\tau_{BH}| \gg |\tau_{DVCS}|$ at HERMES
- interference term: through azimuthal asymmetries

DVCS at **HERMES**

Charged-separated beam-helicity asymmetry

- data collected from 1996-2007 (74% of data from 2006-2007)
- additional 3.2% scale uncertainty from beam polarization

DVCS event selection

Beam-helicity asymmetry

• additional 1.96 % scale uncertainty from beam polarization

Thank you for your attention!

Back up

$$\left\langle \cos(n\phi_h) \right\rangle \stackrel{th.}{=} \frac{\int d\phi_h \cos(n\phi_h) \sigma_{UU}(\omega, \phi_h)}{\int d\phi_h \sigma_{UU}(\omega, \phi_h)} \qquad \qquad \omega = (x, y, z, P_{h\perp}^2)$$

$$\left\langle \cos(n\phi_h) \right\rangle \stackrel{exp.}{=} \frac{\int d\phi_h \cos(n\phi_h) \epsilon_{acc}(\omega, \phi_h) \epsilon_{rad}(\omega, \phi_h) \sigma_{UU}(\omega, \phi_h)}{\int d\phi_h \epsilon_{acc}(\omega, \phi_h) \epsilon_{rad}(\omega, \phi_h) \sigma_{UU}(\omega, \phi_h)}$$

extraction is challenging!
azimuthal modulations also possible due to
detector geometrical acceptance

higher-order QED effects

$$\left\langle \cos(n\phi_h) \right\rangle \stackrel{th.}{=} \frac{\int d\phi_h \cos(n\phi_h) \sigma_{UU}(\omega, \phi_h)}{\int d\phi_h \sigma_{UU}(\omega, \phi_h)} \qquad \qquad \omega = (x, y, z, P_{h\perp}^2)$$

$$\left\langle \cos(n\phi_h) \right\rangle \stackrel{exp.}{=} \frac{\int d\phi_h \cos(n\phi_h) \epsilon_{acc}(\omega, \phi_h) \epsilon_{rad}(\omega, \phi_h) \sigma_{UU}(\omega, \phi_h)}{\int d\phi_h \epsilon_{acc}(\omega, \phi_h) \epsilon_{rad}(\omega, \phi_h) \sigma_{UU}(\omega, \phi_h)}$$

extraction is challenging! azimuthal modulations also possible due to

- detector geometrical acceptance
- higher-order QED effects

$$\left\langle \cos(n\phi_h) \right\rangle \stackrel{th.}{=} \frac{\int d\phi_h \cos(n\phi_h) \sigma_{UU}(\omega, \phi_h)}{\int d\phi_h \sigma_{UU}(\omega, \phi_h)}$$

$$\omega = (x, y, z, P_{h\perp}^2)$$

$$\left\langle \cos(n\phi_h) \right\rangle \stackrel{exp.}{=} \frac{\int d\phi_h \cos(n\phi_h) \epsilon_{acc}(\omega, \phi_h) \epsilon_{rad}(\omega, \phi_h) \sigma_{UU}(\omega, \phi_h)}{\int d\phi_h \epsilon_{acc}(\omega, \phi_h) \epsilon_{rad}(\omega, \phi_h) \sigma_{UU}(\omega, \phi_h)}$$

extraction is challenging!

azimuthal modulations also possible due to

- detector geometrical acceptance
- higher-order QED effects

fully differential analysis needed unfolding procedure with 400 x 12 bins

BINNING									
400 kinematic bins x 12 ϕ -bins									
Variable	Bin limits						#		
х	0.023	0.042	0.078	0.145	0.27	1	5		
у	0.3	0.45	0.6	0.7	0.85		4		
Z	0.2	0.3	0.45	0.6	0.75	1	5		
P _{hT}	0.05	0.2	0.35	0.5	0.75		4		

4

P_{hT}

0.05

0.2

0.35

0.5

0.75

[•] K⁻≃0