BARYONS'07, Seul, Korea, 14.06.2007

New results on exclusive ρ_{i}^{0} and ϕ meson production at

- Objectives: Generalized Parton Distributions
- HERMES Experiment
- Total and Longitudinal Cross Sections of ρ^0 and ϕ
- ρ^0 and ϕ Meson Spin Density Matrix Elements
 - Kinematic dependences
 - Longitudinal-to-Transverse Cross-Section Ratios
 - Hierarchy of Helicity Amplitudes
 - Unnatural Parity Exchange
- Summary

Alexander Borissov, DESY, on behalf of HERMES Collaboration

Test of GPDs via Exclusive Vector Meson Production

Properties of ρ^0 and ϕ meson data:

- different pQCD production mechanisms:
 - only two-gluon exchange for ϕ ,
 - both two-gluon and quark exchanges for ho^0
 - ⇒ GPDs as a flavor filter
- quark exchange mediated by
 - vector or scalar meson: ρ^0 , ω , a_2 (natural parity: $J^P = 0^+, 1^-$) \implies unpolarized GPDs: H, \tilde{H}
 - pseudoscalar or axial meson: π , a_1 , b_1 (unnatural parity $J^P = 0^-, 1^+$) \implies polarized GPDs: E, \tilde{E}

Experimental observables:

- total (σ_{tot}) and logitudinal (σ_L) cross sections: $\sigma_L = \frac{R}{1+\epsilon R} \sigma_{tot}$, where $R = \sigma_L / \sigma_T = \frac{r_{00}^{04}}{\epsilon(1-r_{00}^{04})}$
- Spin Density Matrix Elements (SDMEs): $r^{\alpha}_{\lambda\rho\lambda'_{\rho}} \sim \rho(V) = \frac{1}{2}T\rho(\gamma)T^{+}$ Vector meson spin-density matrix $\rho(V)$ in terms of the photon matrix $\rho(\gamma)$ and helicity amplitude $T_{\lambda_{V}\lambda_{\gamma}}$
- SCHC: helicity of γ^* = helicity of ρ^0 , any violation?
- Extracted from SDMEs Natural and Unnatural Parity Helicity Amplitudes

HERMES Detector is Two Identical Halves of Forward Spectrometer

- Beam: $P=27.56~{\rm GeV/c},~50...100~{\rm mA}$,longitudinal polarization $\sim 55\%$, accuracy of 2%
- Target: ¹H, ²H gases, integrated over polarization states

- Acceptance: $40 < \Theta < 220$ mrad, $|\Theta_x| < 170$ mrad, $40 < |\Theta_y| < 140$ mrad
- Resolution: $\delta p/p \leq 1\%$, $\delta \Theta \leq 0.6$ mrad

Kinematics of exclusive ρ^0 and ϕ meson production

$$e+p \rightarrow e'+p'+\rho^0 \rightarrow \pi^+\pi^- \qquad e+p \rightarrow e'+p'+\phi \rightarrow K^+K^-$$

Clean
$$\rho^0$$
 exclusivity peak
 $\Delta E = \frac{M_X^2 - M_p^2}{2M_p}$, $M_X^2 = (p + q - v)^2$, $\mathsf{M}_{inv} : \rho^0 \to \pi^+ \pi^- \qquad \phi \to K^+ K^-$

Background is subtracted using MC (PYTHIA)

- $\nu = 5 \div 24 \text{ GeV}, < \nu >= 13.3 \text{ GeV}, \qquad Q^2 = 1.0 \div 5.0 \text{ GeV}^2, < Q^2 >= 2.3 \text{ GeV}^2$
- $W = 3.0 \div 6.5 \text{ GeV}$, $\langle W \rangle = 4.9 \text{ GeV}$, $x_{Bj} = 0.01 \div 0.35$, $\langle x_{Bj} \rangle = 0.07$

p⁰ Total and Longitudinal Cross Sections, and GK Model

two-gluon exchange,two-gluon+sea interference,quark exchange,sum Band represents uncertainties in σ_L from Parton Distributions

 \Rightarrow Quark exchange is important for HERMES, i.e. at $W \leq 5$ GeV

 ϕ Total and Longitudinal Cross Sections, and GK model

 \implies Good agreement of GK $\sigma_L(W)$ -dependence

Q^2 -dependence of σ_L from GK model for ρ^0 and ϕ at HERMES

 \rightarrow Full agreement of σ_L with HERMES data at $Q^2 > 2.0 \text{ GeV}^2$ (Uncertainties of HERMES data are smaller then ones from the GK calculations)

 \implies What's about σ_T ?

Fit of Angular Distributions Using Max. Likelihood Method in MINUIT

• Simulated Events: matrix of fully reconstructed MC events at initial uniform angular distribution

• Binned Maximum Likelihood Method: $8 \times 8 \times 8$ bins of $\cos(\Theta), \phi, \Phi$. Simultaneous fit of 23 SDMEs $r_{ij}^{\alpha} = W(\Phi, \phi, \cos \Theta)$ for data with negative and positive beam helicity ($\langle P_b \rangle = 53.5\%$)

\implies Full agreement of fitted angular distributions with data

23 Spin Density Matrix Elements $r^{\alpha}_{\lambda_{\rho}\lambda'_{\rho}}$ from $\gamma^* + N \rightarrow \rho^0 + N'$

- $\gamma^* + N \rightarrow \rho^0(\phi) + N'$ is perfect to study the spin structure of production mechanism: - spin state of γ^* is known
 - $\rho^0 \to \pi^+\pi^-$ decay is self-analysing
- SDMEs: $r^{\alpha}_{\lambda\rho\lambda'_{\rho}} \sim \rho(V) = \frac{1}{2}T\rho(\gamma)T^{+}$ in terms of the photon matrix $\rho(\gamma)$ and helicity amplitude $T_{\lambda_{V}\lambda\gamma}$
 - \implies Beam-polarization dependent SDMEs, in a first time

• SCHC?

 \implies enlarged SDMEs violating SCHC $(2 \div 5 \sigma)$, indicating non-zero spin-flip amplitudes: T_{01}, T_{10}, T_{1-1}

• $q\bar{q}$ -exchange with isospin 1 can be observed in case of difference between proton and deuteron data

 \implies No significant difference between proton and deuteron

t'-Dependence of ρ^0 SDMEs Compared with Calculations

- GK model calculations done for $Q^2 > 3.0 \text{ GeV}^2$ for two-gluon exchange only (S.V.Goloskokov and P.Kroll, Eur.Phys.J. C 42 (2005) 281)
- Incorporation of quark-exchange into GK model is under development
- Reasonable agreement for a majority of SDMEs (12 elements) at low t': Re r_{10}^{04} , r_{00}^{5} ...
- The most crucial disagreement with data for GK model: r_{00}^{04} , r_{1-1}^1 , $\operatorname{Im}\{r_{1-1}^2\}$ connected with σ_L/σ_T ratio
- No model describes well all unpolarized SDMEs.

ϕ Meson SDMEs Compared with Calculations and High Energy Data

• Note: GK model calculations done for $Q^2 = 3.0 \text{ GeV}^2$ and two-gluon exchange

 \implies Reasonable agreement for a majority of SDMEs

 Disagreement with data for GK Model:

$$r_{00}^{04}
ightarrow \sigma_L/\sigma_T$$
 ratio

- $r_{00}^5 \rightarrow {\rm SCHC}$ in data, but not in the model

➡ Further development of GK model

 ρ^0 and ϕ Longitudinal-to-Transverse Cross-Section Ratio $R^{04} = \frac{1}{\epsilon} \frac{r_{00}^{04}}{1-r^{04}}$

 \implies Due to the helicity-flip and unnatural parity amplitudes R^{04} depends on kinematic conditions, and is not identical to $R \equiv |T_{00}|^2/|T_{11}|^2$ at SCHC and NPE dominance \implies HERMES ρ^0 data are suggestive to R(W)-dependence

SDMEs According to Hierarchy of Amplitudes without&with Helicity Flip: ρ^0 , ϕ

 $\implies \text{Hierarchy of } \rho^0 \text{ amplitudes: } |T_{00}| \sim |T_{11}| \gg |T_{01}| > |T_{10}| \gtrsim |T_{1-1}|, (0 \to L, 1 \to T)$ $\implies \phi \text{ meson SDMEs are consistent with SCHC, } |T_{00}| \sim |T_{11}|$

Observation of Unnatural-parity-exchange (UPE) in ρ^0 **Leptoproduction**

- Natural-parity exchange: interaction is mediated by a particle of 'natural' parity: vector or scalar meson: $J^P = 0^+, 1^-$ e.g. ρ^0 , ω , a_2
- Unnatural parity exchange is mediated by pseudoscalar or axial meson: $J^P=0^-,1^+$, e.g. π , a_1 , b_1
- UPE amplitudes correspond to the contributions of polarized GPDs: $E, ilde{E}$

 \implies Indication on hierarchy of ho^0 UPE amplitudes: $|U_{11}| \gg |U_{10}| \sim |U_{01}|$

• ρ data:

- Longitudinal cross section well described by GPD models
- Incorporation of *quark-exchange* mechanism for calculation of 15 beam-polarization-independent SDMEs in GK model is under way
- Further tuning of GK model for transversal cross section
- $R \equiv \sigma_L / \sigma_T$ ratio is suggestive to W-dependence
- Hierarchy of (un)natural helicity transfer amplitudes is established
- ϕ meson data:
 - Total and Longitudinal cross section consistent with two-gluon exchange
 - SCHC dominace
 - Further tuning of GK model for transversal cross section
 - $R\equiv\sigma_L/\sigma_T$ is consistent with wold data
 - Natural-parity-exchange dominance

... Target-polarization dependent SDMEs are under analysis

More data from 2006-2007 will be available

BACKUP SLIDES !!!

Equations for Unpolarized SDMEs from Helicity Transfer Amplitudes

$$\begin{split} D &= \epsilon N_L + N_T \\ N_T &= \sum^* \{ |T_{11}^N|^2 + |T_{01}^N|^2 + |T_{1-1}^N|^2 + |T_{11}^U|^2 + |T_{01}^U|^2 + |T_{1-1}^U|^2 \} \\ N_L &= \sum^* \{ |T_{00}|^2 + 2|T_{10}^N|^2 + 2|T_{10}^U|^2 \} \end{split}$$

$$\begin{split} r_{00}^{04} &= \sum^{\star} \{\epsilon | T_{00} |^{2} + | T_{01}^{N} |^{2} + | T_{01}^{U} |^{2} \} / D \\ \Re\{r_{10}^{04}\} &= \sum^{\star} \Re\{\epsilon T_{10}^{N} T_{00}^{*} + \frac{1}{2} T_{01}^{N} (T_{11}^{N} - T_{1-1}^{N})^{*} + \frac{1}{2} T_{01}^{U} (T_{11}^{U} + T_{1-1}^{U})^{*} \} / D \\ r_{1-1}^{04} &= \sum^{\star} \Re\{-\epsilon | T_{10}^{N} |^{2} + \epsilon | T_{10}^{U} |^{2} + T_{1-1}^{N} (T_{11}^{N})^{*} - T_{1-1}^{U} (T_{11}^{U})^{*} \} / D \\ r_{11}^{1} &= \sum^{\star} \Re\{T_{1-1}^{N} (T_{11}^{N})^{*} + T_{1-1}^{U} (T_{11}^{U})^{*} / D \\ r_{00}^{1} &= \sum^{\star} \{-|T_{01}^{N}|^{2} + |T_{01}^{U}|^{2} \} / D \\ \Re\{r_{10}^{1}\} &= \frac{1}{2} \sum^{\star} \Re\{-T_{01}^{N} (T_{11}^{N} - T_{1-1}^{N})^{*} + T_{01}^{U} (T_{11}^{U} + T_{1-1}^{U})^{*} \} / D \end{split}$$

$$\begin{split} r_{1-1}^{1} &= \frac{1}{2} \sum^{\star} \{ |T_{11}^{N}|^{2} + |T_{1-1}^{N}|^{2} - |T_{11}^{U}|^{2} - |T_{1-1}^{U}|^{2} \} / D \sim |T_{11}^{N}|^{2} - |T_{11}^{U}|^{2} \\ \Im\{r_{1-1}^{2}\} &= \frac{1}{2} \sum^{\star} \{ -|T_{11}^{N}|^{2} + |T_{1-1}^{N}|^{2} + |T_{11}^{U}|^{2} - |T_{1-1}^{U}|^{2} \} / D \sim -|T_{11}^{N}|^{2} + |T_{11}^{U}|^{2} \end{split}$$

$$\begin{split} \Im\{r_{10}^2\} &= \frac{1}{2} \sum^{\star} \Re\{T_{01}^N (T_{11}^N + T_{1-1}^N)^* - T_{01}^U (T_{11}^U - T_{1-1}^U)^*\} / D \\ r_{11}^5 &= \frac{1}{\sqrt{2}} \sum^{\star} \Re\{T_{10}^N (T_{11}^N - T_{1-1}^N)^* + T_{10}^U (T_{11}^U - T_{1-1}^U)^*\} / D \\ r_{00}^5 &= \sqrt{2} \sum^{\star} \Re\{T_{01}^N T_{00}^*\} / D \ \Re r_{10}^5 &= \frac{1}{\sqrt{8}} \sum^{\star} \Re\{2T_{10}^N (T_{01}^N)^* + (T_{11}^N - T_{1-1}^N)T_{00}^*\} / D \\ r_{1-1}^5 &= \frac{1}{\sqrt{2}} \sum^{\star} \Re\{-T_{10}^N (T_{11}^N - T_{1-1}^N)^* + T_{10}^U (T_{11}^U - T_{1-1}^U)^*\} / D \end{split}$$

 $\rightarrow T_{11}^U$ decreases r_{1-1}^1 and increases $\Im\{r_{1-1}^2\}$ No other SDMEs contain T_{11}^U in the numerator \rightarrow can be checked with SDMEs!

 $\rightarrow T^U_{10}, T^U_{01}, T^U_{1-1}$ omitted in the fit function

Equations for Polarized SDMEs from Helicity Transfer Amplitudes

$$\begin{split} \Im r_{10}^{6} &= \frac{1}{\sqrt{8}} \sum^{*} \Re \{ 2T_{10}^{U} (T_{01}^{U})^{*} - (T_{11}^{N} + T_{1-1}^{N}) T_{00}^{*} \} / D \\ \Im r_{1-1}^{6} &= \frac{1}{\sqrt{2}} \sum^{*} \Re \{ T_{10}^{N} (T_{11}^{N} + T_{1-1}^{N})^{*} - T_{10}^{U} (T_{11}^{U} + T_{1-1}^{U})^{*} \} / D \\ \Im r_{10}^{3} &= -\frac{1}{2} \sum^{*} \Im \{ T_{01}^{N} (T_{11}^{N} + T_{1-1}^{N})^{*} + T_{01}^{U} (T_{11}^{U} - T_{1-1}^{U})^{*} \} / D \\ \Im r_{1-1}^{3} &= -\sum^{*} \Im \{ T_{1-1}^{N} (T_{11}^{N})^{*} - T_{1-1}^{U} (T_{11}^{U})^{*} \} / D \\ \Im r_{10}^{7} &= \frac{1}{\sqrt{8}} \sum^{*} \Im \{ 2T_{10}^{U} (T_{01}^{U})^{*} + (T_{11}^{N} + T_{1-1}^{N}) T_{00}^{*} \} / D \\ \Im r_{1-1}^{7} &= \frac{1}{\sqrt{2}} \sum^{*} \Im \{ T_{10}^{N} (T_{11}^{N} + T_{1-1}^{N})^{*} - T_{10}^{U} (T_{11}^{U} + T_{1-1}^{U})^{*} \} / D \\ \Im r_{11}^{8} &= -\frac{1}{\sqrt{2}} \sum^{*} \Im \{ T_{10}^{N} (T_{11}^{N} - T_{1-1}^{N})^{*} + T_{10}^{U} (T_{11}^{U} - T_{1-1}^{U})^{*} \} / D \\ r_{00}^{8} &= \sqrt{2} \sum^{*} \Im \{ T_{01}^{N} T_{00}^{*} \} / D \\ \Re r_{10}^{8} &= \frac{1}{\sqrt{8}} \sum^{*} \Im \{ T_{10}^{N} (T_{11}^{N} - T_{1-1}^{N})^{*} - T_{10}^{U} (T_{11}^{U} - T_{1-1}^{U})^{*} \} / D \\ \Re r_{10}^{8} &= \frac{1}{\sqrt{8}} \sum^{*} \Im \{ T_{10}^{N} (T_{11}^{N} - T_{1-1}^{N})^{*} - T_{10}^{U} (T_{11}^{U} - T_{1-1}^{U})^{*} \} / D \\ \Re r_{1-1}^{8} &= \frac{1}{\sqrt{2}} \sum^{*} \Im \{ T_{10}^{N} (T_{11}^{N} - T_{1-1}^{N})^{*} - T_{10}^{U} (T_{11}^{U} - T_{1-1}^{U})^{*} \} / D \\ \end{bmatrix} r_{1-1}^{8} &= \frac{1}{\sqrt{2}} \sum^{*} \Im \{ T_{10}^{N} (T_{11}^{N} - T_{1-1}^{N})^{*} - T_{10}^{U} (T_{11}^{U} - T_{1-1}^{U})^{*} \} / D \\ \end{bmatrix} r_{1-1}^{8} &= \frac{1}{\sqrt{2}} \sum^{*} \Im \{ T_{10}^{N} (T_{11}^{N} - T_{1-1}^{N})^{*} - T_{10}^{U} (T_{11}^{U} - T_{1-1}^{U})^{*} \} / D \\ \end{bmatrix} r_{1-1}^{8} &= \frac{1}{\sqrt{2}} \sum^{*} \Im \{ T_{10}^{N} (T_{11}^{N} - T_{1-1}^{N})^{*} - T_{10}^{U} (T_{11}^{U} - T_{1-1}^{U})^{*} \} / D \\ \end{bmatrix} r_{1-1}^{8} &= \frac{1}{\sqrt{2}} \sum^{*} \Im \{ T_{10}^{N} (T_{11}^{N} - T_{1-1}^{N})^{*} - T_{10}^{U} (T_{11}^{U} - T_{1-1}^{U})^{*} \} / D \\ \end{bmatrix} r_{1-1}^{8} &= \frac{1}{\sqrt{2}} \sum^{*} \Im \{ T_{10}^{N} (T_{11}^{N} - T_{1-1}^{N})^{*} - T_{10}^{N} T_{1-1}^{N} \} / D \\ \end{bmatrix} r_{1-1}^{8} &= \frac{1}{\sqrt{2}} \sum^{*} \Im \{ T_{10}^{N} (T_{11}^{N} - T_{1-1}^{N})^{*} - T_{10}^{N} (T_{11$$

 $W(\cos\Theta, \phi, \Phi) = W^{unpol} + W^{long.pol},$

$$\begin{split} & \mathbb{W}^{unpol}(\cos\Theta,\phi,\Phi) = \frac{3}{8\pi^2} \bigg[\frac{1}{2} (1-r_{00}^{04}) + \frac{1}{2} (3r_{00}^{04}-1)\cos^2\Theta - \sqrt{2} \operatorname{Re}\{\mathbf{r}_{10}^{04}\}\sin 2\Theta\cos\phi - \mathbf{r}_{1-1}^{04}\sin^2\Theta\cos 2\phi \\ & -\epsilon\cos 2\Phi \Big(\mathbf{r}_{11}^1\sin^2\Theta + \mathbf{r}_{00}^1\cos^2\Theta - \sqrt{2} \operatorname{Re}\{\mathbf{r}_{10}^1\}\sin 2\Theta\cos\phi - \mathbf{r}_{1-1}^1\sin^2\Theta\cos 2\phi \Big) \\ & -\epsilon\sin 2\Phi \Big(\sqrt{2} \operatorname{Im}\{\mathbf{r}_{10}^2\}\sin 2\Theta\sin\phi + \operatorname{Im}\{\mathbf{r}_{1-1}^2\}\sin^2\Theta\sin 2\phi \Big) \\ & + \sqrt{2\epsilon(1+\epsilon)}\cos\Phi \Big(\mathbf{r}_{11}^5\sin^2\Theta + \mathbf{r}_{00}^5\cos^2\Theta - \sqrt{2} \operatorname{Re}\{\mathbf{r}_{10}^5\}\sin 2\Theta\cos\phi - \mathbf{r}_{1-1}^5\sin^2\Theta\cos 2\phi \Big) \\ & + \sqrt{2\epsilon(1+\epsilon)}\sin\Phi \Big(\sqrt{2} \operatorname{Im}\{\mathbf{r}_{10}^6\}\sin 2\Theta\sin\phi + \operatorname{Im}\{\mathbf{r}_{1-1}^6\}\sin^2\Theta\sin 2\phi \Big) \bigg], \\ & \mathbb{W}^{long.pol.}(\cos\Theta,\phi,\Phi) = \frac{3}{8\pi^2} P_{beam} \bigg[\sqrt{1-\epsilon^2} \Big(\sqrt{2} \operatorname{Im}\{\mathbf{r}_{10}^3\}\sin 2\Theta\sin\phi + \operatorname{Im}\{\mathbf{r}_{1-1}^7\}\sin^2\Theta\sin 2\phi \Big) \\ & + \sqrt{2\epsilon(1-\epsilon)}\cos\Phi \Big(\sqrt{2} \operatorname{Im}\{\mathbf{r}_{10}^7\}\sin 2\Theta\sin\phi + \operatorname{Im}\{\mathbf{r}_{1-1}^7\}\sin^2\Theta\sin 2\phi \Big) \end{split}$$

$$+\sqrt{2\epsilon(1-\epsilon)}\sin\Phi\left(r_{11}^8\sin^2\Theta+r_{00}^8\cos^2\Theta-\sqrt{2}\operatorname{Re}\{r_{10}^8\}\sin2\Theta\cos\phi-r_{1-1}^8\sin^2\Theta\cos2\phi\right)$$

Cross Section Ratios: $\sigma_{\phi}/\sigma_{\rho^o}$, $\sigma_{\omega}/\sigma_{o^o}$

Asymptotic SU(4) pQCD predicts: $\rho^o: \omega: \phi: J/\Psi = 9:1:2:8$

 ρ^0/phi ratio of σ_L from GK model

Figure 11: The longitudinal cross section for ϕ (left) and ρ (right) electroproduction versus W at $Q^2 = 3.8 \text{ GeV}^2$ and 4 GeV^2 , respectively. The handbag predictions are evaluated from the interval $-t' \leq 0.5 \text{ GeV}^2$. Data for ϕ production are taken from HERMES [41] (solid circle), ZEUS [13] (open triangles) and H1 [37] (solid square). The data for ρ production are taken from HERMES [42] (solid circles), E665 [43] (open triangles), ZEUS [12] (open square) and H1 [11] (solid square). The dashed (dash-dotted, dash-dot-dotted) line represents the gluon (gluon + sea, (gluon + sea)-valence interference plus valence quark) contribution. For other notations cf. Fig. 7.

Figure 12: Left: The ratio of the longitudinal cross sections for ϕ and ρ production. Data are taken from H1 [11, 37] (solid squares), ZEUS [12, 13] (open squares) and HERMES [41, 42] (solid circles). The solid (dashed) line represents the handbag predictions at W = 75(5) GeV. Right: Predictions for ω electroproduction versus W at $Q^2 = 3.5$ GeV². For comparison the full cross section for ω production, measured by ZEUS [49], is also shown (solid diamond).

ρ^o and ϕ Longitudinal Cross Sections, and VGG Model

first approach: GPD calculations of M.Vanderhaeghen, P.A.M. Guichon, M. Guidal, Phys. Rev. Let. 80 5064, (1998); Phys. Rev. D 60 094017 (1999)

 \rightarrow Domination of quark exchange for ρ^o and two-gluon for ϕ from VGG model

...since BARYONS'04:

Q^2 -Dependence of SDMEs Compared with Calculations

Reasonable agreement for a majority of SDMEs of 12 elements.

To be compared with calculations, for example: (S.V.Goloskokov and P.Kroll, Eur.Phys.J. C **42** (2005) 281)

$$T_{01} \sim T \to L : \qquad \mathcal{H}^{V} \propto \frac{\sqrt{-t}}{Q}$$
$$T_{11} \sim T \to T : \qquad \mathcal{H}^{V} \propto \frac{\langle k_{\perp}^{2} \rangle^{1/2}}{Q}$$
$$T_{10} \sim L \to T : \qquad \mathcal{H}^{V} \propto \frac{\sqrt{-t}}{Q} \frac{\langle k_{\perp}^{2} \rangle^{1/2}}{Q}$$
$$T_{1-1} \sim T \to -T : \qquad \mathcal{H}^{V} \propto \frac{-t}{Q^{2}} \frac{\langle k_{\perp}^{2} \rangle^{1/2}}{Q}$$

Deep Inelastic Scattering: Important Variables and Kinematic Distributions

- $Q^2 \stackrel{lab}{=} 4EE' \sin^2(\Theta/2)$
- $\nu \stackrel{lab}{=} E E'$
- $x_{Bj} \stackrel{lab}{=} Q^2/2M\nu$
- $W^2 \stackrel{lab}{=} M^2 + 2M\nu Q^2$

HERMES collab., Phys.Lett.B 513 (2001) 301-310; Eur.Phys.J. C 29, 171 - 179 (2003)

- radius of the nucleus: $r_{14_N}\simeq 2.5~{
 m fm}$
- coherence length: distance traversed by qq

- transverse size of the qq wave packet $r_{q\bar{q}} \sim 1/ < Q^2 > \simeq 0.4~{\rm fm} < r_p = 1~{\rm fm}$
- formation length: distance needed for qq to develop into hadron:

$$\begin{split} l_{form} &= \frac{2 \cdot \nu}{m_{V'}^2 - m_V^2} = 1.3 \div 6.3 \text{ fm} \\ &< l_{form} >= 3.47 \text{ fm} \end{split}$$

 $ightarrow
ho^0$ absorbtion at $l_c \gtrless r_{14_N}$ ightarrow 2-dimensional analysis of Q^2 , l_c dependences

Coherent Length Effect

panel. (T.Falter, W.Cassing, K.Gallmeister and U.Mosel, nucl-th/0309057).

- \rightarrow Size of virtual photon controlled via Q^2
- \rightarrow No strong $W{-}{\rm dependence}$

Color Transparency Effect

(HERMES collab., Phys.Rev.Let.,**90**,5,052501,2003) The QCD factorization theorem rigorously not possible without the onset of the color transparency:

 $\rightarrow r(qq)$ decreases with the increase of $Q^2 \rightarrow Tr^A(Q^2, l_{coh}) = \sigma^A_{(in)coh} / \sigma^H$ grows with Q^2

At fixed l_{coh} :

Agreement with theoretical calculations where positive slope of Q^2 -dependence was derived from the onset of the color transparency effect (B.Z. Kopeliovich et al, Phys.Rev. C, **65**, 035201, 2002)