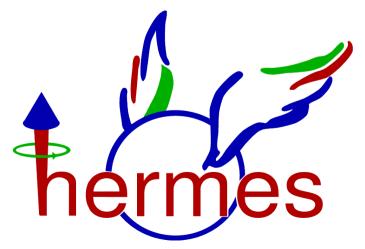
Hadronization studies at HERMES

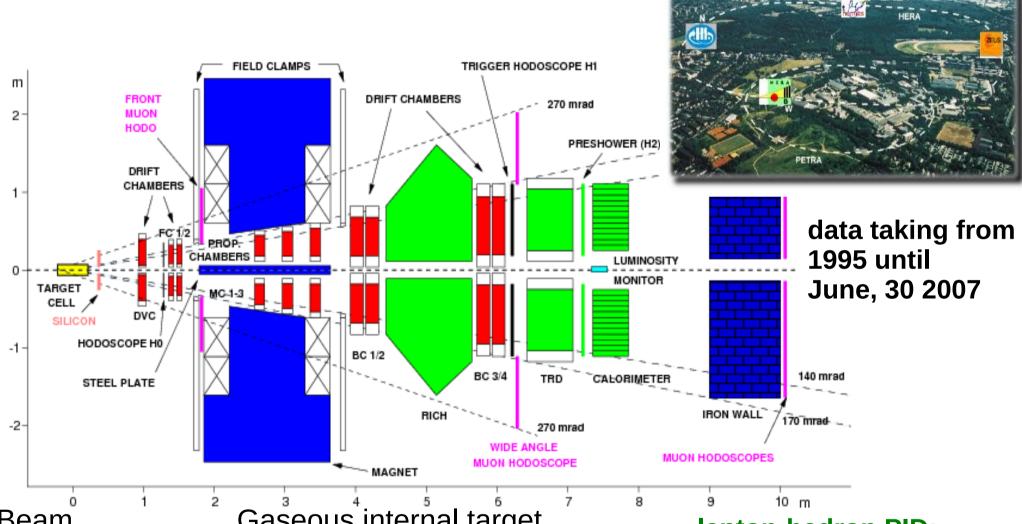
Charlotte Van Hulse, University of the Basque Country – UPV/EHU



Outline

- the HERMES experiment
- π^{\pm} and K^{\pm} multiplicities on hydrogen and deuterium
- hadronization in nuclei
- Collins fragmentation function:
 - transversely polarized hydrogen target
 - unpolarized hydrogen/deuterium target
- dihadron fragmentation function

HERMES: HERA MEasurement of Spin



Beam longitudinally pol. e⁺& e⁻

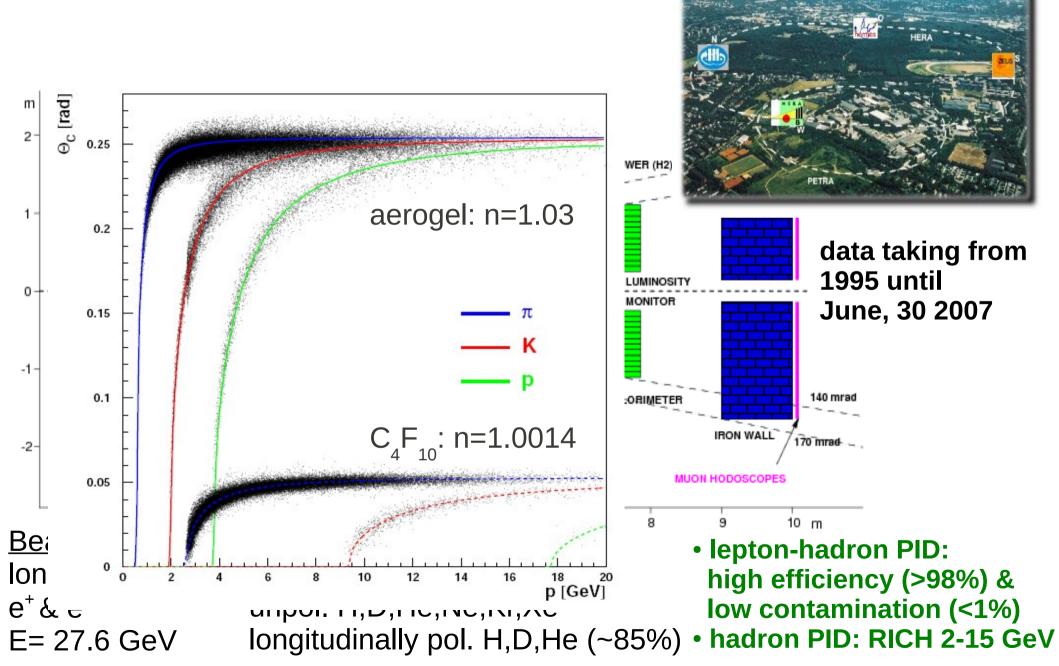
E= 27.6 GeV

Gaseous internal target transversely pol. H (~75%) unpol. H,D,He,Ne,Kr,Xe longitudinally pol. H,D,He (~85%)

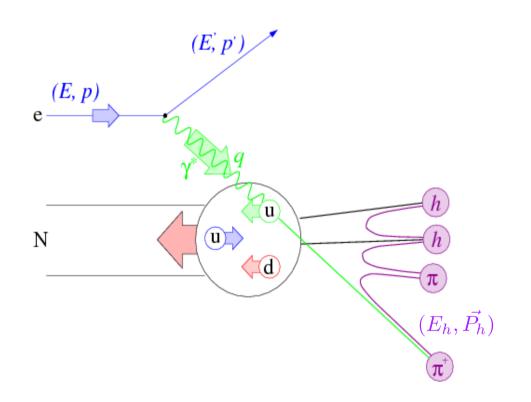
 lepton-hadron PID: high efficiency (>98%) & low contamination (<1%)

• hadron PID: RICH 2-15 GeV

HERMES: HERA MEasurement of Spin



Semi-inclusive deep-inelastic scattering



$$Q^2 = -q^2$$
 $u \stackrel{lab}{=} E - E'$
 $W^2 = M_N^2 + 2M_N \nu - Q^2$
 $y \stackrel{lab}{=} \frac{\nu}{E}$
 $x_B \stackrel{lab}{=} \frac{Q^2}{2M_N \nu}$
 $z \stackrel{lab}{=} \frac{E_h}{\nu}$

$$\sigma^{ep \to eh} = \sum_{q} \mathcal{I}[DF^{p \to q}(x_B, p_T^2, Q^2) \otimes \sigma^{eq \to eq} \otimes FF^{q \to h}(z, k_T^2, Q^2)]$$

Distribution Function (DF): distribution of quarks in nucleon **Fragmentation Function (FF):** fragmentation of struck quark into final-state hadron

 p_T/k_T : transverse momentum of struck/fragmenting quark

Access to spin-independent fragmentation functions

Hadron multiplicities and fragmentation functions

$$\begin{split} \mathbf{M}_{n}^{h}(x_{B},Q^{2},z,P_{h\perp}) &= \frac{1}{d^{2}\,N^{DIS}(x_{B},Q^{2})} \frac{d^{4}\,N^{h}(x_{B},Q^{2},z,P_{h\perp})}{dzdP_{h\perp}} \\ &= \frac{\sum_{q}e_{q}^{2}\,\mathcal{I}[f_{1}^{q}(x_{B},p_{T}^{2},Q^{2})\otimes\mathcal{W}\,D_{1}^{q}(z,k_{T}^{2},Q^{2})]}{\sum_{q}e_{q}^{2}\,f_{1}^{q}(x_{B},Q^{2})} \\ & \qquad \qquad & \\ \mathbf{Q}^{\text{PM, leading twist, LO}} \\ M_{n}^{h}(x_{B},Q^{2},z) &= \frac{\sum_{q}e_{q}^{2}\,f_{1}^{q}(x_{B},Q^{2})\,D_{1}^{q}(z,Q^{2})}{\sum_{q}e_{q}^{2}\,f_{1}^{q}(x_{B},Q^{2})} \end{split}$$

access to fragmentation function $D_1^q(z,(k_T^2),Q^2)$:

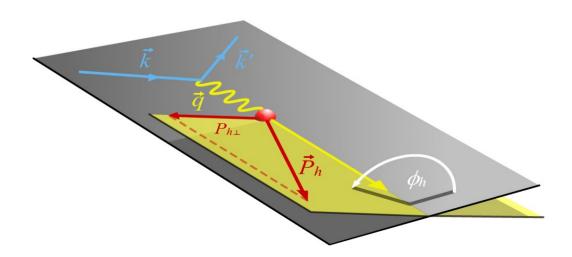
- probe fragmentation function complementary to e^+e^- and $p\stackrel{\scriptscriptstyle(-)}{p}$
- disentangle favored (e.g. $u \rightarrow \pi^+$) from unfavored fragmentation (e.g. $\bar{u} \rightarrow \pi^+$)

Extraction of multiplicities

- charged pion and kaon multiplicities
- hydrogen and deuterium targets
- kinematic requirements:

$$Q^2 > 1 \text{ GeV}^2$$
 $0.1 < y < 0.85$ $W^2 > 10 \text{ GeV}^2$ $2 \text{ GeV} < P_h < 15 \text{ GeV}$ $0.2 < z < 0.8$

• 3D binning: $(x_B, z, P_{h\perp})$ and $(Q^2, z, P_{h\perp})$



Extraction of Born multiplicities

$$M_{Born}^h(j) = \frac{1}{n_{Born}^{DIS}(j)} \sum_{i} \left[S_h^{-1} \right](j,i) \left[M_{meas}^h(i) \, N_{meas}^{DIS}(i) - \frac{n^h(i,0)}{n^h(i,0)} \right]$$

smearing matrix from LEPTO+JETSET Monte-Carlo simulation

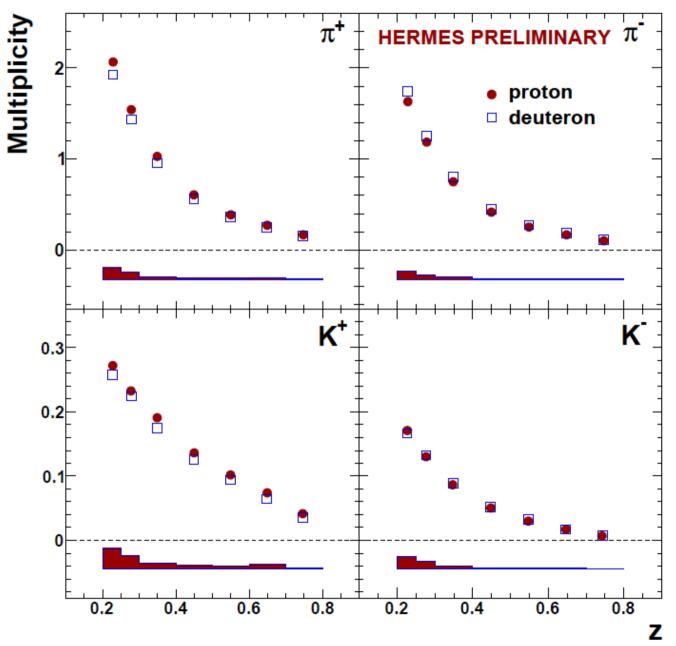
$$S_h(i,j) = \frac{n^h(i,j)}{n^h_{Born}(j)}$$
 reconstructed generated (Born)

accounts for

- QED radiative effects (RADGEN)
- limited geometric and kinematic acceptance of spectrometer
- detector resolution

 $n^h(i,0)$ migration of events outside acceptance into acceptance

Results projected in z



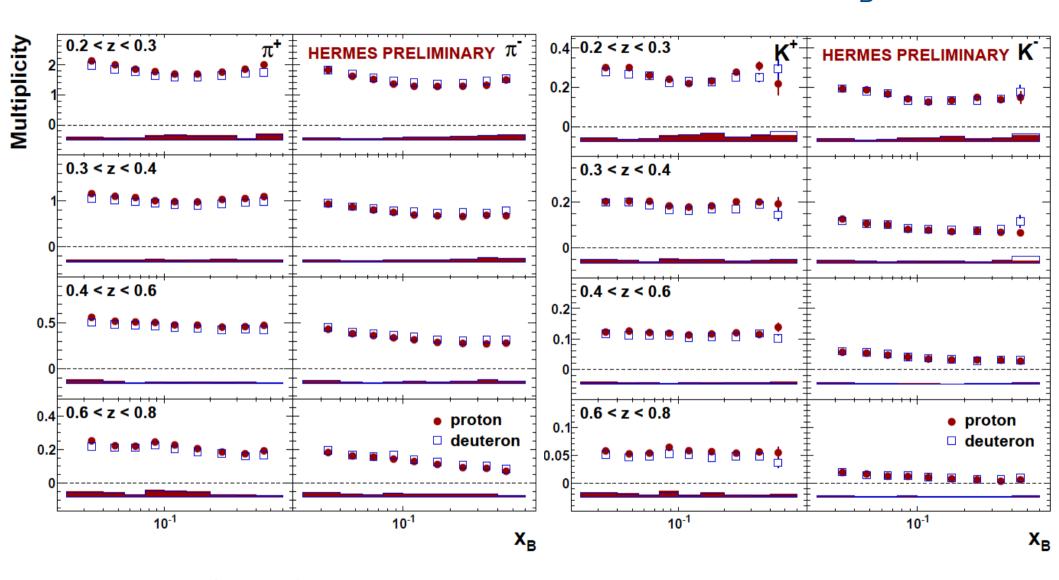
$$\frac{M_{p(d)}^{\pi^+}}{M_{p(d)}^{\pi^-}} = 1.2 - 2.6 (1.1 - 1.8)$$

$$\frac{M_{p(d)}^{K^{+}}}{M_{p(d)}^{K^{-}}} = 1.5 - 5.7 (1.3 - 4.6)$$

multiplicities reflect

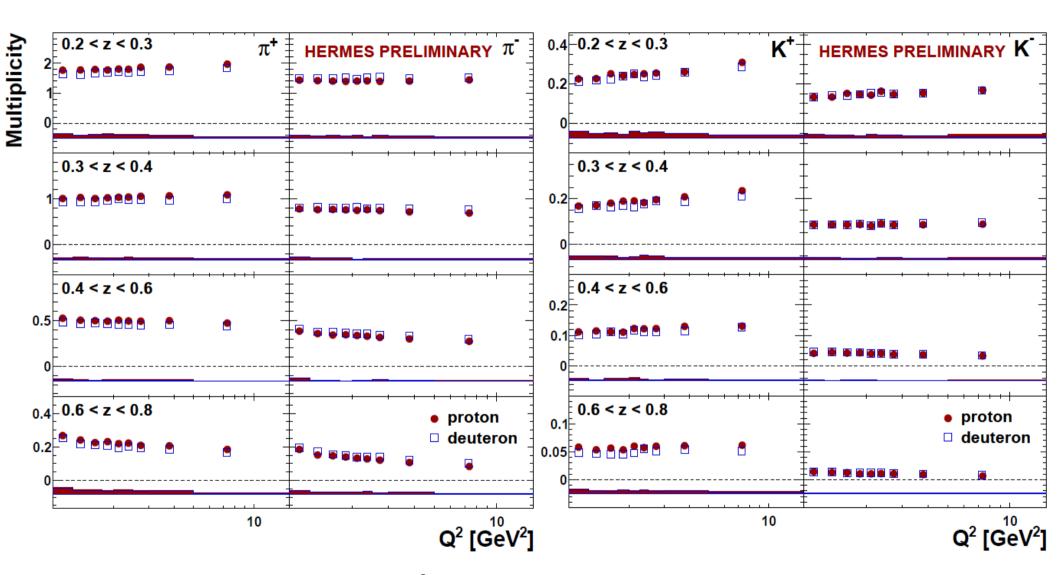
- nucleon valence-quark content (u-dominance)
- favored ↔ unfavored fragmentation

Results projected in z and $x_{\rm B}$



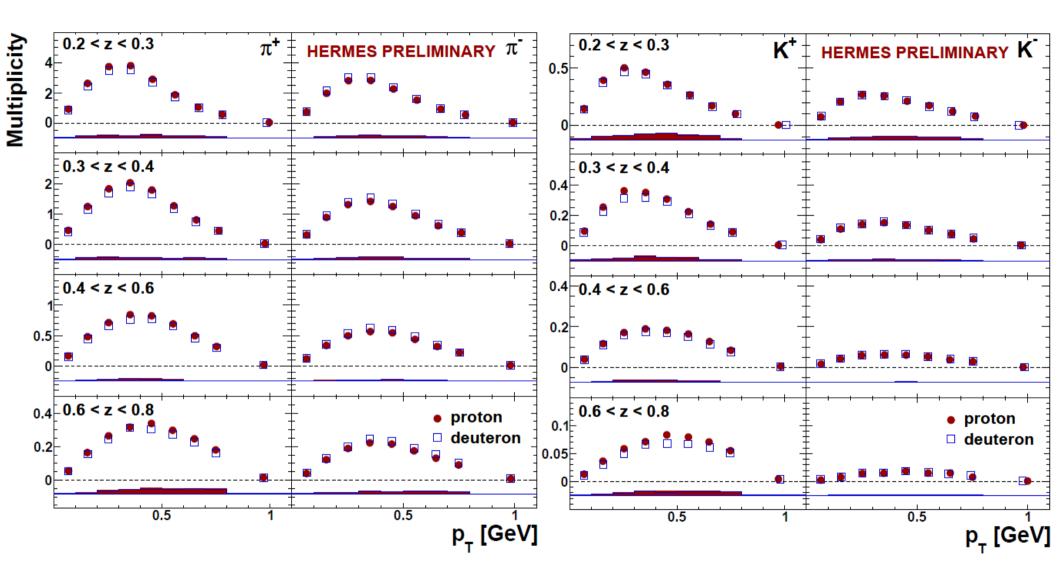
• no strong dependence on $\mathbf{x}_{_{\mathrm{B}}}$

Results projected in z and Q²



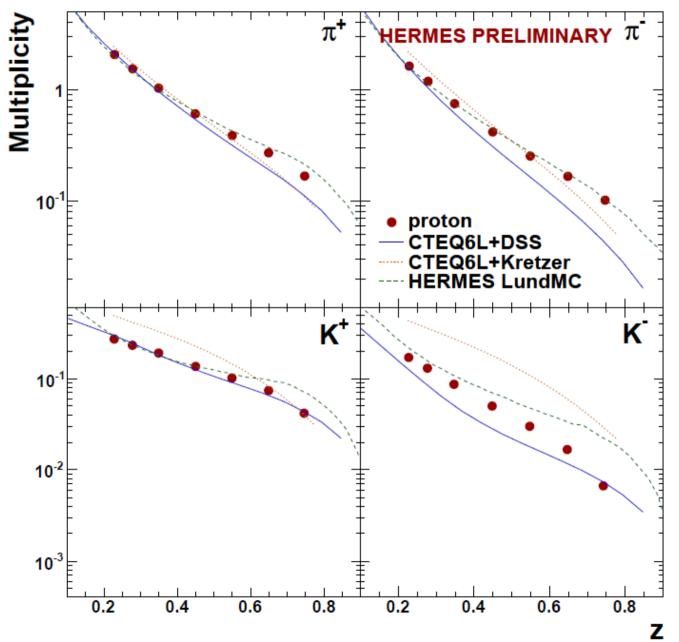
strong correlation x_B and Q²

Results projected in z and Phil



- $P_{h\perp}$ (=p_T on figures): transverse intrinsic struck-quark momentum
 - transverse momentum from fragmentation process
- K⁻: broader distribution

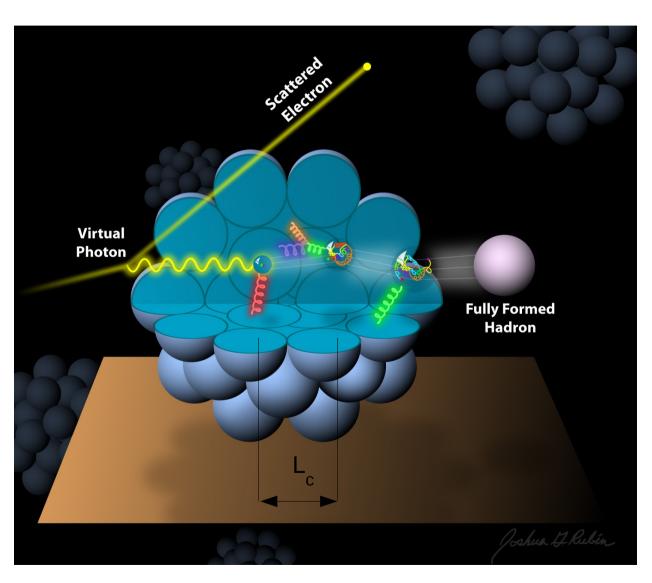
Comparison with models



- LO in α_S
- CTEQ6L PDFs JHEP 0602 (2006) 032
- DSS FFs
 Phys. Rev. D75 (2007) 114010
- Kretzer FFs
 Phys. Rev. D62 (2000) 054001

Hadronization in nuclei

Probing space-time evolution of hadronization



parton and nuclear medium:

- PDFs modified by nuclear medium
- · gluon radiation and rescattering

(pre-)hadron and nuclear medium:

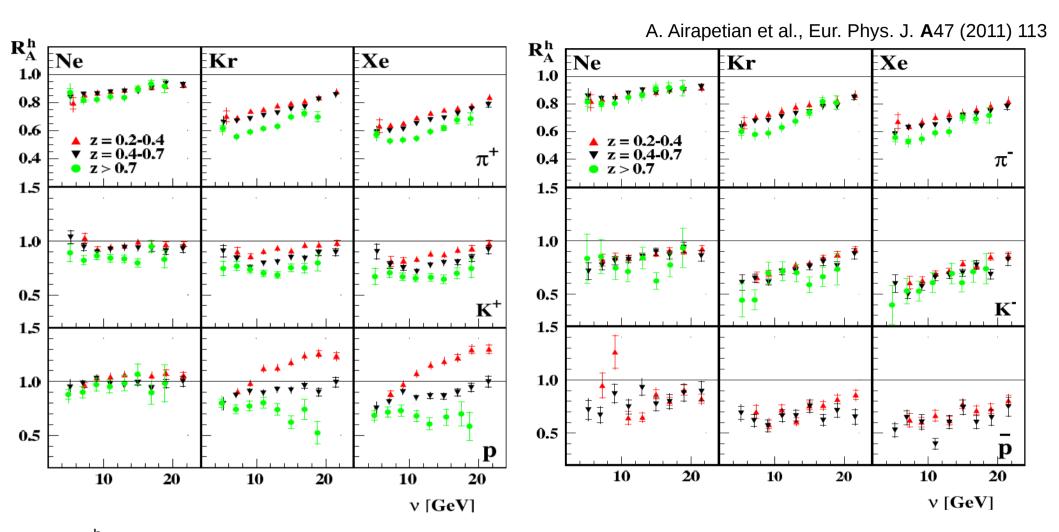
- rescattering
- absorption
- differences predicted for partonic and (pre-)hadronic interactions
- change from partonic to hadronic interactions=f(L_c/nucleon size)

hadron multiplicity ratios from heavier targets and deuterium space-time evolution of hadron formation

Extraction of multiplicity ratios

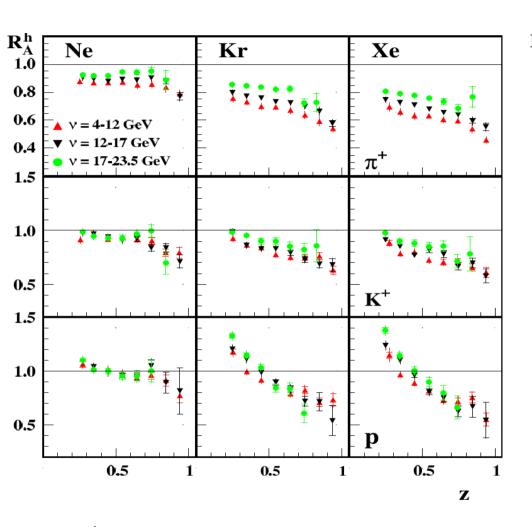
- nuclear targets: Ne, Kr, Xe compared to D
- ratio \(\bigsiz\) approximate cancellation of
 - QED radiative effects (RADGEN)
 - limited geometric and kinematic acceptance of spectrometer
 - detector resolution
- multi-dimensional extraction:
 - ν for slices of z
 - z for slices of v
 - $P_{h\perp}^2$ for slices of z
 - z for slices of $P_{h\perp}^2$

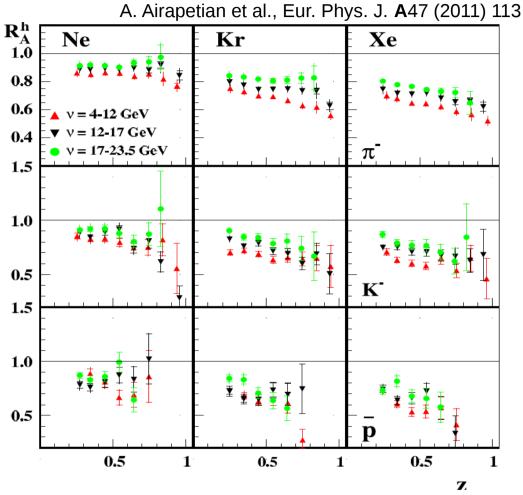
Results in v for slices of z



- R decreases with increasing A (except for protons)
- π^{\pm} & K : R_A^h increases with increasing ν
- K^+ : R_A^h increases with increasing v, but different behavior
- p: $R_{\Delta}^{n} > 1$ at low z

Results in z for slices of v

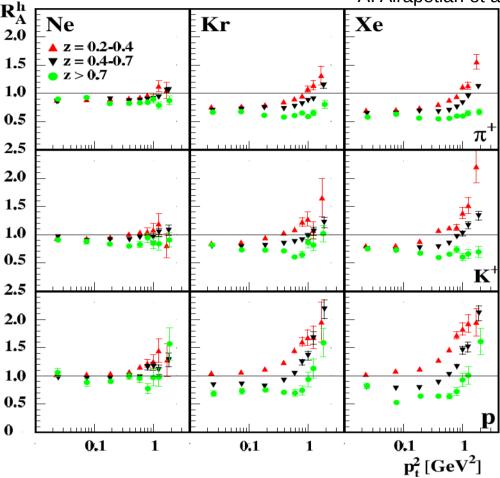




- R_A decreases with increasing z
- effect increases with increasing A
- p: $R_A^h > 1$ at low z
- K^+ : $R_A^h \approx 1$ at low z

Results in $P_{h\perp}^2$ for slices of z

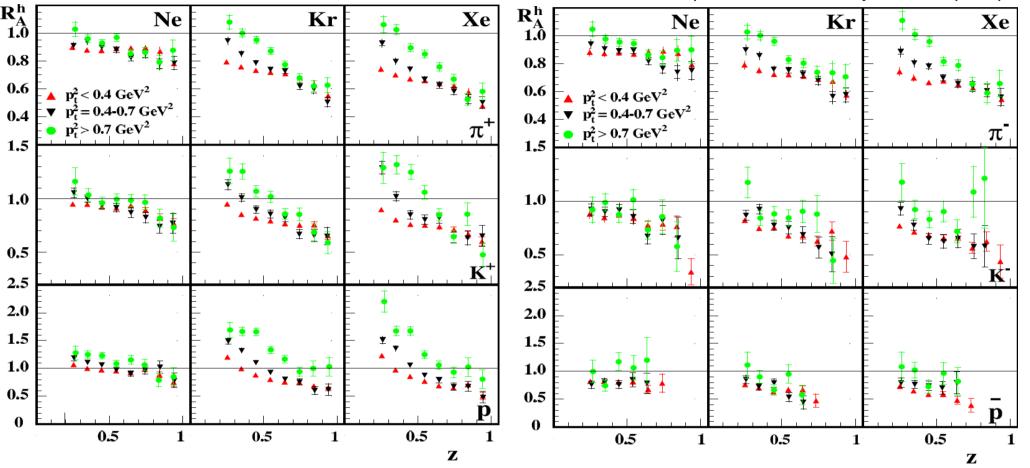
A. Airapetian et al., Eur. Phys. J. **A**47 (2011) 113



- R_A^h increases strongly with increasing $P_{h_\perp}^2$ (Cronin effect)
- except at large z for π^+ and K^+

Results in z for slices of P_{h⊥}

A. Airapetian et al., Eur. Phys. J. A47 (2011) 113



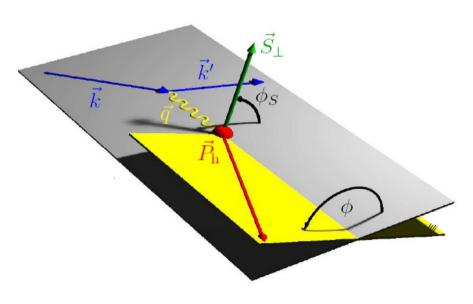
- decrease of R_A^h with increasing z stronger at large $P_{h_\perp}^2$ and A
- no Cronin effect at large z
- p: R_A^h at low z larger for large $P_{h_\perp}^2$

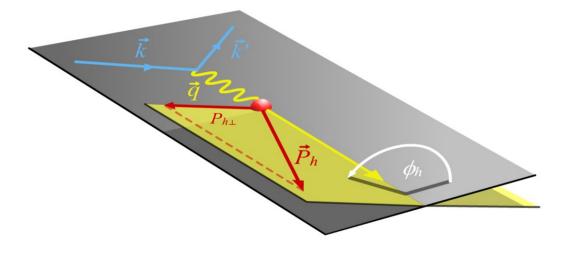
Access to Collins fragmentation function

Semi-inclusive deep-inelastic single-hadron production

transverse target-spin asymmetry:

spin-independent semi-inclusive cross section:





$$\sim \sin(\phi + \phi_S) \sum_q e_q^2 \mathcal{I}[h_{1T}^q \otimes \mathcal{W}_1 H_1^{\perp,q}]$$

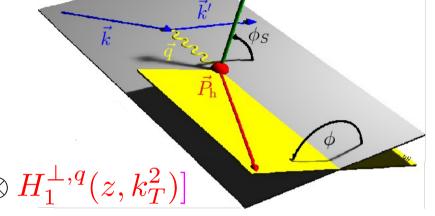
$$\sim \cos(2\phi_h) \sum_q e_q^2 \mathcal{I}[-h_1^{\perp,q} \otimes \mathcal{W}_2 H_1^{\perp,q}]$$

$$+\cos(\phi_h)\sum_{q}e_q^2\mathcal{I}[-f_1^q\otimes\mathcal{W}_3D_1^q$$
$$-h_1^{\perp,q}\otimes\mathcal{W}_4H_1^{\perp,q}+\ldots]$$

 $H_1^{\perp,q}$: Collins fragmentation function

Single-Spin Asymmetry

$$A_{UT} = \frac{1}{\langle |S_T| \rangle} \frac{N^{\uparrow}(\phi, \phi_S) - N^{\downarrow}(\phi, \phi_S)}{N^{\uparrow}(\phi, \phi_S) + N^{\downarrow}(\phi, \phi_S)}$$



$$\sim \sin(\phi + \phi_S) \sum_{q} e_q^2 \mathcal{I}[\frac{\vec{k}_T \cdot \hat{P}_{h\perp}}{M_h} h_{1T}^q(x, p_T^2) \otimes H_1^{\perp, q}(z, k_T^2)]$$

$$h_{1T}^q(x, p_T^2)$$
: transversity

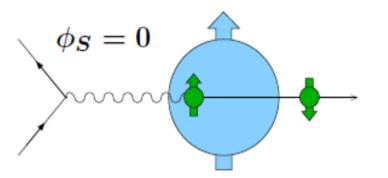
 $H_1^{\perp,q}(z,k_T^2)$: Collins fragmentation function

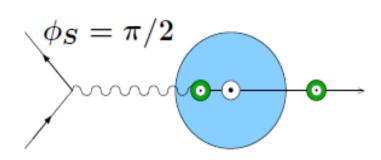


Collins fragmentation function: Artru model

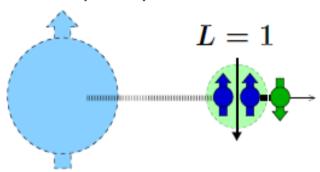
X. Artru et al., Z. Phys. C73 (1997) 527

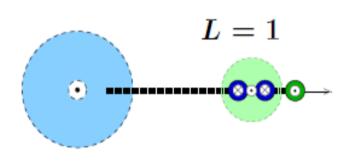
polarisation component in lepton scattering plane reversed by photoabsorption:



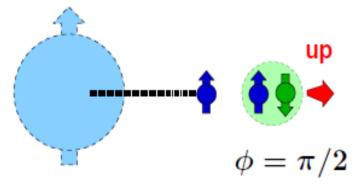


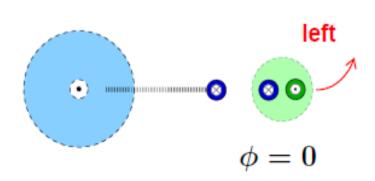
string break, quark-antiquark pair with vacuum numbers:



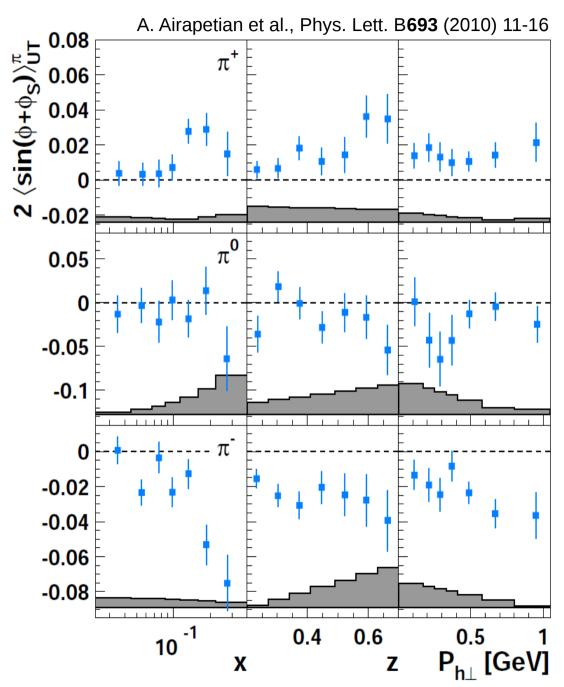


orbital angular momentum creates transverse momentum:





Collins amplitudes for pions

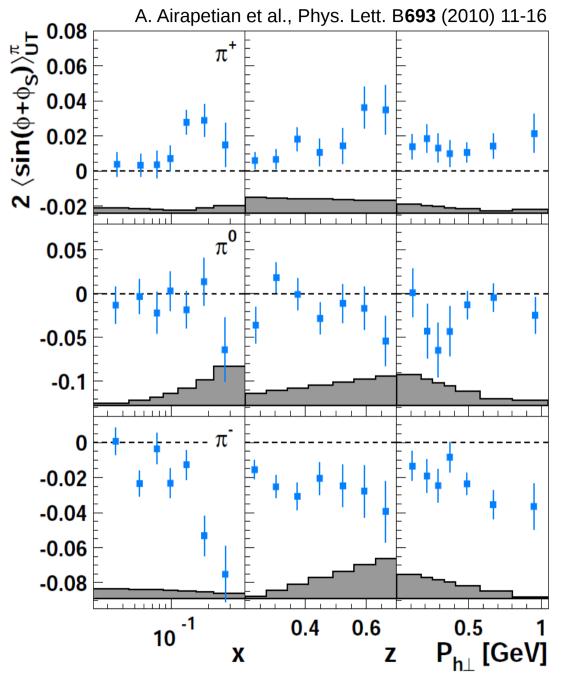


- π^{\pm} increasing with z
- positive for π^+
- large & negative for π^{-}

$$H_1^{\perp,fav} pprox - H_1^{\perp,unfav}$$

• isospin symmetry fulfilled

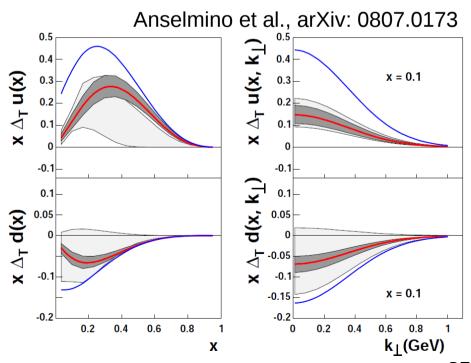
Collins amplitudes for pions



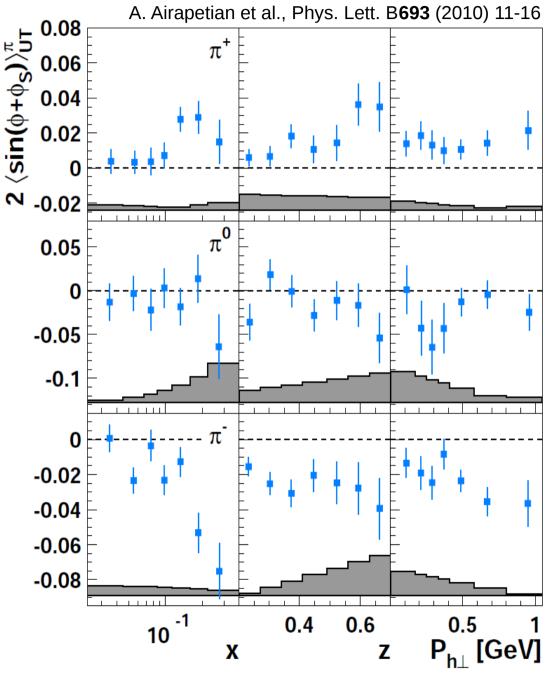
- π^{\pm} increasing with z
- positive for π^+
- large & negative for π^{-}

$$H_1^{\perp,fav} pprox - H_1^{\perp,unfav}$$

- isospin symmetry fulfilled
- data from BELLE, COMPASS & HERMES \longrightarrow extraction of h_{1T}^{q}



Collins amplitudes for pions

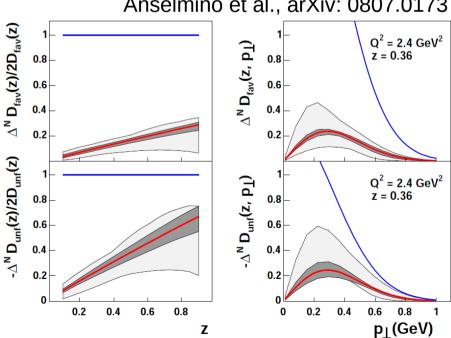


- π^{\pm} increasing with z
- positive for π^+
- large & negative for π

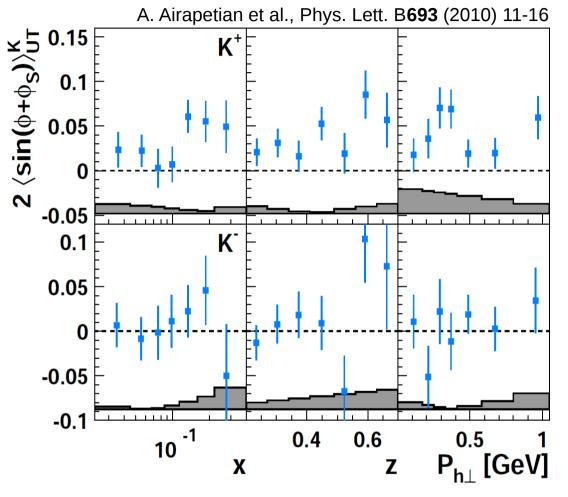
$$H_1^{\perp,fav} pprox -H_1^{\perp,unfav}$$

- isospin symmetry fulfilled
- data from BELLE, COMPASS & **HERMES** → extraction of H₂

Anselmino et al., arXiv: 0807.0173



Collins amplitudes for kaons

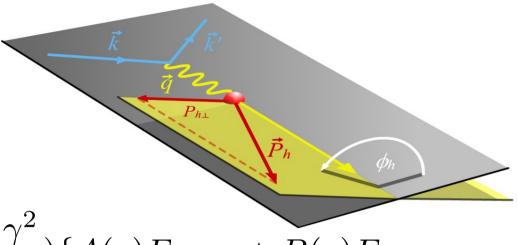


- K⁺: increasing with z
- positive for K^+ & larger than for π^+
 - role of s-quark
 - u-dominance ?→

$$\mathbf{H}_{1}^{\perp,u\to K^{+}} > H_{1}^{\perp,u\to\pi^{+}}$$

 K⁻ ≈ 0, ≠ from π⁻
 K⁻ is pure sea object: sea-quark transversity expected to be small

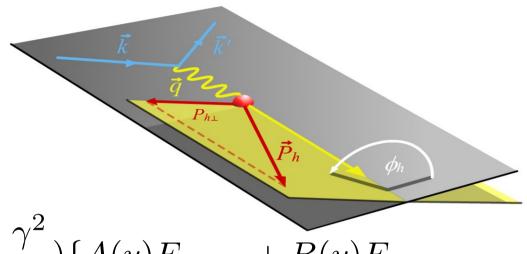
Spin-independent semi-inclusive DIS cross section



Non-collinear cross section

$$\frac{d\sigma}{dxdydzdP_{h\perp}^2d\phi_h} = \frac{\alpha^2}{xyQ^2} (1 + \frac{\gamma^2}{2x}) \{A(y)F_{UU,T} + B(y)F_{UU,L} + C(y)\cos\phi_h F_{UU}^{\cos\phi_h} + B(y)\cos2\phi_h F_{UU}^{\cos2\phi_h}\}$$
$$\gamma = \frac{2Mx}{Q}, \ F = F(x, Q, z, \vec{P_{h\perp}})$$

Spin-independent semi-inclusive DIS cross section



Non-collinear cross section

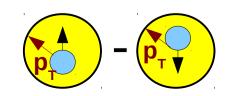
$$\frac{d\sigma}{dxdydzdP_{h\perp}^2d\phi_h} = \frac{\alpha^2}{xyQ^2}(1 + \frac{\gamma^2}{2x})\{A(y)F_{UU,T} + B(y)F_{UU,L}\}$$

$$+C(y)\cos\phi_h F_{UU}^{\cos\phi_h} + B(y)\cos 2\phi_h F_{UU}^{\cos 2\phi_h}$$

$$\gamma = \frac{2Mx}{Q}, \ F = F(x, Q, z, \vec{P_{h\perp}})$$

leading twist

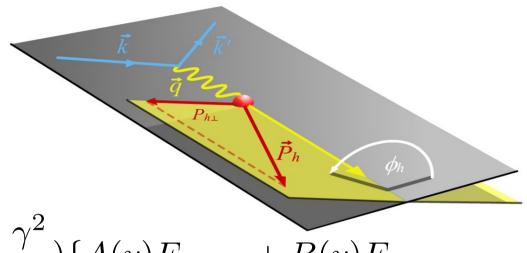
$$F_{UU}^{\cos 2\phi_h} = \mathcal{I}\left[-\frac{2(\hat{P}_{h\perp}.\vec{p}_T)(\hat{P}_{h\perp}.\vec{k}_T) - \vec{p}_T.\vec{k}_T}{M_h M}h_1^{\perp}H_1^{\perp}\right]$$



Boer-Mulders DF

Collins FF

Spin-independent semi-inclusive DIS cross section



Non-collinear cross section

$$\frac{d\sigma}{dxdydzdP_{h\perp}^2d\phi_h} = \frac{\alpha^2}{xyQ^2}(1 + \frac{\gamma^2}{2x})\{A(y)F_{UU,T} + B(y)F_{UU,L}\}$$

$$+C(y)\cos\phi_h F_{UU}^{\cos\phi_h} + B(y)\cos 2\phi_h F_{UU}^{\cos 2\phi_h}$$

$$\gamma = \frac{2Mx}{Q}, \ F = F(x, Q, z, \vec{P_{h\perp}})$$

sub-leading twist

$$F_{UU}^{\cos\phi_h} = \frac{2M}{Q} \mathcal{I} [-\frac{\hat{P}_{h\perp} \cdot \vec{p}_T}{M} f_1 D_1 - \frac{\hat{P}_{h\perp} \cdot \vec{k}_T}{M_h} \frac{p_T^2}{M^2} h_1^{\perp} H_1^{\perp} + \dots]$$

Cahn effect

quark-gluon-quark correlations

$$\langle \cos(n\phi_h) \rangle \stackrel{th.}{=} \frac{\int d\phi_h \cos(n\phi_h) \sigma_{UU}(\omega, \phi_h)}{\int d\phi_h \sigma_{UU}(\omega, \phi_h)} \qquad \omega = (x, y, z, P_{h\perp}^2)$$

$$\langle \cos(n\phi_h) \rangle \stackrel{exp.}{=} \frac{\int d\phi_h \cos(n\phi_h) \epsilon_{acc}(\omega, \phi_h) \epsilon_{rad}(\omega, \phi_h) \sigma_{UU}(\omega, \phi_h)}{\int d\phi_h \epsilon_{acc}(\omega, \phi_h) \epsilon_{rad}(\omega, \phi_h) \sigma_{UU}(\omega, \phi_h)}$$

$$\langle \cos(n\phi_h) \rangle \stackrel{th.}{=} \frac{\int d\phi_h \cos(n\phi_h) \sigma_{UU}(\omega, \phi_h)}{\int d\phi_h \sigma_{UU}(\omega, \phi_h)} \qquad \omega = (x, y, z, P_{h\perp}^2)$$

$$\langle \cos(n\phi_h) \rangle \stackrel{exp.}{=} \frac{\int d\phi_h \cos(n\phi_h) \epsilon_{acc}(\omega, \phi_h) \epsilon_{rad}(\omega, \phi_h) \sigma_{UU}(\omega, \phi_h)}{\int d\phi_h \epsilon_{acc}(\omega, \phi_h) \epsilon_{rad}(\omega, \phi_h) \sigma_{UU}(\omega, \phi_h)}$$

extraction is challenging! azimuthal modulations also possible due to

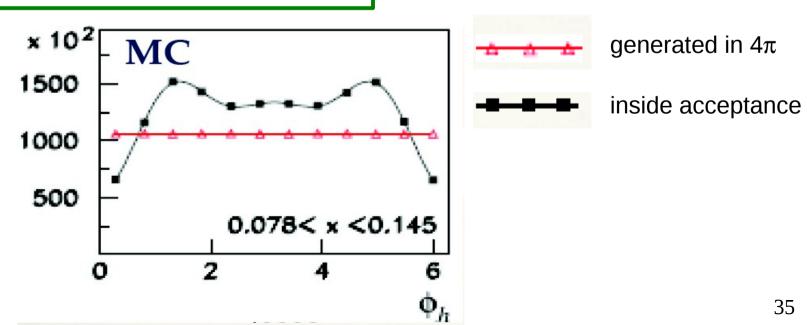
- detector geometrical acceptance
- higher-order QED effects

$$\langle \cos(n\phi_h) \rangle \stackrel{th.}{=} \frac{\int d\phi_h \cos(n\phi_h) \sigma_{UU}(\omega, \phi_h)}{\int d\phi_h \sigma_{UU}(\omega, \phi_h)} \qquad \omega = (x, y, z, P_{h\perp}^2)$$

$$\langle \cos(n\phi_h) \rangle \stackrel{exp.}{=} \frac{\int d\phi_h \cos(n\phi_h) \epsilon_{acc}(\omega, \phi_h) \epsilon_{rad}(\omega, \phi_h) \sigma_{UU}(\omega, \phi_h)}{\int d\phi_h \epsilon_{acc}(\omega, \phi_h) \epsilon_{rad}(\omega, \phi_h) \sigma_{UU}(\omega, \phi_h)}$$

extraction is challenging! azimuthal modulations also possible due to

- detector geometrical acceptance
- higher-order QED effects



$$\langle \cos(n\phi_h) \rangle \stackrel{th.}{=} \frac{\int d\phi_h \cos(n\phi_h) \sigma_{UU}(\omega, \phi_h)}{\int d\phi_h \sigma_{UU}(\omega, \phi_h)} \qquad \omega = (x, y, z, P_{h\perp}^2)$$

$$\langle \cos(n\phi_h) \rangle \stackrel{exp.}{=} \frac{\int d\phi_h \cos(n\phi_h) \epsilon_{acc}(\omega, \phi_h) \epsilon_{rad}(\omega, \phi_h) \sigma_{UU}(\omega, \phi_h)}{\int d\phi_h \epsilon_{acc}(\omega, \phi_h) \epsilon_{rad}(\omega, \phi_h) \sigma_{UU}(\omega, \phi_h)}$$

extraction is challenging! azimuthal modulations also possible due to

- detector geometrical acceptance
- higher-order QED effects

fully differential analysis needed unfolding procedure with 400 x 12 bins

BINNING							
400 kinematic bins x 12 φ-bins							
Variable	Bin limits						#
Х	0.023	0.042	0.078	0.145	0.27	1	5
у	0.3	0.45	0.6	0.7	0.85		4
Z	0.2	0.3	0.45	0.6	0.75	1	5
P_{hT}	0.05	0.2	0.35	0.5	0.75		4

Extraction of the cosine moments

$$\langle \cos(n\phi_h) \rangle \stackrel{th.}{=} \frac{\int d\phi_h \cos(n\phi_h) \sigma_{UU}(\omega, \phi_h)}{\int d\phi_h \sigma_{UU}(\omega, \phi_h)} \qquad \omega = (x, y, z, P_{h\perp}^2)$$

$$\langle \cos(n\phi_h) \rangle \stackrel{exp.}{=} \frac{\int d\phi_h \cos(n\phi_h) \epsilon_{acc}(\omega, \phi_h) \epsilon_{rad}(\omega, \phi_h) \sigma_{UU}(\omega, \phi_h)}{\int d\phi_h \epsilon_{acc}(\omega, \phi_h) \epsilon_{rad}(\omega, \phi_h) \sigma_{UU}(\omega, \phi_h)}$$

extraction is challenging! azimuthal modulations also possible due to

- detector geometrical acceptance
- higher-order QED effects

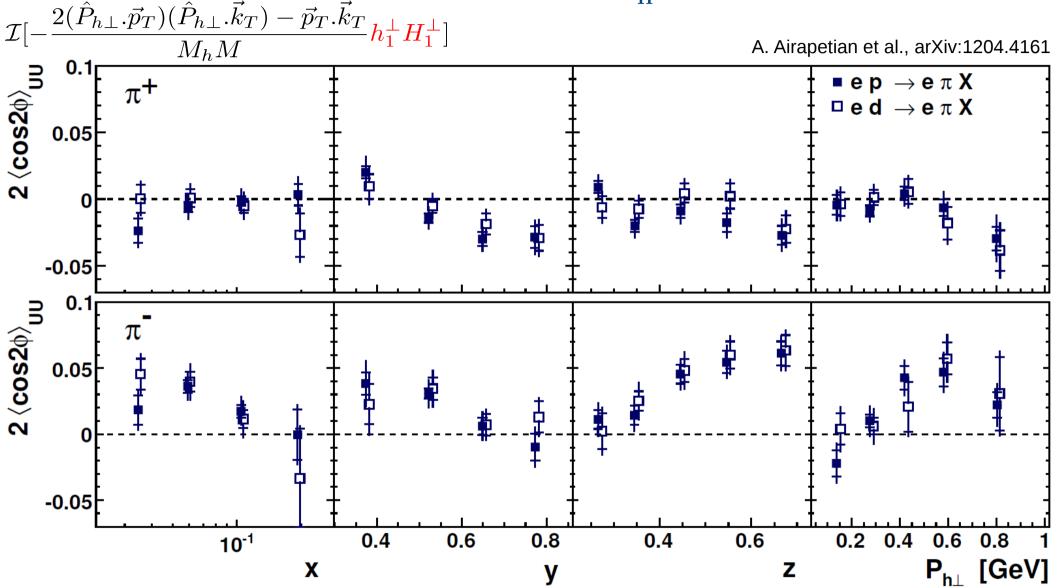
fully differential analysis needed unfolding procedure with 400 x 12 bins

entretening precedence with research							
BINNING							
400 kinematic bins x 12 φ-bins							
Variable	Bin limits						#
Х	0.023	0.042	0.078	0.145	0.27	1	5
у	0.3	0.45	0.6	0.7	0.85		4
Z	0.2	0.3	0.45	0.6	0.75	1	5
P_{hT}	0.05	0.2	0.35	0.5	0.75		4

 $\langle \cos(n\phi_h) \rangle \approx |_{\mathsf{bin}}$

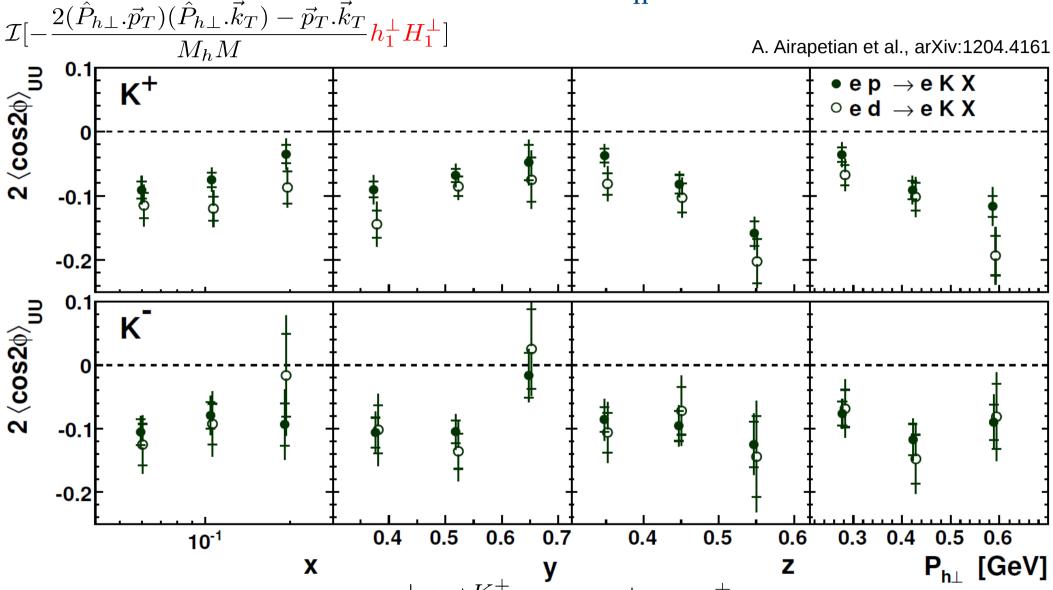
$$\frac{\int d\phi_h \cos(n\phi_h) \sigma_{UU}(\omega,\phi_h)}{\int d\phi_h \sigma_{UU}(\omega,\phi_h)} \text{bin}$$

Results for $<\cos 2\phi_h>$: pions



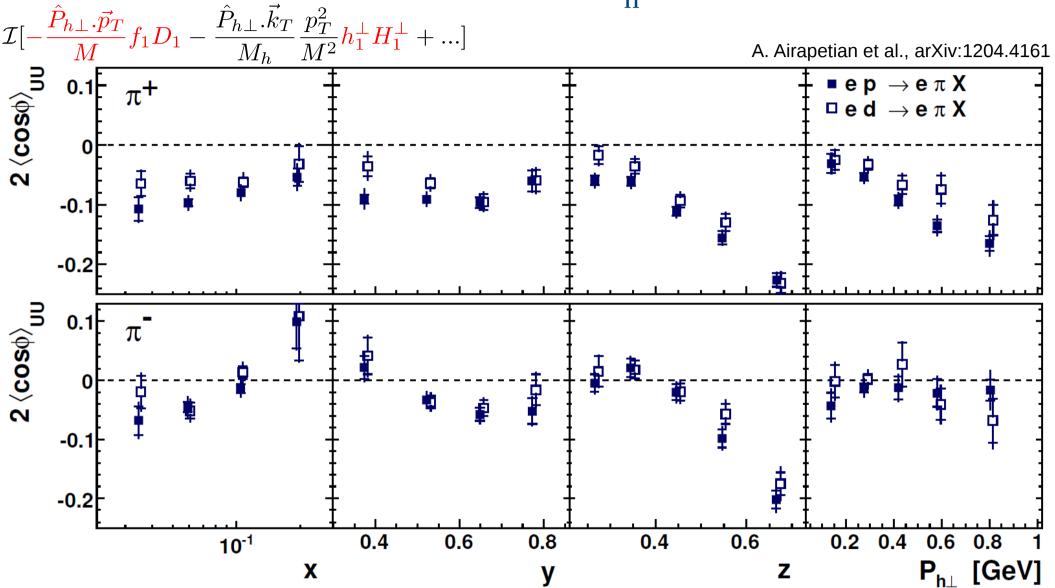
- H-D comparison: $h_1^{\perp,u} \approx h_1^{\perp,d}$
- $\pi^{-} > 0$ $\longrightarrow \pi^{+} \leqslant 0$: $H_{1}^{\perp,fav} \approx -H_{1}^{\perp,unfav}$

Results for $<\cos 2\phi_{k}>$: kaons



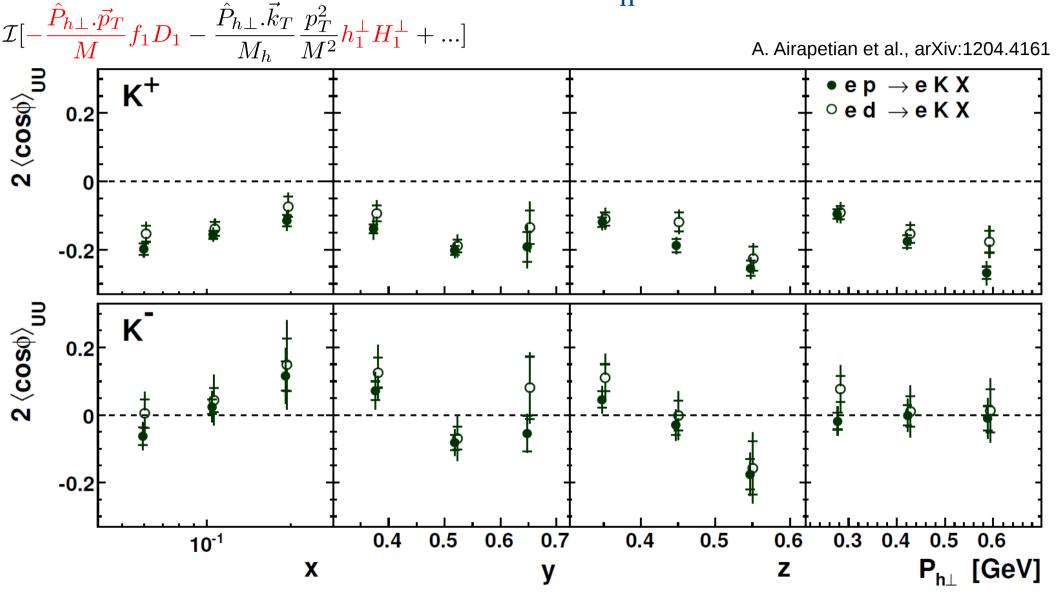
- K*<0: Artru model: sign $H_1^{\perp,u\to K^+}$ = sign $H_1^{\perp,u\to\pi^+}$ K*= K*: u-dominance $\xrightarrow{?}$ $H_1^{\perp,u\to K^+}$ $\approx H_1^{\perp,u\to K^-}$ - role of sea-quarks

Results for $\langle \cos \phi_h \rangle$: pions



- H-D comparison: weak flavor dependence
- magnitude increases with z
- π^+ : magnitude increases with P_h

Results for $<\cos \phi_h>$: kaons

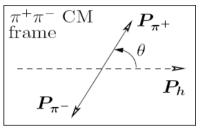


- K⁺<0, larger in magnitude than π^+
- K⁻≃0

Access to dihadron fragmentation function

Single-spin asymmetry: $\pi^+\pi^-$ production

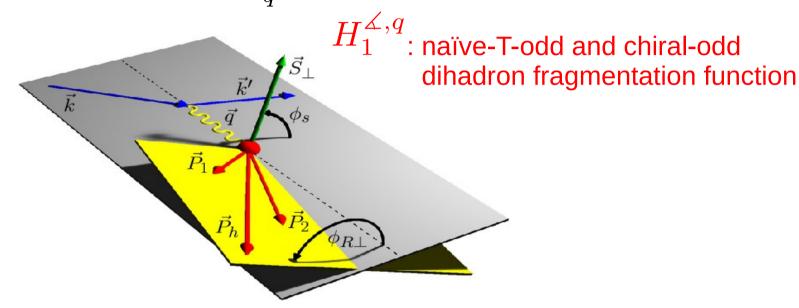
$$\sigma_{UT} \sim \sin(\phi_{R\perp} + \phi_S) \sum_{q} e_q^2 h_1^q(x) H_1^{\angle,q}(z, M_{\pi\pi}, \theta)$$



$$\vec{R} = \frac{1}{2}(\vec{P}_1 - \vec{P}_2)$$

$$\vec{P}_h = \vec{P}_1 + \vec{P}_2$$

$$\vec{R}_T = \vec{R} - (\vec{R}.\hat{P}_h)\hat{P}_h$$



- independent method to probe transversity: transverse spin of fragmenting quark transferred to relative orbital angular momentum of hadron pair
- integration over hadron momenta → direct product but
- more complex cross section (9 variables)
- less statistics

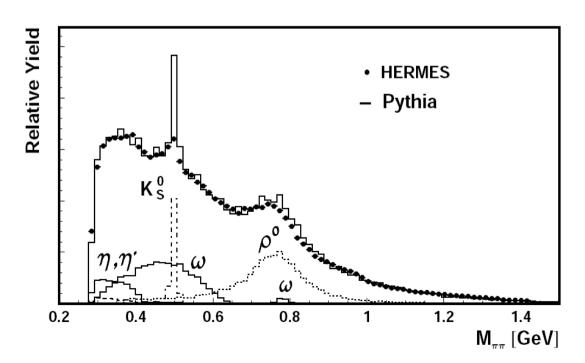
Extraction of $\pi^+\pi^-$ asymmetry

$$A_{UT} \sim \sin(\phi_{R\perp} + \phi_S) \sin\theta \frac{\sum_q e_q^2 h_{1T}^q(x) H_1^{\lambda,q}(z, M_{\pi\pi}, \cos\theta)}{\sum_q e_q^2 f_1^q(x) D_1^q(z, M_{\pi\pi}, \cos\theta)}$$

• Legendre expansion ($M_{\pi\pi}$ <1.5 GeV):

$$H_1^{\lambda} = H_1^{\lambda, sp} + H_1^{\lambda, pp} \cos \theta$$

$$D_1 = D_1 + D_1^{sp} \cos \theta + D_1^{pp} \frac{1}{4} (3\cos^2 \theta - 1)$$



Extraction of $\pi^+\pi^-$ asymmetry

• Legendre expansion ($M_{\pi\pi}$ <1.5 GeV):

$$H_1^{\lambda} = H_1^{\lambda, sp} + H_1^{\lambda, pp} \cos \theta$$

$$D_1 = D_1 + D_1^{sp} \cos \theta + D_1^{pp} \frac{1}{4} (3\cos^2 \theta - 1)$$

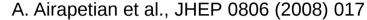
• symmetrization around $\theta = \pi/2$

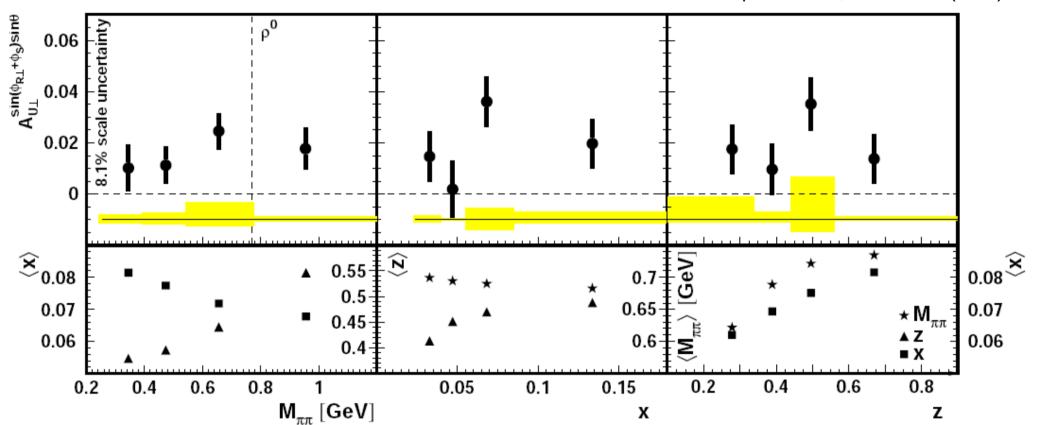
$$H_1^{\measuredangle,pp}\cos\theta$$
 and $D_1^{sp}\cos\theta$

$$\frac{a}{1 + \frac{b}{4}(3\cos^2\theta - 1)}\sin(\phi_{R\perp} + \phi_S)\sin\theta$$

$$a \equiv A_{U\perp}^{\sin(\phi_{R\perp} + \phi_S)\sin\theta} \sim \frac{\sum_q e_q^2 h_{1T}(x) H_1^{\angle, sp}(z, M_{\pi\pi})}{\sum_q e_q^2 f_1(x) D_1(z, M_{\pi\pi})}$$

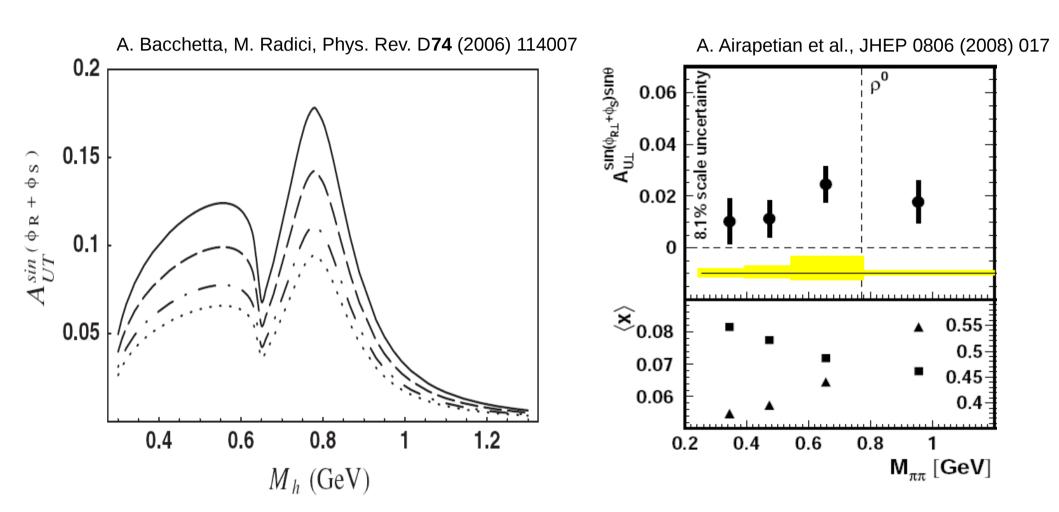
Final HERMES results





 first evidence for non-zero T-odd and chiral-odd dihadron fragmentation function

Comparison with model



• no sign change around ρ^0 mass (\leftarrow > Jaffe model), confirmed by BELLE and COMPASS data

Summary

- π^{\pm} and K^{\pm} multiplicities on hydrogen and deuterium:
 - 3-dimensional extraction
 - support notion of favored fragmentation
- hadronization in nuclei:
 - 2-dimensional extraction
 - contribute to increased understanding of fragmentation process
- SIDIS single-hadron production on transv. pol. H and unpol. H and D:
 - pions: opposite sign for favored and unfavored u-quark Collins fragmentation function
 - kaons: large signal for single-spin asymmetry (K⁺) and cos(2φ) (K⁺ and K⁻)
 - substantial s-quark Collins fragmentation function?
- dihadron fragmentation function:
 - sizeable signal observed ► contribute to increased understanding of transverse-spin effects

Backup

Multiplicities projected in z: VM contribution



