PHOTON07, Paris, France, 09.07.2007

HERMES Measurements of Hard-Exclusive Processes

Bohdan Marianski SINS/Warsaw on behalf of HERMES Collaboration

- Objectives: Generalized Parton Distribution
- HERMES Experiment
- Exclusive ρ^0 and ϕ vector meson selection
 - ρ^0 and ϕ Meson Spin Density Matrix Elements (SDMEs)
 - Transverse target-spin asymmetry in exclusive ρ^0 production
- DVCS
- Summary

Probing GPD experimentally

- GPDs are accessable in hard exlusive processes:
- Exclusive meson production
- longitudinally polarized vector meson E, H
- pseudoscalar or the axial-vector meson \tilde{E},\tilde{H}
- DVCS -E, H, \tilde{E}, \tilde{H}
- Observables: cross sections, SDMEs, asymetries

HERMES Detector is Two Identical Halves of Forward Spectrometer

- Beam: $P=27.56~{\rm GeV/c},~50...100~{\rm mA},~{\rm longitudinal~polarization}\sim 55\%$, accuracy of 2%
- Target: ¹H, ²H gases, unpolarized, polarized

• Acceptance: $40 < \Theta < 220$ mrad, $|\Theta_x| < 170$ mrad, $40 < |\Theta_y| < 140$ mrad

• Resolution: $\delta n/n < 1\%$ $\delta \Theta < 0.6$ mrad

$$e + p \rightarrow e' + p' + \rho^0 \rightarrow \pi^+ \pi^ e + p \rightarrow e' + p' + \phi \rightarrow K^+ K^-$$

• SIDIS Background is subtracted using MC (PYTHIA)

• $\nu = 5 \div 24 \text{ GeV}, < \nu >= 13.3 \text{ GeV},$ $Q^2 = 1.0 \div 5.0 \text{ GeV}^2, < Q^2 >= 2.3 \text{ GeV}^2$ • $W = 3.0 \div 6.5 \text{ GeV}, < W >= 4.9 \text{ GeV},$ $x_{Bj} = 0.01 \div 0.35, < x_{Bj} >= 0.07$

Comparison of Exclusive ρ^0 and ϕ Meson Production

Properties of ρ^0 and ϕ meson data:

- different pQCD production mechanisms:
 only two-gluon exchange for φ,
 - both two-gluon and quark exchanges for ρ^0
 - \implies GPDs as a flavor filter
- quark exchange mediated by
 - vector or scalar meson: ρ^0 , ω , a_2 (natural parity: $J^P = 0^+, 1^-$) \implies unpolarized GPDs: H, E
 - pseudoscalar or axial meson: π , a_1 , b_1 (unnatural parity $J^P = 0^-, 1^+$) \implies polarized GPDs: \tilde{H}, \tilde{E}

Experimental observables:

- Spin Density Matrix Elements (SDMEs): $r^{\alpha}_{\lambda\rho\lambda'_{\rho}} \sim \rho(V) = \frac{1}{2}T\rho(\gamma)T^{+}$ Vector meson spin-density matrix $\rho(V)$ in terms of the photon matrix $\rho(\gamma)$ and helicity amplitude $T_{\lambda_{V}\lambda\gamma}$
- SCHC: helicity of γ^* = helicity of ρ^0 , any violation?
- Determination of the contribution of the Natural $(NPE, P = (-1)^J)$ and $Unnatural(UPE, P = -(-1)^J)$ Parity Helicity Amplitudes

Fit of Angular Distributions Using Max. Likelihood Method in MINUIT

- Simulated Events: matrix of fully reconstructed MC events at initial uniform angular distribution
- Binned Maximum Likelihood Method: 8 × 8 × 8 bins of cos(Θ), φ, Φ. Simultaneous fit of theoretical angular distribution W(r^α_{ij}, Φ, φ, cos Θ)to data with negative and positive beam helicity (< P_b >= 53.5%)

\Rightarrow Full agreement of fitted angular distributions with data

23 Spin Density Matrix Elements $r^{\alpha}_{\lambda_{\rho}\lambda'_{\rho}}$ from $\gamma^* + N \rightarrow \rho^0 + N'$

• SDMEs: $r^{\alpha}_{\lambda\rho\lambda'_{\rho}} \sim \rho(V) = \frac{1}{2}T\rho(\gamma)T^{+}$ in terms of the photon matrix $\rho(\gamma)$ and helicity amplitude $T_{\lambda_{V}\lambda\gamma}$

 \implies Beam-polarization dependent SDMEs, for the first time

• SCHC?

 \implies enlarged SDMEs violating SCHC $(2 \div 5 \sigma)$, indicating non-zero spin-flip amplitudes: T_{01}, T_{10}, T_{1-1}

• $q\bar{q}$ -exchange with isospin 1 can be observed in case of difference between proton and deuteron data

 \implies No significant difference between proton and deuteron

t'-Dependence of ρ^0 SDMEs Compared with Calculations

ϕ Meson SDMEs Compared with Calculations and High Energy Data

• Note: GK model calculations done for $Q^2 = 3.0 \text{ GeV}^2$ and two-gluon exchange

 \implies Reasonable agreement for a majority of SDMEs

- Disagreement with data for GK Model:
 - $r_{00}^{04}
 ightarrow \sigma_L/\sigma_T$ ratio

- $r_{00}^5 \rightarrow$ SCHC in data, but not in the model

Further development of GK model

SDMEs According to Hierarchy of Amplitudes without&with Helicity Flip: ρ^0 , ϕ

 \implies Hierarchy of ρ^0 amplitudes: $|T_{00}| \sim |T_{11}| \gg |T_{01}| > |T_{10}| \gtrsim |T_{1-1}|$,

 $\implies \phi$ meson SDMEs are consistent with SCHC, $|T_{00}| \sim |T_{11}|$

Observation of Unnatural-parity-exchange (UPE) in ρ^0 **Leptoproduction**

- Natural-parity exchange: interaction is mediated by a particle of 'natural' parity: vector or scalar meson: $J^P=0^+, 1^-$ e.g. ρ^0 , ω , a_2
- Unnatural parity exchange is mediated by pseudoscalar or axial meson: $J^P=0^-,1^+$, e.g. π , a_1 , b_1
- UPE amplitudes correspond to the contributions of polarized GPDs: $ilde{H}, ilde{E}$

 \implies Indication on hierarchy of ho^0 UPE amplitudes: $|U_{11}| \gg |U_{10}| \sim |U_{01}|$

 ρ^0 and ϕ Longitudinal-to-Transverse Cross-Section Ratio $R^{04} = \frac{1}{\epsilon} \frac{r_{00}^{\forall 4}}{1-r^{04}}$

⇒ Due to the helicity-flip and unnatural parity amplitudes R^{04} depends on kinematic conditions, and is not identical to $R \equiv |T_{00}|^2/|T_{11}|^2$ at SCHC and NPE dominance ⇒ HERMES data suggests an R(W)-dependence

Transverse Target Spin Asymmetry in Exclusive ρ_0 production

 S_{\perp}

 $\dot{k'}$

+

 \vec{k}

- Data taken with a transversely polarized Hydrogen target
- Selection of exclusive ρ_0 vector meson the same as in the SDME analyses
- Transverse target polarization relative to the lepton beam direction

$$A_{UT}^{l}(\phi,\phi_s) = \frac{1}{P_T} \frac{d\sigma(\phi,\phi_s) - d\sigma(\phi,\phi_s + \pi)}{d\sigma(\phi,\phi_s) + d\sigma(\phi,\phi_s + \pi)}$$

• Angular (ϕ, ϕ_s) distribution can be written in terms of asymetries $W(P_T, \phi, \phi_s) \propto (1 + A_{UU}(\phi) + \mathsf{P}_T A_{UT}^l(\phi, \phi_s))$ Where $A_{UU}(\phi), A_{UT}^{l}(\phi, \phi_s)$ are parametrized as:

$$\begin{aligned} A_{UU}(\phi) &= A_{UU}^{\cos(\phi_s)} \cos(\phi_s) + A_{UU}^{\cos(2\phi_s)} \cos(\phi_s) \\ A_{UT}^l(\phi, \phi_s) &= A_{UT}^{\sin(\phi_s)} \sin(\phi_s) + A_{UT}^{\sin(\phi-\phi_s)} \sin(\phi-\phi_s) + \\ &\quad A_{UT}^{\sin(\phi+\phi_s)} \sin(\phi+\phi_s) + A_{UT}^{\sin(2\phi+\phi_s)} \sin(2\phi-\phi_s) + \\ &\quad A_{UT}^{\sin(2\phi+\phi_s)} \sin(2\phi+\phi_s) + A_{UT}^{\sin(3\phi+\phi_s)} \sin(3\phi-\phi_s) \end{aligned}$$

Method of Asymetry Extraction

- Each ρ^0 polarization state has a characteristic decay angular distribution
- Assuming SCHC hypothesis we can separate ρ_L^0 , ρ_L^0 wchich is equivalent to γ_L^* , γ_T^* separation, $\sigma_L = \frac{R}{1+\epsilon R} \sigma_{tot}$, where $R = \sigma_L / \sigma_T = \frac{r_{00}^{04}}{\epsilon(1-r_{00}^{04})}$
- Angular $(\cos\theta, \phi, \phi_s)$ distribution can be written as: (Diel,Sapeta:hep-ph/0503023) $W(P_T, \cos\theta_{\pi\pi}, \phi, \phi_s) \propto [\cos^2\theta r_{00}^{04}(1 + P_T A_{UT,\rho_L}^l(\phi, \phi_s)) + A_{UU,\rho_L}(\phi)) + C_{UU,\rho_L}^{04}(\phi)]$

 $\frac{1}{2}sin^{2}\theta(1-r_{00}^{04})(1+P_{T},A_{UT,\rho_{T}}^{l}(\phi,\phi_{s}))+A_{UU,\rho_{T}}(\phi))]$

- Assymetries extracted with Unbinned Max Likelihood fit to Yields
- $A_{UU}, \rho_L/\rho_T$ terms are obtained from SDME

 $A_{UT}^{sin(\phi-\phi s)}$ for q^2 ,x,t' bins

Comparison with Theory.

- Data hints positive J^u
- In agreement with HERMES DVCS result

- Exactly one DIS lepton and one trackless cluster (photon) in the calorimeter
- Recoiling proton undetected

$$\begin{split} t &= (p-p')^2 = -Q^2 - 2E_\gamma(\nu - \sqrt{\nu^2 + Q^2} \cdot \cos\theta_{\gamma,\gamma^*}) \\ & \text{Exclusivity via Missing Mass:} M_x^2 = (q+p+q^{,})^2 \\ &-(1.5)^2 < M_x^2 < 1.7^2 GeV^2 \end{split}$$

Overall background contribution $\approx 15\%$

DVCS Transverse Target-Spin Asymetry

$$d\sigma(e^+, p^{\uparrow}) - d\sigma(e^+, p^{\downarrow}) \propto Im[F_2\mathcal{H} - F_1\mathcal{E}] \cdot sin(\phi - \phi s) \cdot cos(\phi - \phi s)...$$

only asymmetry with GPD E entering in leading order

 $J_q = \lim_{t \to 0^{\frac{1}{2}}} \int_{-1}^{1} dx x [H_q(x,\xi,t) + E_q(x,\xi,t)] \Rightarrow \text{Access total angular momentum}$

$$A_{UT}(\phi,\phi_s) = A_{UT}^{sin(\phi-\phi_s)cos\phi} \cdot sin(\phi-\phi_s)cos\phi + A_{UT}^{cos(\phi-\phi_s)sin\phi} \cdot cos(\phi-\phi_s)sin\phi$$

 $A_{UT}^{sin(\phi-\phi_s)cos\phi}$ sensitive to J_u under assumption $J_d = 0$

$$\chi^2(J_u, J_d) = \frac{[A_{UT}^{\sin(\phi-\phi_s)\cos\phi}|_{exp.} - A_{UT}^{\sin(\phi-\phi_s)\cos\phi}|_{VGG(J_u, J_d)}]^2}{\delta A_{stat.}^2 + \delta A_{sys.}^2}$$

 J_u and J_d free parameters i GPD-Model (VGG)

 $1 - \sigma = 0$ constraint on J_u vs J_u given by $\chi^2(J_u, J_d) \leqslant \chi^2_{min} + 1$

Large 2005 data sample yet to be added

Summary

- 15 beam-polarization-independent SDMEs and plus, for the first time, 8 beam-polarization-dependent SDMEs for the $\rho^0 \phi$, are obtained
- Deviation from SCHC for ρ^0 and holds of SCHC hypothesis for ϕ is observed
- Indication of UNP processes for ρ^0 and dominace of NP processes for ϕ is observed
- Hierarchy of helicity transfer amplitudes is established
- $R \equiv \sigma_L / \sigma_T$ ratio is suggests a W-dependence for ρ^0
- First measurement of $A_{UT}^{sin(\phi-\phi s)}$ seperately for ρ^L and ρ^T
- First Model-Dependent Constraint on J_u and J_d is made

The HERMES recoil counter and the 2006-2007 Data

