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The HERMES experiment
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data taking 1995-2007

Beam 
longitudinally pol. e+ & e- 
E=27.6 GeV

Gaseous internal target 
transversely pol. H 
longitudinally pol. H, D, He 
unpol. H, D, He, Ne, Kr, Xe 

• lepton-hadron PID: 
 - high efficiency (>98%)  
 - low contamination (<1%) 
• hadron PID: RICH 2-15 GeV



Measurement of quark spin contribution
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• longitudinally polarised proton, deuteron, … 
• longitudinally polarised e±, μ± beam
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Measurement of quark spin contribution

parton fractional  
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FIG. 13: HERMES results on xgp
1 and xgd

1 vs x, shown on separate panels, compared to data from SMC [23, 25, 86], E143 [26],
E155 [27, 28], and COMPASS [30]. The error bars represent the sum in quadrature of statistical and systematic uncertainties.
The HERMES data points shown are statistically correlated (cf. Fig. 8) by unfolding QED radiative and detector smearing
effects; the statistical uncertainties shown are obtained from only the diagonal elements of the covariance matrix. The E143
and E155 data points are correlated due to the method for correcting for QED radiation. For the HERMES data the closed
(open) symbols represent values derived by selecting events with Q2 > 1 GeV2 (Q2 < 1 GeV2 ).
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FIG. 14: The inclusive and semi–inclusive Born level asymmetries on the deuteron. One data point at x = 0.45 for the K−

asymmetry including its large error bar is outside the displayed range; all data points are listed in Tab. XIII. See Fig. 13 for
details.

on the deuteron were measured for the first time. The
pion asymmetries are determined with good precision,
whereas the kaon asymmetries have larger statistical un-
certainties. Except for the K− asymmetry, all asymme-
tries are seen to be mostly positive, which is attributed
to the dominance of scattering off the u–quark. The frag-
mentation into negative kaons (ūs–mesons) has in com-
parison to the other hadrons an increased sensitivity to
scattering off ū and s–quarks, which makes the K− asym-
metry a useful tool to determine the polarization of these
flavors.

F. z–Dependence of the Asymmetries

Because the ratio of favored to unfavored fragmenta-
tion functions is known to vary substantially with z, a
z–dependence of the asymmetries could be induced by
the variation of the relative contributions of the various
quark flavors to fragmentation. The observation of a z–
dependence of the asymmetries could also be caused by
hadrons in the semi–inclusive data sample that originate
from target fragmentation as opposed to current frag-
mentation, which is associated with the struck quark.
Furthermore, hadrons from non–partonic processes such
as diffractive interactions could play an important role in
the semi–inclusive DIS data sample [51]. For example, at
high fractional energies z, it is possible that hadrons from
exclusive processes are misinterpreted as SIDIS hadrons.
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FIG. 15: The semi–inclusive Born asymmetries for positive
and negative pion production on the proton as a function of
z. The error bars indicate the statistical uncertainties and the
error band represents the systematic uncertainties. The solid
line is the z dependence from the Monte Carlo simulation of
the asymmetries.

To explore these possibilities, and to test the Jet-
set fragmentation model used here (see section VI A)
in the Monte Carlo simulation of the scattering process,
the semi–inclusive asymmetries were extracted in bins
of z. They were calculated with the same kinematical
limits described above, except for the requirement on
xF , which is highly correlated with the limit on z and
was therefore discarded. Events were accepted over the

A 1
,d

Phys. Rev. D 71 (2005) 012003 



Disentangling quark flavours
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Data from  
• ep       eX, ehX 
• pp       hX 
• e+e-     hX
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TABLE IV: Truncated first moments, ∆f1,[0.001→1]
i , and full ones, ∆f1

i , of our polarized PDFs at various Q2.

x-range in Eq. (35) Q2 [GeV2] ∆u + ∆ū ∆d + ∆d̄ ∆ū ∆d̄ ∆s̄ ∆g ∆Σ
0.001-1.0 1 0.809 -0.417 0.034 -0.089 -0.006 -0.118 0.381

4 0.798 -0.417 0.030 -0.090 -0.006 -0.035 0.369
10 0.793 -0.416 0.028 -0.089 -0.006 0.013 0.366
100 0.785 -0.412 0.026 -0.088 -0.005 0.117 0.363

0.0-1.0 1 0.817 -0.453 0.037 -0.112 -0.055 -0.118 0.255
4 0.814 -0.456 0.036 -0.114 -0.056 -0.096 0.245
10 0.813 -0.458 0.036 -0.115 -0.057 -0.084 0.242
100 0.812 -0.459 0.036 -0.116 -0.058 -0.058 0.238
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FIG. 3: Our polarized PDFs of the proton at Q2 = 10 GeV2

in the MS scheme, along with their ∆χ2 = 1 uncertainty
bands computed with Lagrange multipliers and the improved
Hessian approach, as described in the text.

tendency to turn towards +1 at high x. The latter be-
havior would be expected for the pQCD based models.
We note that it has recently been argued [73] that the
upturn of Rd in such models could set in only at rela-
tively high x, due to the presence of valence Fock states of
the nucleon with nonzero orbital angular momentum that
produce double-logarithmic contributions ∼ ln2(1−x) in
the limit of x → 1 on top of the nominal power behav-
ior. The corresponding expectation is also shown in the
figure. In contrast to this, relativistic constituent quark
models predict Rd to tend to −1/3 as x → 1, perfectly
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FIG. 4: Uncertainties of the calculated Aπ0

LL at RHIC in our
global fit, computed using both the Lagrange multiplier and
the Hessian matrix techniques. We also show the correspond-
ing PHENIX data [23].

consistent with the present data.

Light sea quark polarizations: The light sea quark and
anti-quark distributions turn out to be better constrained
now than in previous analyses [36], thanks to the advent
of more precise SIDIS data [10, 14, 15, 16] and of the new
set of fragmentation functions [37] that describes the ob-
servables well in the unpolarized case. Figure 6 shows the
changes in χ2 of the fit as functions of the truncated first
moments ∆ū1,[0.001→1], ∆d̄1,[0.001→1] defined in Eq. (35),
obtained for the Lagrange multiplier method. On the
left-hand-side, Figs. 6 (a), (c), we show the effect on the
total χ2, as well as on the χ2 values for the individual
contributions from DIS, SIDIS, and RHIC pp data and
from the F, D values. It is evident that the SIDIS data
completely dominate the changes in χ2. On the r.h.s. of
the plot, Figs. 6 (b), (d), we further split up ∆χ2 from
SIDIS into contributions associated with the spin asym-
metries in charged pion, kaon, and unidentified hadron
production. One can see that the latter dominate, closely
followed by the pions. The kaons have negligible impact
here. For ∆ū1,[0.001→1], charged hadrons and pions are
very consistent, as far as the location of the minimum
in χ2 is concerned. For ∆d̄1,[0.001→1] there is some slight
tension between them, although it is within the tolerance
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in the MS scheme, along with their ∆χ2 = 1 uncertainty
bands computed with Lagrange multipliers and the improved
Hessian approach, as described in the text.

tendency to turn towards +1 at high x. The latter be-
havior would be expected for the pQCD based models.
We note that it has recently been argued [73] that the
upturn of Rd in such models could set in only at rela-
tively high x, due to the presence of valence Fock states of
the nucleon with nonzero orbital angular momentum that
produce double-logarithmic contributions ∼ ln2(1−x) in
the limit of x → 1 on top of the nominal power behav-
ior. The corresponding expectation is also shown in the
figure. In contrast to this, relativistic constituent quark
models predict Rd to tend to −1/3 as x → 1, perfectly
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FIG. 4: Uncertainties of the calculated Aπ0

LL at RHIC in our
global fit, computed using both the Lagrange multiplier and
the Hessian matrix techniques. We also show the correspond-
ing PHENIX data [23].

consistent with the present data.

Light sea quark polarizations: The light sea quark and
anti-quark distributions turn out to be better constrained
now than in previous analyses [36], thanks to the advent
of more precise SIDIS data [10, 14, 15, 16] and of the new
set of fragmentation functions [37] that describes the ob-
servables well in the unpolarized case. Figure 6 shows the
changes in χ2 of the fit as functions of the truncated first
moments ∆ū1,[0.001→1], ∆d̄1,[0.001→1] defined in Eq. (35),
obtained for the Lagrange multiplier method. On the
left-hand-side, Figs. 6 (a), (c), we show the effect on the
total χ2, as well as on the χ2 values for the individual
contributions from DIS, SIDIS, and RHIC pp data and
from the F, D values. It is evident that the SIDIS data
completely dominate the changes in χ2. On the r.h.s. of
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SIDIS into contributions associated with the spin asym-
metries in charged pion, kaon, and unidentified hadron
production. One can see that the latter dominate, closely
followed by the pions. The kaons have negligible impact
here. For ∆ū1,[0.001→1], charged hadrons and pions are
very consistent, as far as the location of the minimum
in χ2 is concerned. For ∆d̄1,[0.001→1] there is some slight
tension between them, although it is within the tolerance
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quark transverse component. Ph is the final hadron with a p? component, transverse with respect to the fragmenting

quark k

0 direction.

the beam energy becomes, the more serious the inaccuracies of the parton model have to be

taken. On the other hand, the “fully di↵erential” cross section Eq. (3.2) of the generalized

parton model allows us to include in our Monte Carlo both transverse momentum and

the physical energy and momentum phase space constraints. We used the widely accepted

parton model approximation of setting the initial parton on-shell (assumption that virtual

photon interacts with an on-mass shell quark)3. But it is important to emphasize that

the approximations we have made, which are consistent with a generalized parton model

framework, enable us to implement a Monte Carlo that incorporates the correct phase

space momentum constraints and satisfies the requirements we outlined in this section.

Thus, our Monte Carlo simulation allows us to take the factorized form of the gener-

alized parton model cross section Eq. (3.2) as a basis and then to impose four-momentum

conservation for the partons according to Fig. 1, assuming the initial quark is on-shell with

non-zero mass. We also take a non-zero target mass into account. This procedure does

not necessarily lead to a more accurate description of the underlying physics, because it

still rests on the simplified picture of the generalized parton model and involves the ap-

proximation of an on-shell quark. Nonetheless, implementing these modifications can give

us an indication for the magnitude of the uncertainties resulting from the aforementioned

kinematic approximations in the parton model.

Note that our goal is to study the applicability of Bessel weighting to experimental

data, for which we explicitly need k? and p? dependences in the Monte Carlo generator.

Alongside with this goal it is interesting to investigate how well the approximations of the

simple parton model are justified in the current relatively low energy experimental set-up.

One would expect that if approximations that lead to the parton model expressions for

structure functions are justified, then the generalized parton model expression would not

spoil this approximation numerically. On the other hand if the generalized parton model

gives notably di↵erent results with respect to a naive parton model, one would expect

that kinematics of the experiment does not allow a certain type of approximations and the

3
The confined quark has a non-zero virtuality. Such e↵ects in Monte Carlo generators have been studied

in Ref. [62].
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FFs in the transverse SSAs, and to study the feasibility of
experimental measurements on them, which are the main
purpose of this work.
Both the twist-3 distributions and FFs could give rise to

the transverse SSAs. In this paper, we will focus particu-
larly on the contributions from the twist-3 distributions. We
note that in the common reference frame [38] used to
analyze SIDIS, the interaction-dependent twist-3 FFs
(denoted with a tilde) also appear in the convolution. In
practical calculation these FFs may be set to zero in the
Wandzura-Wilczek approximation [39]. However, recent
studies [40–42] within the collinear twist-3 factorization on
the contributions of the chirally and time-reversal odd FFs
to the SSA in proton-proton collisions, show that certain
fragmentation contributions from the three-parton correla-
tion could still be sizeable. These studies might also imply
that the contributions to the sinϕS and sinð2ϕh − ϕSÞ
asymmetries in SIDIS from certain TMD twist-3 FF are
non-negligible. As a first study, in this work we will only
consider the contributions from the TMD twist-3 distribu-
tions to the SSAs in SIDIS. The possible role of the TMD
twist-3 FFs on the SSAs, hinted from the collinear twist-3
FFs, deserves further theoretical and experimental inves-
tigations, and is beyond the scope of this work. Therefore,
in this scenario, four twist-3 TMD distributions are
involved in the transverse SSAs: fT , f⊥T , hT , and h⊥T .
The first one contributes to the sinϕS asymmetry, while the
second one contributes to the sin ð2ϕh − ϕSÞ asymmetry;
the last two distributions contribute to both asymmetries
through the convolution with the Collins FF.
The remained content of the paper is organized as

follows. In Sec. II, we calculate the TMD distributions
fT , f⊥T , hT , and h⊥T for the u and d valence quarks, as it is
necessary to know their magnitudes and signs to predict
SSAs. As a demonstration wewill use the spectator-diquark
model developed in Ref. [43], which is also applied in
Refs. [44,45]. In Sec. III, using the model results obtained
in Sec. II, we present our prediction on the sinϕS and
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in SIDIS, considering experimental configurations acces-
sible at HERMES, JLab, and COMPASS. Although the
TMD factorization at twist-3 level has not been proved
[46,47], here we would like to adopt a more phenomeno-
logical way, i.e., to use the tree-level result in Ref. [31] to
perform the estimate. Finally, we give our conclusion
in Sec. IV.
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twist-3 TMD distributions in a spectator model, which was
developed in Ref. [43]. In this model, the proton is
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and the diquark can be a scalar particle or an axial-vector

one. The relevant diagrams for the calculation are shown
in Fig. 1, which are identical for the scalar and axial-
vector cases.
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FIG. 1. Cut diagrams for the spectator model calculation at tree
level (upper) and one-loop level (lower). The dashed lines denote
the spectator diquarks that can be scalar diquarks or axial-vector
diquarks.
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FFs in the transverse SSAs, and to study the feasibility of
experimental measurements on them, which are the main
purpose of this work.
Both the twist-3 distributions and FFs could give rise to

the transverse SSAs. In this paper, we will focus particu-
larly on the contributions from the twist-3 distributions. We
note that in the common reference frame [38] used to
analyze SIDIS, the interaction-dependent twist-3 FFs
(denoted with a tilde) also appear in the convolution. In
practical calculation these FFs may be set to zero in the
Wandzura-Wilczek approximation [39]. However, recent
studies [40–42] within the collinear twist-3 factorization on
the contributions of the chirally and time-reversal odd FFs
to the SSA in proton-proton collisions, show that certain
fragmentation contributions from the three-parton correla-
tion could still be sizeable. These studies might also imply
that the contributions to the sinϕS and sinð2ϕh − ϕSÞ
asymmetries in SIDIS from certain TMD twist-3 FF are
non-negligible. As a first study, in this work we will only
consider the contributions from the TMD twist-3 distribu-
tions to the SSAs in SIDIS. The possible role of the TMD
twist-3 FFs on the SSAs, hinted from the collinear twist-3
FFs, deserves further theoretical and experimental inves-
tigations, and is beyond the scope of this work. Therefore,
in this scenario, four twist-3 TMD distributions are
involved in the transverse SSAs: fT , f⊥T , hT , and h⊥T .
The first one contributes to the sinϕS asymmetry, while the
second one contributes to the sin ð2ϕh − ϕSÞ asymmetry;
the last two distributions contribute to both asymmetries
through the convolution with the Collins FF.
The remained content of the paper is organized as

follows. In Sec. II, we calculate the TMD distributions
fT , f⊥T , hT , and h⊥T for the u and d valence quarks, as it is
necessary to know their magnitudes and signs to predict
SSAs. As a demonstration wewill use the spectator-diquark
model developed in Ref. [43], which is also applied in
Refs. [44,45]. In Sec. III, using the model results obtained
in Sec. II, we present our prediction on the sinϕS and
sinð2ϕh − ϕSÞ asymmetries for charged and neutral pions
in SIDIS, considering experimental configurations acces-
sible at HERMES, JLab, and COMPASS. Although the
TMD factorization at twist-3 level has not been proved
[46,47], here we would like to adopt a more phenomeno-
logical way, i.e., to use the tree-level result in Ref. [31] to
perform the estimate. Finally, we give our conclusion
in Sec. IV.

II. CALCULATION OF TWIST-3
TMD DISTRIBUTIONS IN

SPECTATOR-DIQUARK MODEL

In this section, we present the calculation on the four
twist-3 TMD distributions in a spectator model, which was
developed in Ref. [43]. In this model, the proton is
supposed to be constituted by a quark and a diquark,
and the diquark can be a scalar particle or an axial-vector

one. The relevant diagrams for the calculation are shown
in Fig. 1, which are identical for the scalar and axial-
vector cases.
The gauge-invariant quark-quark correlator can be

expressed as

Φðx; kTÞ ¼
Z

dξ−d2ξT
ð2πÞ3

eik·ξhPSjψ̄ jð0ÞL½0−;∞−%

× L½0T; ξT %L½∞−; ξ−%ψ iðξÞjPSi: ð1Þ

For convenience here we adopt the light-cone coordinates
½a−; aþ; aT % for an arbitrary four-vector a, with a' ¼
ða0 ' a3Þ=

ffiffiffi
2

p
¼ a · n∓, where the two lightlike vectors

are defined as nþ ¼ ½0; 1; 0T % and n− ¼ ½1; 0; 0T %. The
vector aT ¼ ½a1; a2% denotes the two-component transverse
vector that is perpendicular to the vectors n'. It is often to
promote aT to a four-vector aT ¼ ½0; 0; aT %, and the scalar
product of two transverse four-vectors satisfies

aT · bT ¼ −aT · bT: ð2Þ

At twist-3 level, the correlator (1) for a transversely
polarized nucleon can be decomposed into [31]

Φðx; kT; STÞjtwist-3
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FIG. 1. Cut diagrams for the spectator model calculation at tree
level (upper) and one-loop level (lower). The dashed lines denote
the spectator diquarks that can be scalar diquarks or axial-vector
diquarks.
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Collins fragmentation function: Artru model
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other. One can see that the experimental data indeed show
some tension with the Soffer bound for the d quark in the
high-x region as predicted in Ref. [94]. This saturation
happens in the region not explored by the current exper-
imental data, so future data from Jefferson Lab 12 will be
very important to test the Soffer bound and to constrain the
transversity and tensor charge.
The functions themselves are slightly different as can be

seen by comparing solid and dashes lines in Fig. 27(a). In
fact Ref. [17] uses the tree-level TMD expression (no TMD
evolution) for extraction, and we use the NLL TMD
formalism. Results should be different even though in
asymmetries, as we saw, at low energies results with NLL
TMD are comparable with the tree level. At higher energies
and Q2, the situation changes, and extracted functions
must be different. At the same time, one should remember
TMD evolution does not act as a universal Q2 suppression
factor. A complicated Fourier transform should be per-
formed that mixes Q2 and b dependence, and thus the
resulting functions are different in shape but comparable in
magnitude. It is also very encouraging that tree-level TMD
extractions yielded results very similar to our NLL extrac-
tion. This makes the previous phenomenological results
valid even though the appropriate TMD evolution was not
taken into account. It also means that we need to have
experimental data on unpolarized cross sections differential
in Ph⊥. As we have seen, the effects of evolution should be
evident in the data, and those measurements will help to
establish the validity of the modern formulation of TMD
evolution.
We compare extracted Collins fragmentation functions

−zHð3ÞðzÞ in Fig. 28 at Q2 ¼ 2.4 GeV2 with the extraction
of Torino-Cagliari-JLab 2013 [17]. The resulting Collins
FFs have the same signs, but shapes and sizes are slightly
different. Indeed one could expect it as far as Q2 of eþe− is
different, and the evolution effect must be more evident. At
the same time, those functions for both tree-level and NLL

TMD give the same (or similar) theoretical asymmetries
that are well compared to the experimental data of SIDIS
and eþe−. The favored Collins fragmentation function is
much better determined by the existing data, as one can
see from Fig. 28 that the functions at Q2 ¼ 2.4 GeV2 are
compatible within error bands. The unfavored fragmenta-
tion functions are different; however, those functions are
not determined very well by existing experimental data.
We also compare the tensor change from our and other

extractions in Fig. 29. The contribution to the tensor charge
of Ref. [18] is found by extraction using the so-called
dihadron fragmentation function that couples to the col-
linear transversity distribution. The corresponding func-
tions have DGLAP-type evolution known at LO and were
used in Ref. [18]. The results plotted in Fig. 29 correspond
to our estimates of the contribution to the u quark and d
quark in the region of x½0.065; 0.35& at Q2 ¼ 10 GeV2 at
68% C.L. (label 1) and the contribution to the u quark and
d quark in the same region of x and the same Q2 using the
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fact Ref. [17] uses the tree-level TMD expression (no TMD
evolution) for extraction, and we use the NLL TMD
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extractions in Fig. 29. The contribution to the tensor charge
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dihadron fragmentation function that couples to the col-
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tions have DGLAP-type evolution known at LO and were
used in Ref. [18]. The results plotted in Fig. 29 correspond
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68% C.L. (label 1) and the contribution to the u quark and
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Fig. 3. The quark helicity distributions x!u, x!d, x!u, x!d and x!s at Q 2
0 = 3 (GeV/c)2 as a function of x. The values for x < 0.3 (black dots) are derived at LO from the

COMPASS spin asymmetries using the DSS fragmentation functions [30]. Those at x > 0.3 (open squares) are derived from the values of the polarised structure function g1(x)
quoted in [20,35] assuming !q = 0. The bands at the bottom of each plot show the systematic errors. The curves show the predictions of the DSSV fit calculated at NLO [1].

The results for the quark helicity distributions !u, !d, !u,
!d and !s (!s = !s) are shown in Fig. 3. As for the asym-
metries, they are in good qualitative agreement with the results
from HERMES [14]. A quantitative comparison is not made here,
since the HERMES helicity distributions are extracted under dif-
ferent assumptions for the fragmentation functions and for the
unpolarised flavour distributions. In the range 0.3 < x < 0.7 three
additional values of !u and !d, derived from the g p

1 (x) and gd
1(x)

[35] structure functions, are also displayed. The gd
1(x) values in-

clude the target material corrections quoted in [20]. The dominant
contribution to the systematic error of !u and !d comes from
the uncertainty of the beam polarisation, which affects all data
in the same way and leads to an uncertainty of 5% for all fitted
values. The systematic error on the antiquark and strange quark
distributions is mainly due to possible false asymmetries gener-
ated by time-dependent effects on the detector acceptance. The
curves show the results of the DSSV fit at Next-to-Leading Order
(NLO) [1]. The comparison with the experimental results derived
at LO is thus only qualitative. Nevertheless, the curves reproduce
fairly well the shape of the data, confirming a previous observa-
tion that a direct extraction at LO provides a good estimate of the
shape of the helicity distributions [36]. The antiquark distributions,
!u and !d, do not show any significant variation in the x range
of the data, the former being consistent with zero, the latter being
slightly negative.

The values of the strange quark helicity distribution confirm
with slightly reduced errors the results obtained from the deuteron
data [17] alone. With the same fragmentation functions (DSS) no
significant variation of !s(x) is observed in the range of the data.
Only the first point at low x shows a small deviation from zero
(≈ 2.5σ ). This distribution is of special interest due to the appar-
ent contradiction between the SIDIS results and the negative first
moment derived [35] from the spin structure function g1(x). The
DSSV fit includes a negative contribution to !s for x ! 0.03, which
reconciles the inclusive and semi-inclusive results. The evaluation
of the first moment of !s(x) from inclusive measurements relies

Table 4
First moments of the quark helicity distributions at Q 2

0 = 3 (GeV/c)2 truncated to
the range of the measurements and derived with the DSS fragmentation functions.
The first error is statistical, the second one systematic. The values of the sea quark
distributions for x ! 0.3 are assumed to be zero.

x range 0.004 < x < 0.3 0.004 < x < 0.7

!u 0.47±0.02±0.03 0.69±0.02±0.03
!d −0.27±0.03±0.02 −0.33±0.04±0.03
!u 0.02±0.02±0.01 –
!d −0.05±0.03±0.02 –
!s(!s) −0.01±0.01±0.01 –

!uv 0.46±0.03±0.03 0.67±0.03±0.03
!dv −0.23±0.05±0.02 −0.28±0.06±0.03
!u − !d 0.06±0.04±0.02 –
!u + !d −0.03±0.03±0.01 –
!Σ 0.15±0.02±0.02 0.31±0.03±0.03

on the value of the octet axial charge a8, which is derived from
hyperon weak decays under the assumption of SU(3)f symmetry.
A recent model calculation suggests that a8 may be substantially
reduced and become close to the singlet axial charge a0 extracted
from the data [16]. In this case the inclusive data would no longer
imply a negative value of !s. Finally, as pointed out in our pre-
vious paper [17], one has to keep in mind that the semi-inclusive
results on !s(x) strongly depend on the choice of a set of fragmen-
tation functions. This dependence is quantified in the next section.

The first moments of the helicity distributions truncated to the
range of the measurements are listed in Table 4. The missing con-
tributions at low and at high x have been evaluated by extrap-
olating the measured values and alternatively by using the DSSV
parameterisation [1]. The contributions at high x are all small and
do not exceed 0.01. The two methods lead to similar values for
the valence quark moments !uv = !u − !u and !dv = !d − !d.
In contrast, they differ for the sea quark moments and particu-
larly for !s due to the sizable low-x contribution assumed in the
DSSV fit. The resulting full first moments for both methods are
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One can see from Fig. 3 that indeed quadrupole
deformation of the distribution is clearly present due to
pretzelosity.
Results of the description of COMPASS [12,15] data on

h# production are presented in Fig. 4 for a proton (NH3)
target and in Fig. 5 for a deuteron (LiD) target. One can see
that the expected asymmetry is very small especially for z
and PhT dependence; the reason is that COMPASS hxi≃
0.03 is quite small and pretzelosity quickly diminishes at
small x. However, the error corridor is quite large. In
addition, cancellation of u and d pretzelosities makes
asymmetries on the deuteron target vanishing; see
Fig. 5. Indeed for hþ production on a deuteron target,
Fsinð3ϕh−ϕSÞ
UT ∝4ðh⊥u

1T þh⊥d
1T ÞH

⊥fav
1 þðh⊥u

1T þh⊥d
1T ÞH

⊥unfav
1 ∼0

because our result indicates that h⊥u
1T þ h⊥d

1T ∼ 0. Overall
smallness of asymmetry on the proton target in Fig. 4 is due
to the suppression factor z2P3

hT. Our result also indicates
that pretzelosity diminishes as x becomes smaller; thus, we

have almost vanishing results for small values of x. We
cannot of course exclude possible contribution from sea
quarks or bigger values of pretzelosity in the small-x
region. Note that our results are scaled by DNN in order
to be compared to the COMPASS data.
The results of the description of preliminary experimen-

tal HERMES [16–18] data for πþ and π− production on a
proton target are presented in Fig. 6. Note that schemati-

cally for πþ production on the proton target Fsinð3ϕh−ϕSÞ
UT ∝

4h⊥u
1T H

⊥fav
1 þh⊥d

1T H
⊥unfav
1 and because our result indicates

that h⊥u
1T H

⊥fav
1 >0 and h⊥d

1T H
⊥unfav
1 >0, the asymmetry

is effectively enhanced and positive for πþ. Similarly

for π− we have Fsinð3ϕh−ϕSÞ
UT ∝ 4h⊥ð1Þu

1T H⊥ð1=2Þunfav
1 þ

h⊥ð1Þd
1T H⊥ð1=2Þfav

1 < 0.
The smallness of the asymmetry in Fig. 6 is explained by

suppression factor z2P3
hT, as far as the average values of

HERMES are hzi≃ 0.36 and hPhTi≃ 0.4 ðGeVÞ and thus
z2P3

hT ≃ 0.008 ðGeV3Þ. This makes possible values of the
asymmetry be well below 1%.
Fit of the neutron data on π# production from JLab 6

[19] is shown in Fig. 7. The sign of the asymmetry for πþ is
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• x=average longitudinal momentum fraction 
• 2ξ=average longitudinal momentum transfer 
• t=squared momentum transfer to nucleon

H̃T (x, ⇠, t)

HT (x, ⇠, t)

Four quark helicity-flip twist-2 GPDs

ẼT (x, ⇠, t)

ET (x, ⇠, t)

proton helicity flipproton helicity non flip

Four quark helicity-conserving twist-2 GPDs

spin independent

spin dependentH̃(x, ⇠, t) Ẽ(x, ⇠, t)
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X. Ji, Phys. Rev. Lett. 78 (1997) 610



Hard exclusive processes

23

• Deeply virtual Compton scattering (DVCS): 
  theoretically cleanest probe 

• Exclusive meson production 

• probe various types of GPDs with different  
sensitivity and different flavour combinations:  
also access to quark-helicity-flip GPDs 

• complementary to DVCS 

• Target polarization state: access to different GPDs
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DVCS cross section

M

1,1 = F1(t)H(⇠, t) +
xB

2� xB
(F1(t) + F2(t)) H̃(⇠, t)� t

4M2
p

F2(t)E(⇠, t)

I =

�el KI
P1(�)P2(�)

(
3X

n=0

cIn cos(n�) + �
2X

n=1

sIn sin(n�)

)

sI1 / =M1,1cI1 / <M1,1

CFF          =convolution GPD x hard scattering amplitudeH, H̃, E

At LO:      direct access to GPDs at  
             convolution integral over 
             + access to D-term  

= x = ±⇠

<
x
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Beam-charge asymmetry
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as the Beam-Spin Asymmetry (BSA):

ALU(φ, eℓ) ≡
dσ→ − dσ←

dσ→ + dσ←

=

−eℓ
KI

P1(φ)P2(φ)

[
2∑

n=1

sI
n sin(nφ)

]

+ 1
Q2 sDVCS

1 sin φ

1
P1(φ)P2(φ)

[

KBH

2∑

n=0

cBH
n cos(nφ) − eℓKI

3∑

n=0

cI
n cos(nφ)

]

+ 1
Q2

2∑

n=0

cDVCS
n cos(nφ)

. (2.1)

Here, σ→ (σ←) denotes the cross section for a beam with positive (negative) helicity. Pre-

dominant sin φ dependences with opposite sign have been observed at the two experiments,

indicating the dominance of the interference term involving eℓ · sI
1. However, quantitative

access to sI
1 is complicated by the presence of sDVCS

1 , which is a higher twist-contribution

but possibly significant, and by the presence of cI
1 and cI

0, i.e., the other Fourier coefficients

of interest appearing at leading twist (see Eqs. 1.6 and 1.8).

This entanglement can be avoided by defining the charge-difference beam-helicity

asymmetry [23]:

AI
LU(φ) ≡ (dσ+→ − dσ+←) − (dσ−→ − dσ−←)

(dσ+→ + dσ+←) + (dσ−→ + dσ−←)

=

− KI
P1(φ)P2(φ)

[
2∑

n=1

sI
n sin(nφ)

]

KBH
P1(φ)P2(φ)

2∑

n=0

cBH
n cos(nφ) +

1

Q2

2∑

n=0

cDVCS
n cos(nφ)

, (2.2)

where the additional +(−) superscript on the cross-sections denotes the charge of the lepton

beam. This asymmetry has the important advantages that the sin φ dependence in the

numerator stems solely from the interference term, as the (higher-twist) sin φ dependence

of the squared DVCS term cancels, and the denominator no longer contains the leading

terms cI
1 and cI

0. Therefore it gives direct access to linear combinations of GPDs, while

another charge-averaged asymmetry related to the squared DVCS term provides access to

bilinear combinations of GPDs:

ADVCS
LU (φ) ≡ (dσ+→ − dσ+←) + (dσ−→ − dσ−←)

(dσ+→ + dσ+←) + (dσ−→ + dσ−←)

=
1

Q2 sDVCS
1 sin φ

KBH
P1(φ)P2(φ)

2∑

n=0

cBH
n cos(nφ) +

1

Q2

2∑

n=0

cDVCS
n cos(nφ)

. (2.3)

The previously extracted [24, 25] Beam-Charge Asymmetry (BCA)

AC(φ) ≡ dσ+ − dσ−

dσ+ + dσ−
=

− KI
P1(φ)P2(φ)

3∑

n=0

cI
n cos(nφ)

KBH
P1(φ)P2(φ)

2∑

n=0

cBH
n cos(nφ) +

1

Q2

2∑

n=0

cDVCS
n cos(nφ)

(2.4)
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Figure 4: The cos(nφ) amplitude (n = 0–3) of the beam-charge asymmetry AC, extracted from
the 1996–2005 hydrogen data in the entire experimental acceptance, and as a function of −t, xB,
and Q2. The error bars (bands) represent the statistical (systematic) uncertainties. The theoretical
calculations are based on the models that are unable to describe the data in Fig. 2. For the VGG
model the parameter settings bval = ∞ and bsea = 1 are used and the contribution from the D–term
is set to zero. The bottom row shows the fractional contribution of associated BH production as
obtained from a MC simulation.

helicity-flip GPDs, is found to be consistent with zero. No striking additional features are

observed in Fig. 5 where the cos(nφ) amplitudes are shown as a function of −t for three

distinct xB ranges.

The theoretical calculations shown in Fig. 4 are based on either the Dual-GT or the

VGG model. For the VGG model the parameter settings bval = ∞ and bsea = 1 are used

and the contribution from the D–term is set to zero, as only this set of parameters yields

a good description of the BCA data [24, 25]. Note that the same set, in particular the

setting bsea = 1, leads to amplitudes with the largest magnitude among those represented

in the bands in the top row of Fig. 2, i.e., it clearly does not describe the data related to

the imaginary part of the DVCS amplitude. It appears that additional degrees of freedom
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Figure 4: The cos(nφ) amplitude (n = 0–3) of the beam-charge asymmetry AC, extracted from
the 1996–2005 hydrogen data in the entire experimental acceptance, and as a function of −t, xB,
and Q2. The error bars (bands) represent the statistical (systematic) uncertainties. The theoretical
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model the parameter settings bval = ∞ and bsea = 1 are used and the contribution from the D–term
is set to zero. The bottom row shows the fractional contribution of associated BH production as
obtained from a MC simulation.

helicity-flip GPDs, is found to be consistent with zero. No striking additional features are

observed in Fig. 5 where the cos(nφ) amplitudes are shown as a function of −t for three

distinct xB ranges.

The theoretical calculations shown in Fig. 4 are based on either the Dual-GT or the

VGG model. For the VGG model the parameter settings bval = ∞ and bsea = 1 are used

and the contribution from the D–term is set to zero, as only this set of parameters yields

a good description of the BCA data [24, 25]. Note that the same set, in particular the

setting bsea = 1, leads to amplitudes with the largest magnitude among those represented

in the bands in the top row of Fig. 2, i.e., it clearly does not describe the data related to

the imaginary part of the DVCS amplitude. It appears that additional degrees of freedom
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and Q2. The error bars (bands) represent the statistical (systematic) uncertainties. The theoretical
calculations are based on the models that are unable to describe the data in Fig. 2. For the VGG
model the parameter settings bval = ∞ and bsea = 1 are used and the contribution from the D–term
is set to zero. The bottom row shows the fractional contribution of associated BH production as
obtained from a MC simulation.
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calculations are based on the models that are unable to describe the data in Fig. 2. For the VGG
model the parameter settings bval = ∞ and bsea = 1 are used and the contribution from the D–term
is set to zero. The bottom row shows the fractional contribution of associated BH production as
obtained from a MC simulation.
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as the Beam-Spin Asymmetry (BSA):
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. (2.1)

Here, σ→ (σ←) denotes the cross section for a beam with positive (negative) helicity. Pre-

dominant sin φ dependences with opposite sign have been observed at the two experiments,

indicating the dominance of the interference term involving eℓ · sI
1. However, quantitative

access to sI
1 is complicated by the presence of sDVCS

1 , which is a higher twist-contribution

but possibly significant, and by the presence of cI
1 and cI

0, i.e., the other Fourier coefficients

of interest appearing at leading twist (see Eqs. 1.6 and 1.8).

This entanglement can be avoided by defining the charge-difference beam-helicity

asymmetry [23]:

AI
LU(φ) ≡ (dσ+→ − dσ+←) − (dσ−→ − dσ−←)
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=

− KI
P1(φ)P2(φ)

[
2∑

n=1

sI
n sin(nφ)
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, (2.2)

where the additional +(−) superscript on the cross-sections denotes the charge of the lepton

beam. This asymmetry has the important advantages that the sin φ dependence in the

numerator stems solely from the interference term, as the (higher-twist) sin φ dependence

of the squared DVCS term cancels, and the denominator no longer contains the leading

terms cI
1 and cI

0. Therefore it gives direct access to linear combinations of GPDs, while

another charge-averaged asymmetry related to the squared DVCS term provides access to

bilinear combinations of GPDs:

ADVCS
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. (2.3)

The previously extracted [24, 25] Beam-Charge Asymmetry (BCA)

AC(φ) ≡ dσ+ − dσ−

dσ+ + dσ−
=
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P1(φ)P2(φ)
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(2.4)

– 6 –

Charge-difference beam-helicity asymmetry



linear access to GPDs 

Beam-helicity asymmetries

30

as the Beam-Spin Asymmetry (BSA):

ALU(φ, eℓ) ≡
dσ→ − dσ←

dσ→ + dσ←

=

−eℓ
KI

P1(φ)P2(φ)

[
2∑

n=1

sI
n sin(nφ)

]

+ 1
Q2 sDVCS

1 sin φ

1
P1(φ)P2(φ)

[

KBH

2∑

n=0

cBH
n cos(nφ) − eℓKI

3∑

n=0

cI
n cos(nφ)

]

+ 1
Q2

2∑

n=0

cDVCS
n cos(nφ)

. (2.1)

Here, σ→ (σ←) denotes the cross section for a beam with positive (negative) helicity. Pre-

dominant sin φ dependences with opposite sign have been observed at the two experiments,

indicating the dominance of the interference term involving eℓ · sI
1. However, quantitative

access to sI
1 is complicated by the presence of sDVCS

1 , which is a higher twist-contribution

but possibly significant, and by the presence of cI
1 and cI

0, i.e., the other Fourier coefficients

of interest appearing at leading twist (see Eqs. 1.6 and 1.8).

This entanglement can be avoided by defining the charge-difference beam-helicity

asymmetry [23]:

AI
LU(φ) ≡ (dσ+→ − dσ+←) − (dσ−→ − dσ−←)

(dσ+→ + dσ+←) + (dσ−→ + dσ−←)

=

− KI
P1(φ)P2(φ)

[
2∑

n=1

sI
n sin(nφ)

]

KBH
P1(φ)P2(φ)

2∑

n=0

cBH
n cos(nφ) +

1

Q2

2∑

n=0

cDVCS
n cos(nφ)

, (2.2)

where the additional +(−) superscript on the cross-sections denotes the charge of the lepton

beam. This asymmetry has the important advantages that the sin φ dependence in the

numerator stems solely from the interference term, as the (higher-twist) sin φ dependence

of the squared DVCS term cancels, and the denominator no longer contains the leading

terms cI
1 and cI

0. Therefore it gives direct access to linear combinations of GPDs, while

another charge-averaged asymmetry related to the squared DVCS term provides access to

bilinear combinations of GPDs:

ADVCS
LU (φ) ≡ (dσ+→ − dσ+←) + (dσ−→ − dσ−←)

(dσ+→ + dσ+←) + (dσ−→ + dσ−←)

=
1

Q2 sDVCS
1 sin φ

KBH
P1(φ)P2(φ)

2∑

n=0

cBH
n cos(nφ) +

1

Q2

2∑

n=0

cDVCS
n cos(nφ)

. (2.3)

The previously extracted [24, 25] Beam-Charge Asymmetry (BCA)

AC(φ) ≡ dσ+ − dσ−

dσ+ + dσ−
=

− KI
P1(φ)P2(φ)

3∑

n=0

cI
n cos(nφ)

KBH
P1(φ)P2(φ)

2∑

n=0

cBH
n cos(nφ) +

1

Q2

2∑

n=0

cDVCS
n cos(nφ)

(2.4)

– 6 –

Charge-difference beam-helicity asymmetry



linear access to GPDs 

Beam-helicity asymmetries

30

as the Beam-Spin Asymmetry (BSA):

ALU(φ, eℓ) ≡
dσ→ − dσ←

dσ→ + dσ←

=

−eℓ
KI

P1(φ)P2(φ)

[
2∑

n=1

sI
n sin(nφ)

]

+ 1
Q2 sDVCS

1 sin φ

1
P1(φ)P2(φ)

[

KBH

2∑

n=0

cBH
n cos(nφ) − eℓKI

3∑

n=0

cI
n cos(nφ)

]

+ 1
Q2

2∑

n=0

cDVCS
n cos(nφ)

. (2.1)

Here, σ→ (σ←) denotes the cross section for a beam with positive (negative) helicity. Pre-

dominant sin φ dependences with opposite sign have been observed at the two experiments,

indicating the dominance of the interference term involving eℓ · sI
1. However, quantitative

access to sI
1 is complicated by the presence of sDVCS

1 , which is a higher twist-contribution

but possibly significant, and by the presence of cI
1 and cI

0, i.e., the other Fourier coefficients

of interest appearing at leading twist (see Eqs. 1.6 and 1.8).

This entanglement can be avoided by defining the charge-difference beam-helicity

asymmetry [23]:

AI
LU(φ) ≡ (dσ+→ − dσ+←) − (dσ−→ − dσ−←)

(dσ+→ + dσ+←) + (dσ−→ + dσ−←)

=

− KI
P1(φ)P2(φ)

[
2∑

n=1

sI
n sin(nφ)

]

KBH
P1(φ)P2(φ)

2∑

n=0

cBH
n cos(nφ) +

1

Q2

2∑

n=0

cDVCS
n cos(nφ)

, (2.2)

where the additional +(−) superscript on the cross-sections denotes the charge of the lepton

beam. This asymmetry has the important advantages that the sin φ dependence in the

numerator stems solely from the interference term, as the (higher-twist) sin φ dependence

of the squared DVCS term cancels, and the denominator no longer contains the leading

terms cI
1 and cI

0. Therefore it gives direct access to linear combinations of GPDs, while

another charge-averaged asymmetry related to the squared DVCS term provides access to

bilinear combinations of GPDs:

ADVCS
LU (φ) ≡ (dσ+→ − dσ+←) + (dσ−→ − dσ−←)

(dσ+→ + dσ+←) + (dσ−→ + dσ−←)

=
1

Q2 sDVCS
1 sin φ

KBH
P1(φ)P2(φ)

2∑

n=0

cBH
n cos(nφ) +

1

Q2

2∑

n=0

cDVCS
n cos(nφ)

. (2.3)

The previously extracted [24, 25] Beam-Charge Asymmetry (BCA)

AC(φ) ≡ dσ+ − dσ−

dσ+ + dσ−
=

− KI
P1(φ)P2(φ)

3∑

n=0

cI
n cos(nφ)

KBH
P1(φ)P2(φ)

2∑

n=0

cBH
n cos(nφ) +

1

Q2

2∑

n=0

cDVCS
n cos(nφ)

(2.4)

– 6 –

Charge-difference beam-helicity asymmetry

as the Beam-Spin Asymmetry (BSA):

ALU(φ, eℓ) ≡
dσ→ − dσ←

dσ→ + dσ←

=

−eℓ
KI

P1(φ)P2(φ)

[
2∑

n=1

sI
n sin(nφ)

]

+ 1
Q2 sDVCS

1 sin φ

1
P1(φ)P2(φ)

[

KBH

2∑

n=0

cBH
n cos(nφ) − eℓKI

3∑

n=0

cI
n cos(nφ)

]

+ 1
Q2

2∑

n=0

cDVCS
n cos(nφ)

. (2.1)

Here, σ→ (σ←) denotes the cross section for a beam with positive (negative) helicity. Pre-

dominant sin φ dependences with opposite sign have been observed at the two experiments,

indicating the dominance of the interference term involving eℓ · sI
1. However, quantitative

access to sI
1 is complicated by the presence of sDVCS

1 , which is a higher twist-contribution

but possibly significant, and by the presence of cI
1 and cI

0, i.e., the other Fourier coefficients

of interest appearing at leading twist (see Eqs. 1.6 and 1.8).

This entanglement can be avoided by defining the charge-difference beam-helicity

asymmetry [23]:

AI
LU(φ) ≡ (dσ+→ − dσ+←) − (dσ−→ − dσ−←)

(dσ+→ + dσ+←) + (dσ−→ + dσ−←)

=

− KI
P1(φ)P2(φ)

[
2∑

n=1

sI
n sin(nφ)

]

KBH
P1(φ)P2(φ)

2∑

n=0

cBH
n cos(nφ) +

1

Q2

2∑

n=0

cDVCS
n cos(nφ)

, (2.2)

where the additional +(−) superscript on the cross-sections denotes the charge of the lepton

beam. This asymmetry has the important advantages that the sin φ dependence in the

numerator stems solely from the interference term, as the (higher-twist) sin φ dependence

of the squared DVCS term cancels, and the denominator no longer contains the leading

terms cI
1 and cI

0. Therefore it gives direct access to linear combinations of GPDs, while

another charge-averaged asymmetry related to the squared DVCS term provides access to

bilinear combinations of GPDs:

ADVCS
LU (φ) ≡ (dσ+→ − dσ+←) + (dσ−→ − dσ−←)

(dσ+→ + dσ+←) + (dσ−→ + dσ−←)

=
1

Q2 sDVCS
1 sin φ

KBH
P1(φ)P2(φ)

2∑

n=0

cBH
n cos(nφ) +

1

Q2

2∑

n=0

cDVCS
n cos(nφ)

. (2.3)

The previously extracted [24, 25] Beam-Charge Asymmetry (BCA)

AC(φ) ≡ dσ+ − dσ−

dσ+ + dσ−
=

− KI
P1(φ)P2(φ)

3∑

n=0

cI
n cos(nφ)

KBH
P1(φ)P2(φ)

2∑

n=0

cBH
n cos(nφ) +

1

Q2

2∑

n=0

cDVCS
n cos(nφ)

(2.4)

– 6 –

Charge-averaged beam-helicity asymmetry



bilinear access to GPDs 

linear access to GPDs 

Beam-helicity asymmetries

30

as the Beam-Spin Asymmetry (BSA):

ALU(φ, eℓ) ≡
dσ→ − dσ←

dσ→ + dσ←

=

−eℓ
KI

P1(φ)P2(φ)

[
2∑

n=1

sI
n sin(nφ)

]

+ 1
Q2 sDVCS

1 sin φ

1
P1(φ)P2(φ)

[

KBH

2∑

n=0

cBH
n cos(nφ) − eℓKI

3∑

n=0

cI
n cos(nφ)

]

+ 1
Q2

2∑

n=0

cDVCS
n cos(nφ)

. (2.1)

Here, σ→ (σ←) denotes the cross section for a beam with positive (negative) helicity. Pre-

dominant sin φ dependences with opposite sign have been observed at the two experiments,

indicating the dominance of the interference term involving eℓ · sI
1. However, quantitative

access to sI
1 is complicated by the presence of sDVCS

1 , which is a higher twist-contribution

but possibly significant, and by the presence of cI
1 and cI

0, i.e., the other Fourier coefficients

of interest appearing at leading twist (see Eqs. 1.6 and 1.8).

This entanglement can be avoided by defining the charge-difference beam-helicity

asymmetry [23]:

AI
LU(φ) ≡ (dσ+→ − dσ+←) − (dσ−→ − dσ−←)

(dσ+→ + dσ+←) + (dσ−→ + dσ−←)

=

− KI
P1(φ)P2(φ)

[
2∑

n=1

sI
n sin(nφ)

]

KBH
P1(φ)P2(φ)

2∑

n=0

cBH
n cos(nφ) +

1

Q2

2∑

n=0

cDVCS
n cos(nφ)

, (2.2)

where the additional +(−) superscript on the cross-sections denotes the charge of the lepton

beam. This asymmetry has the important advantages that the sin φ dependence in the

numerator stems solely from the interference term, as the (higher-twist) sin φ dependence

of the squared DVCS term cancels, and the denominator no longer contains the leading

terms cI
1 and cI

0. Therefore it gives direct access to linear combinations of GPDs, while

another charge-averaged asymmetry related to the squared DVCS term provides access to

bilinear combinations of GPDs:

ADVCS
LU (φ) ≡ (dσ+→ − dσ+←) + (dσ−→ − dσ−←)

(dσ+→ + dσ+←) + (dσ−→ + dσ−←)

=
1

Q2 sDVCS
1 sin φ

KBH
P1(φ)P2(φ)

2∑

n=0

cBH
n cos(nφ) +

1

Q2

2∑

n=0

cDVCS
n cos(nφ)

. (2.3)

The previously extracted [24, 25] Beam-Charge Asymmetry (BCA)

AC(φ) ≡ dσ+ − dσ−

dσ+ + dσ−
=

− KI
P1(φ)P2(φ)

3∑

n=0

cI
n cos(nφ)

KBH
P1(φ)P2(φ)

2∑

n=0

cBH
n cos(nφ) +

1

Q2

2∑

n=0

cDVCS
n cos(nφ)

(2.4)

– 6 –

Charge-difference beam-helicity asymmetry

as the Beam-Spin Asymmetry (BSA):

ALU(φ, eℓ) ≡
dσ→ − dσ←

dσ→ + dσ←

=

−eℓ
KI

P1(φ)P2(φ)

[
2∑

n=1

sI
n sin(nφ)

]

+ 1
Q2 sDVCS

1 sin φ

1
P1(φ)P2(φ)

[

KBH

2∑

n=0

cBH
n cos(nφ) − eℓKI

3∑

n=0

cI
n cos(nφ)

]

+ 1
Q2

2∑

n=0

cDVCS
n cos(nφ)

. (2.1)

Here, σ→ (σ←) denotes the cross section for a beam with positive (negative) helicity. Pre-

dominant sin φ dependences with opposite sign have been observed at the two experiments,

indicating the dominance of the interference term involving eℓ · sI
1. However, quantitative

access to sI
1 is complicated by the presence of sDVCS

1 , which is a higher twist-contribution

but possibly significant, and by the presence of cI
1 and cI

0, i.e., the other Fourier coefficients

of interest appearing at leading twist (see Eqs. 1.6 and 1.8).

This entanglement can be avoided by defining the charge-difference beam-helicity

asymmetry [23]:

AI
LU(φ) ≡ (dσ+→ − dσ+←) − (dσ−→ − dσ−←)

(dσ+→ + dσ+←) + (dσ−→ + dσ−←)

=

− KI
P1(φ)P2(φ)

[
2∑

n=1

sI
n sin(nφ)

]

KBH
P1(φ)P2(φ)

2∑

n=0

cBH
n cos(nφ) +

1

Q2

2∑

n=0

cDVCS
n cos(nφ)

, (2.2)

where the additional +(−) superscript on the cross-sections denotes the charge of the lepton

beam. This asymmetry has the important advantages that the sin φ dependence in the

numerator stems solely from the interference term, as the (higher-twist) sin φ dependence

of the squared DVCS term cancels, and the denominator no longer contains the leading

terms cI
1 and cI

0. Therefore it gives direct access to linear combinations of GPDs, while

another charge-averaged asymmetry related to the squared DVCS term provides access to

bilinear combinations of GPDs:

ADVCS
LU (φ) ≡ (dσ+→ − dσ+←) + (dσ−→ − dσ−←)

(dσ+→ + dσ+←) + (dσ−→ + dσ−←)

=
1

Q2 sDVCS
1 sin φ

KBH
P1(φ)P2(φ)

2∑

n=0

cBH
n cos(nφ) +

1

Q2

2∑

n=0

cDVCS
n cos(nφ)

. (2.3)

The previously extracted [24, 25] Beam-Charge Asymmetry (BCA)

AC(φ) ≡ dσ+ − dσ−

dσ+ + dσ−
=

− KI
P1(φ)P2(φ)

3∑

n=0

cI
n cos(nφ)

KBH
P1(φ)P2(φ)

2∑

n=0

cBH
n cos(nφ) +

1

Q2

2∑

n=0

cDVCS
n cos(nφ)

(2.4)
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Figure 2: The first (second) row shows the sinφ amplitude of the beam-helicity asymmetry ALU,I

(ALU,DVCS), which is sensitive to the interference term (squared DVCS term), extracted from the
1996–2005 hydrogen data in the entire experimental acceptance, and as a function of −t, xB, and Q2.
The third row shows the sin 2φ amplitude of ALU,I. The error bars (bands) represent the statistical
(systematic) uncertainties. Not included is a 2.8% scale uncertainty due to the beam polarization
measurement. The calculations are based on the recently corrected minimal implementation [33, 34]
of a dual-parameterization GPD model (Dual–GT) and on a GPD model [30, 38] based on double–
distributions (VGG). Both models use a Regge–motivated t-dependence. The band for the VGG
model results from varying the parameters bval and bsea between unity and infinity. The bottom row
shows the fractional contribution of associated BH production as obtained from a MC simulation.

a D–term [39], where the kernel of the double distribution contains a profile function [40, 41]

that determines the dependence on ξ, controlled by a parameter b [42]. In the limit b → ∞
the GPD is independent of ξ. Note that bval (bsea) is a free parameter for the valence

(sea) quarks and thus can be used as a fit parameter in the extraction of GPDs from

hard-electroproduction data.

In each kinematic bin, a range of theoretical predictions was calculated [43] by varying

the model parameters of only the GPD H, since these data are sensitive mostly to this

GPD as explained above. Variants of the model are distinguished by differences in the t

dependence of the GPD H, for which either a simple ansatz is used where the t dependence

factorizes from the dependence on the other kinematic variables, or the Regge–motivated

ansatz is employed. Since the differences are found to be small for all amplitudes shown

in Fig. 2, only the results based on the latter ansatz (VGG Regge) are displayed. The
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Figure 2: The first (second) row shows the sinφ amplitude of the beam-helicity asymmetry ALU,I

(ALU,DVCS), which is sensitive to the interference term (squared DVCS term), extracted from the
1996–2005 hydrogen data in the entire experimental acceptance, and as a function of −t, xB, and Q2.
The third row shows the sin 2φ amplitude of ALU,I. The error bars (bands) represent the statistical
(systematic) uncertainties. Not included is a 2.8% scale uncertainty due to the beam polarization
measurement. The calculations are based on the recently corrected minimal implementation [33, 34]
of a dual-parameterization GPD model (Dual–GT) and on a GPD model [30, 38] based on double–
distributions (VGG). Both models use a Regge–motivated t-dependence. The band for the VGG
model results from varying the parameters bval and bsea between unity and infinity. The bottom row
shows the fractional contribution of associated BH production as obtained from a MC simulation.

a D–term [39], where the kernel of the double distribution contains a profile function [40, 41]

that determines the dependence on ξ, controlled by a parameter b [42]. In the limit b → ∞
the GPD is independent of ξ. Note that bval (bsea) is a free parameter for the valence

(sea) quarks and thus can be used as a fit parameter in the extraction of GPDs from

hard-electroproduction data.

In each kinematic bin, a range of theoretical predictions was calculated [43] by varying

the model parameters of only the GPD H, since these data are sensitive mostly to this

GPD as explained above. Variants of the model are distinguished by differences in the t

dependence of the GPD H, for which either a simple ansatz is used where the t dependence

factorizes from the dependence on the other kinematic variables, or the Regge–motivated

ansatz is employed. Since the differences are found to be small for all amplitudes shown

in Fig. 2, only the results based on the latter ansatz (VGG Regge) are displayed. The
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Similar considerations for  
beam-charge and beam-averaged  

target-spin asymmetries  
(JHEP 06 (2008) 066, Phys. Lett. B 704 (2011) 15-23)
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